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We present explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations
for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations.
Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic equationsDet(p̂ −m) = 0 andDet(p̂ +

m) = 0 for u− andv− 4-spinors have solutions withp0 = ±Ep = ±
√

p2 + m2. The same is true for higher-spin equations. Meanwhile,
every book considers the equalityp0 = Ep for bothu− andv− spinors of the(1/2, 0) ⊕ (0, 1/2) representation, thus applying the Dirac-
Feynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles
of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field level for bothS = 1/2 and
higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac
equation. The applications are discussed.
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1. Introduction

The problems of neutrino experiments and the problem of
mass splitting of fermions have long history. We trust that
they should be solved on the fundamental level of basic defi-
nitions of relativistic quantum equations.

In 1928, P.A.M. Dirac derived the so-called Dirac equa-
tion to explain the behavior of the relativistic motion of an
electron and it was the first successful combination of quan-
tum theory with the theory of relativity. It allows us to de-
scribe particles with spin1/2, Ref. [1]. However, one prob-
lem arose with the Dirac equation. It predicts solutions with
negative energy and to solve this problem, Dirac introduced
an hypothesis known as hole theory. In this hypothesis,
the vacuum is a quantum state where all the electron eigen-
states with negative energy are occupied. This description is
called the Dirac sea. Before the experimental discovery of
the positron in 1932, it was originally conceived as a hole in
the Dirac sea and allowed to introduce the term antimatter in
a natural way, Refs. [2, 3]. Beside these important results,
a problematic fact existed for several years. The distribu-
tion of the kinetic energy of beta particles showed a contin-
uous spectrum, however this result was not in concordance
with the conservation of energy law, because if beta decay
were electron emission as was thought at the time, then the
emitted electron should have been emitted at a specific en-
ergy [4]. Additionally, an amount of momentum was missed
and the angular momentum was not conserved. In a famous
letter written in 1930, W. Pauli as a desperate remedy to save

these conservation principles, proposed the existence of a
new electrically neutral particle with spin1/2 (obeying in
consequence the Dirac equation) and a tiny mass that should
be emitted together with the electron. The energy of the emit-
ted electron was part of the discussions of the seventh Solvay
conference (1933). The existence of the neutrino proved the
conservation of energy, but it was also determined that its
mass could be zero. The same year, E. Fermi used the neu-
trino in his theory of the beta decay in an article submitted
to Naturewhich was rejected because it contained specula-
tions too remote from reality to be of interest to the reader. It
was published in Italian byNuovo Cimentoand a few months
later in German byZeitschrift f̈ur Physik[4]. However the
problem continued, how can a particle be detected without
electric charge and whose mass could be zero? That is, how
can a particle be detected if it basically does not interact?

The answer came from B. Pontecorvo in 1946. Because
of the beta decay, a neutron would be transformed into one
proton, therefore a chemical element would be transformed to
a second one whose atomic number would be greater by one
unit (an additional proton). Thus, he proposed to put a huge
container full of chlorine close to a nuclear reactor. The chlo-
rine (N=17) would be transformed to argon-37, enough inert
as to get a chemical reaction, but slightly radioactive (its half-
life is 34 days), making it possible to detect a neutrino [5].
The experiment was unsuccessful because, unknown at that
time, the nuclear reactors produce antineutrinos, instead of
neutrinos. This experiment led F. Reines and C. Cowan to
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a new one in 1953 using the inverse beta decay (IBD). They
used a detector full of water with cadmium chloride (CdCl2)
surrounded with a scintillator material (material that gives off
flashes of light in response to gamma rays) connected to pho-
tomultiplier tubes, to detect the flashes. Because of the IBD,
a positron (discovered in 1932) and a neutron would be cre-
ated. The positron would be annihilated with some electron
in the media creating photons. On the other hand, the neu-
tron produced by the interaction of the neutrino with the hy-
drogen proton would slow down gradually until it is captured
by one of the cadmium nuclei. It would remain in an excited
state, then it decays emitting photons. Both radiations could
be detected with a few microseconds of difference. Enough
time to measure both signals, creating an unequivocal proof
of the presence of the neutrino [4]. However, the signal was
also detected even if the reactor was switched off, but the
number of signals increased if the reactor was on. This ef-
fect could be a consequence of the cosmic rays. Thus, they
moved the experiment two years later to the Savannah River
site because it had better shielding against cosmic rays. This
shield was 11 m from the reactor and 12 m underground.
They found almost four times more signals with the reactor
on than off. After 25 years, the neutrino was finally captured
and detected! [6]. In 1939, H. Bethe proposed a process for
the energy production in the stars through two cycles. One of
them, the proton-proton chain reaction, would produce neu-
trinos. In 1968, R. Davis and J.N. Bahcall detected solar neu-
trinos in the Homestake experiment using a similar idea as
the Reines-Cowan experiment. However, even when the ex-
periment was successful in detecting and counting solar neu-
trinos, the number detected was almost one third of the theo-
retical prediction. This became thesolar neutrino problem.

Additionally, in 1935, H. Yukawa proposed the existence
of a particle with a mass approximately 300-400 times the
electron mass that should be responsible for the strong inter-
action between protons and neutrons inside the atomic nuclei.
Searching for this particle, in 1937 was detected a particle
with a mass 200 higher than the electron mass, negative elec-
tric charge but it did not interact with atomic nuclei. In con-
sequence it was not the proposed by Yukawa and was called
muon (µ) [4]. In that time, it was believed that muon was
an excited and heavier electron and it was found that part
of its energy decayed into an electron, therefore the differ-
ence of both energies should be emitted as electromagnetic
radiation. However, the number of detected electrons was
seriously lower than should have shown up. Fermi and his
doctoral student J. Steinberger, thought that two neutrinos
should also be produced. In 1948 [4], Steinberger experi-
mentally confirmed this hypothesis, however, why did these
two emitted neutrinos not annihilate creating electromagnetic
radiation? That possibility exists if both neutrinos were the
same, then it should be possible to observe the disintegration
of muons into electrons and photons, a process not observed.
Does there exist any fundamental property prohibiting this
decay? The answer will come in 1953, when the leptonic
number was introduced, therefore there would be two neutri-

nos: the electron neutrino and the muon neutrino [6].

In 1959, Pontecorvo listed 21 possible reactions involving
neutrinos [7]. He observed that few reactions cannot happen
except if the electron neutrino and the muon neutrino were
the same. To solve this problem, he proposed that the neutri-
nos can vary between their states, that is, that neutrinos may
transform into other kinds of neutrinos. This phenomenon is
known asneutrino oscillationand it is actually an open re-
search area. There have been several attempts to describe the
neutrino oscillations. In Ref. [10] it is proposed a description
for the neutrino oscillations using fields of Dirac neutrinos
with definite masses, whereas in Ref. [11], it is proposed us-
ing massive Majorana neutrino fields (A Majorana field is
described by a real-valued wave equation, in consequence a
fermion is also its own antiparticle. All the fermions in the
Standard Model are described as Dirac fermions and none as
Majorana fermions).

Our paper deals with some examples that pursue gener-
alizations of the Dirac equation in the context of relativistic
quantum mechanics. The first example treats a generalized
spin-1/2 equation; the second one, deals with a couple of al-
gebraic equations,Det(p̂ − m) = 0 andDet(p̂ + m) = 0
for two 4-spinors. Finally, the authors try to implement non-
commutativity of 4-momenta and derive a mass splitting in
the Dirac equation.

2. Generalized neutrino equations

A. Gersten [12] proposed a method for derivations of mass-
less equations of arbitrary-spin particles. In fact, his method
is related to the van der Waerden-Sakurai [13] procedure for
the derivation of the massive Dirac equation. In the present
paper we first apply this procedure to the spin-1/2 fields. As a
result one obtains equations which generalize the well-known
Weyl equations. However, these equations are known for a
long time [14]. Raspini [15,16] analized them in detail.

Let us look at the equation (4) of the Gersten paper [12a]
for the two-component spinor field function:

(E2 − c2~p 2)I(2)ψ =
[
EI(2) − c~p · ~σ

]

×
[
EI(2) + c~p · ~σ

]
ψ = 0 . (1)

Actually, this equation is the massless limit of the Klein-
Gordon equation for spin-1/2 in the Sakurai book [13]. In the
massive case one should substitutem2c4 into the right-hand
side of Eq. (1). However, instead of equation (3.25) of [13]
one can define the two-component ‘right’ field function

φR =
1

m1c

(
i~

∂

∂x0
− i~σ ·∇

)
ψ, φL = ψ (2)

with the different mass parameterm1. In such a way we come
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to the system of the first-order differential equations:
(

i~
∂

∂x0
+ i~σ ·∇

)
φR =

m2
2c

m1
φL , (3)

(
i~

∂

∂x0
− i~σ ·∇

)
φL = m1cφR . (4)

It can be re-written in the 4-component form:
(

i~(∂/∂x0) i~σ ·∇
−i~σ ·∇ −i~(∂/∂x0)

)(
ψA

ψB

)

=
c

2

(
(m2

2/m1+m1) (−m2
2/m1+m1)

(−m2
2/m1+m1) (m2

2/m1+m1)

)(
ψA

ψB

)
, (5)

for the functionΨ = column(ψA ψB) = column(φR +
φL φR−φL). The generalized Eq. (5) can be written in the
covariant form:

[
iγµ∂µ − m2

2c

m1~
(1− γ5)

2
− m1c

~
(1 + γ5)

2

]
Ψ = 0 . (6)

The standard representation ofγµ matrices has been used
here. You may compare this framework with the spin-1
case [17].

If m1 = m2 we can recover the standard Dirac equation.
As noted in [14b] this procedure can be viewed as the sim-
ple change of the representation ofγµ matrices. However,
this is true unlessm2 6= 0 only. Otherwise, the entries in
the transformation matrix become to be singular. However,
one can either repeat a similar procedure (the modified Saku-
rai procedure) starting from themasslessEq. (4) of [12a] or
put m2 = 0 in Eq. (6). It is necessary to stress that the term
‘massless’is used in the sense thatpµpµ = 0. Themassless
equationis:

[
iγµ∂µ − m1c

~
(1 + γ5)

2

]
Ψ = 0 . (7)

Then, we may have different physical consequences follow-
ing from (7) comparing with those which follow from the
Weyl equation. The mathematical reason of such a possibility
of different massless limits is that the corresponding change
of representation ofγµ matrices involves mass parameters
m1 andm2 themselves.

It is interesting to note that we can also repeat this pro-
cedure for other definition (or for even more general defini-
tions):

φL =
1

m3c
(i~

∂

∂x0
+ i~σ ·∇)ψ, φR = ψ . (8)

This is due to the fact that the parity properties of the two-
component spinor are undefined in the two-component equa-
tion. The resulting equation is

[
iγµ∂µ − m2

4c

m3~
(1 + γ5)

2
− m3c

~
(1− γ5)

2

]
Ψ̃ = 0 , (9)

which gives us yet another equation in the massless limit
(m4 → 0):

[
iγµ∂µ − m3c

~
(1− γ5)

2

]
Ψ̃ = 0 , (10)

differing in the sign at theγ5 term.
The above procedure can be generalized toany Lorentz

group representations,i. e., to any spins. The physical con-
tent of the generalizedS = 1/2 masslessequations is not the
same as that of the Weyl equation. The excellent discussion
can be found in Ref. [14]. The theory doesnothave chiral in-
variance. Those authors call the additional parameters as the
measures of the degree of chirality. Apart of this, Tokuoka
introduced the concept of the gauge transformations for the
4-spinor fields. He also found some strange properties of the
anti-commutation relations (see§3 in [14a]). And finally, the
Eqs. (7,10) describefour states, two of which answer for
the positive energyp0 = |p|, and two others answer for the
negative energyp0 = −|p|.

We just want to add the following remarks to the discus-
sion. The operator of thechiral-helicity η̂ = (α · p̂) (in
the spinorial representation) used in [14b] doesnotcommute,
e.g., with the Hamiltonian of the Eq. (7):

[H, α · p̂]− = 2
m1c

~
1− γ5

2
(γ · p̂) . (11)

For the eigenstates of thechiral-helicity the system of corre-
sponding equations can be read (η =↑, ↓):

iγµ∂µΨη − m1c

~
1 + γ5

2
Ψ−η = 0 . (12)

The conjugated eigenstates of the Hamiltonian|Ψ↑ + Ψ↓ >
and |Ψ↑ − Ψ↓ > are connected, in fact, byγ5 transforma-
tion Ψ → γ5Ψ ∼ (α · p̂)Ψ. However, theγ5 transfor-
mation is related to thePT (t → −t only) transformation,
which, in its turn, can be interpreted asE → −E, if one
accepts the Stueckelberg idea about antiparticles. We asso-
ciate|Ψ↑ + Ψ↓ > with the positive-energy eigenvalue of the
Hamiltonianp0 = |p| and |Ψ↑ − Ψ↓ >, with the negative-
energy eigenvalue of the Hamiltonian (p0 = −|p|). Thus, the
free chiral-helicity massless eigenstates may oscillate one to
another with the frequencyω = E/~ (as the massive chiral-
helicity eigenstates, see [18a] for details). Moreover, a spe-
cial kind of interaction which is not symmetric with respect
to the chiral-helicity states (for instance, if the left chiral-
helicity eigenstates interact with the matter only) may induce
changes in the oscillation frequency, like in the Wolfenstein
(MSW) formalism.

The conclusion may be similar to that which was
achieved before: the dynamical properties of the mass-
less particles (e.g., neutrinos and photons) may differ from
those defined by the well-known Weyl and Maxwell equa-
tions [18–20].
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3. Negative energies in the Dirac Equation

Usually, everybody uses the following definition of the field operator [21] in the pseudo-Euclidean metrics:

Ψ(x) =
1

(2π)3
∑

h

∫
d3p
2Ep

[uh(p)ah(p)e−ip·x + vh(p)b†h(p)]e+ip·x] , (13)

as givenab initio. After actions of the Dirac operator atexp(∓ipµxµ) the 4-spinors (u− andv− ) satisfy the momentum-space
equations:(p̂−m)uh(p) = 0 and(p̂ +m)vh(p) = 0, respectively; theh is the polarization index. However, it is easy to prove
from the characteristic equationsDet(p̂∓m) = (p2

0−p2−m2)2 = 0 that the solutions should satisfy the energy-momentum
relationp0 = ±Ep = ±

√
p2 + m2 in both cases.

Let us remind the general scheme of construction of the field operator, which has been presented in Ref. [22]. In the case
of the(1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

1
(2π)3

∑

h

∫
d4p δ(p2

0 − E2
p)e−ip·xuh(p0,p)ah(p0,p)

=
1

(2π)3

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)][θ(p0) + θ(−p0)]e−ip·x ∑

h

uh(p)ah(p)

=
1

(2π)3
∑

h

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)]

[
θ(p0)uh(p)ah(p)e−ip·x + θ(p0)uh(−p)ah(−p)e+ip·x]

=
1

(2π)3
∑

h

∫
d3p
2Ep

θ(p0)[uh(p)ah(p)|p0=Epe−i(Ept−p·x) + uh(−p)ah(−p)|p0=Epe+i(Ept−p·x)]. (14)

During the calculations above we had to represent1 =
θ(p0) + θ(−p0) in order to get positive- and negative-
frequency parts. Moreover, during these calculations we did
not yet assumed, which equation this field operator (namely,
theu− spinor) does satisfy, with negative- or positive- mass?

In general we should transformuh(−p) to thev(p). The
procedure is the following one [23]. In the Dirac case we
should assume the following relation in the field operator:

∑

h

vh(p)b†h(p) =
∑

h

uh(−p)ah(−p) . (15)

We know that [3]

ū(µ)(p)u(λ)(p) = +mδµλ , (16)

ū(µ)(p)u(λ)(−p) = 0 , (17)

v̄(µ)(p)v(λ)(p) = −mδµλ , (18)

v̄(µ)(p)u(λ)(p) = 0 , (19)

but we needΛ(µ)(λ)(p) = v̄(µ)(p)u(λ)(−p). By direct calcu-
lations, we find

−mb†(µ)(p) =
∑

λ

Λ(µ)(λ)(p)a(λ)(−p) . (20)

Hence,Λ(µ)(λ) = −im(σ · n)(µ)(λ), n = p/|p|, and

b†(µ)(p) = i
∑

λ

(σ · n)(µ)(λ)a(λ)(−p) . (21)

Multiplying (15) by ū(µ)(−p) we obtain

a(µ)(−p) = −i
∑

λ

(σ · n)(µ)(λ)b
†
(λ)(p) . (22)

The equations are self-consistent. In the(1, 0) ⊕ (0, 1) rep-
resentation the similar procedure leads to somewhat different
situation:

a(µ)(p) = [1− 2(S · n)2](µ)(λ)a(λ)(−p) . (23)

This signifies that in order to construct the
Sankaranarayanan-Good field operator, it satisfies
[γµν∂µ∂ν − ([i∂/∂t]/E)m2]Ψ(x) = 0, we need additional
postulates. For instance, one can try to construct the left-
and the right-hand side of the field operator separately each
other [24].

First of all to mention, we have, in fact,uh(Ep,p)
anduh(−Ep,p), andvh(Ep,p) andvh(−Ep,p), originally,
which may satisfy the equations:

[
Ep(±γ0)− γ · p−m

]
uh(±Ep,p) = 0 . (24)

Due to the propertiesU†γ0U = −γ0, U†γiU = +γi with
the unitary matrix

U =
(

0 −1
1 0

)
= γ0γ5

in the Weyl basis, we have

[Epγ
0 − γ · p−m]U†uh(−Ep,p) = 0 . (25)
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The properties of theU− matrix are opposite to those of
P †γ0P = +γ0, P †γiP = −γi with the usualP = γ0,
thus givingi

[−Epγ
0 + γ · p−m]Puh(−Ep,p)

= − [p̂ + m] ṽ?(Ep,p) = 0.

The relations of thev− spinors of the positive energy to
u− spinors of the negative energy are frequently forgotten,
ṽ?(Ep,p) = γ0uh(−Ep,p). Thus, unless the unitary trans-
formations do not change the physical content, we have that
the negative-energy spinorsγ5γ0u− [see (25)] satisfy the
accustomed “positive-energy” Dirac equation. We should
then expect the same physical content. Their explicit forms
γ5γ0u− are different from the textbook “positive-energy”
Dirac spinors. They are the following ones:

ũ(p) =
N√

2m(−Ep + m)




−p+ + m
−pr

p− −m
−pr


 , (26)

˜̃u(p) =
N√

2m(−Ep + m)




−pl

−p− + m
−pl

p+ −m


 . (27)

Ep =
√

p2 + m2 > 0, p0 = ±Ep, p± = E ± pz,
pr,l = px ± ipy. Their normalization is to(−2N2). Next,
ṽ(p) = γ0u−. They are not equal tovh(p) = γ5uh(p). Ob-
viously, they also do not have well-known forms of the usual
v− spinors in the Weyl basis, differing by phase factors and
in the signs at the mass terms.

One can again prove that the matrix

P = eiθγ0 = eiθ

(
0 12×2

12×2 0

)
(28)

can be used in the parity operator as well as in the original
Weyl basis. However, if we would take the phase factor to be
zero we obtain that whileuh(p) have the eigenvalue+1 of
the parity, but (R = (x → −x,p → −p))

PRũ(p) = PRγ5γ0u(−Ep,p) = −ũ(p) , (29)

PR˜̃u(p) = PRγ5γ0u(−Ep,p) = −˜̃u(p) . (30)

In the case of choosing the phase factorθ = π we recover
usual parity properties. We again confirmed that the rela-
tive (particle-antiparticle) intrinsic parity has physical signif-
icance only.

Similar formulations have been presented in Refs. [25],
and [26]. The group-theoretical basis for such doubling has
been given in the papers by Gelfand, Tsetlin and Sokolik [27],
who first presented the theory in the 2-dimensional represen-
tation of the inversion group in 1956. M. Markov wrotetwo
Dirac equations with the opposite signs at the mass term [25]

long ago:

[iγµ∂µ −m] Ψ1(x) = 0 , (31)

[iγµ∂µ + m] Ψ2(x) = 0 . (32)

In fact, he studied all properties of this relativistic quantum
model (while he did not know yet the quantum field theory in
1937). Next, he added and subtracted these equations:

iγµ∂µϕ(x)−mχ(x) = 0 , (33)

iγµ∂µχ(x)−mϕ(x) = 0 . (34)

Thus,ϕ andχ solutions can be presented as some superposi-
tions of the Dirac 4-spinorsu− andv−. These equations, of
course, can be identified with the equations for the Majorana-
like λ− andρ−, which we presented in Ref. [18]:

iγµ∂µλS(x)−mρA(x) = 0 , (35)

iγµ∂µρA(x)−mλS(x) = 0 , (36)

iγµ∂µλA(x) + mρS(x) = 0 , (37)

iγµ∂µρS(x) + mλA(x) = 0 . (38)

Neither of them can be regarded as the Dirac equation. How-
ever, they can be written in the 8-component form as follows:

[iΓµ∂µ −m] Ψ(+)(x) = 0 , (39)

[iΓµ∂µ + m] Ψ(−)(x) = 0 , (40)

with

Ψ(+)(x) =
(

ρA(x)
λS(x)

)
, Ψ(−)(x) =

(
ρS(x)
λA(x)

)
,

Γµ =
(

0 γµ

γµ 0

)
. (41)

It is easy to find the corresponding projection operators, and
the Feynman-Stueckelberg propagator.

In the previous papers we explained that the connection
with the Dirac spinors has been found [18,28]. For instance,



λS
↑ (p)

λS
↓ (p)

λA
↑ (p)

λA
↓ (p)


 =

1
2




1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1







u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)


 , (42)

provided that the 4-spinors have the same physical dimen-
sion. Thus, we can see that the two 4-spinor systems are
connected by the unitary transformations, and this represents
itself the rotation of the spin-parity basis. However, it is usu-
ally assumed that theλ− andρ− spinors describe the neutral
particles, meanwhileu− andv− spinors describe the charged
particles. Kirchbach [28] found the amplitudes for neutrino-
less double beta decay (00νβ) in this scheme. It is obvious
from (42) that there are some additional terms comparing
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6 J. A. CÁZARES AND V. V. DVOEGLAZOV

with the standard calculations of those amplitudes. As Markov wrote himself, he was expecting “new physics” from these
equations.

Barut and Ziino [26] proposed yet another model. They consideredγ5 operator as the operator of the charge conjugation.
Thus, the charge-conjugated Dirac equation has the different sign comparing with the ordinary formulation:

[iγµ∂µ + m]Ψc
BZ = 0 , (43)

and the so-defined charge conjugation applies to the whole system, fermion + electromagnetic field,e → −e in the covariant
derivative. The superpositions of theΨBZ andΨc

BZ also give us the “doubled Dirac equation”, as the equations forλ− andρ−
spinors. The concept of the doubling of the Fock space has been developed in the Ziino works (cf. [27, 29]) in the framework
of the quantum field theory. In their case the self/anti-self charge conjugate states are simultaneously the eigenstates of the
chirality. Next, it is interesting to note that we have for the Majorana-like field operators (aη(p) = bη(p)):

[
ν

ML

(xµ) + CνML †
(xµ)

]
/2 =

∫
d3p

(2π)3
1

2Ep

∑
η

[(
iΘφ∗ η

L
(pµ)

0

)
aη(pµ)e−ip·x +

(
0

φη
L(pµ)

)
a†η(pµ)eip·x

]
, (44)

[
ν

ML

(xµ)− CνML †
(xµ)

]
/2 =

∫
d3p

(2π)3
1

2Ep

∑
η

[(
0

φη
L
(pµ)

)
aη(pµ)e−ip·x +

(−iΘφ∗ η
L

(pµ)
0

)
a†η(pµ)eip·x

]
, (45)

which, thus, naturally lead to the Ziino-Barut scheme of mas-
sive chiral fields, Ref. [26].

Finally, we would like to mention that, in general, in
the Weyl basis theγ− matrices arenot Hermitian, γµ† =
γ0γµγ0. So,γi† = −γi, i = 1, 2, 3, the pseudo-Hermitian
matrix. The energy-momentum operatori∂µ is obviously
Hermitian. So, the question, if the eigenvalues of the Dirac
operatoriγµ∂µ (the mass, in fact) would be always real? The
question of the complete system of the eigenvectors of the
non-Hermitian operator deserve careful consideration.

The main points of this Section are: there are “negative-
energy solutions” in that is previously considered as
“positive-energy solutions” of relativistic wave equations,
and vice versa. Their explicit forms have been presented in
the case of spin-1/2. Next, the relations to the previous works
have been found. For instance, the doubling of the Fock space
and the corresponding solutions of the Dirac equation ob-
tained additional mathematical bases. Similar conclusion can
be deduced for the higher-spin equations.

4. Non-commutativity in the Dirac Equation

The non-commutativity [30] exibits interesting peculiarities
in the Dirac case. We analized Sakurai-van der Waerden
method of derivations of the Dirac (and higher-spins too)
equation [31]:

(EI(4) + α · p + mβ)

× (EI(4) −α · p−mβ)Ψ(4) = 0 . (46)

As in the original Dirac work, we have

β2 = 1 , αiβ + βαi = 0 , αiαj + αjαi = 2δij . (47)

For instance, their explicite forms can be chosen

αi =
(

σi 0
0 −σi

)
, β =

(
0 12×2

12×2 0

)
, (48)

whereσi are the ordinary Pauli2×2 matrices. Obviously, the
inverse operators of the Dirac operators of both the positive-
and negative- masses exist in the non-commutative case.

We also postulate the non-commutativity relations for the
components of 4-momenta:[E,pi]− = Θ0i = θi. There-
fore the Eq. (46) will not lead to the well-known equation
E2 − p2 = m2. Instead, we have

{E2 − E(α · p) + (α · p)E − p2

−m2 − i(σ ⊗ I(2))[p× p]}Ψ(4) = 0 . (49)

For the sake of simplicity, we may assume the last term to be
zero.ii Thus, we come to

{
E2 − p2 −m2 − (α · θ)

}
Ψ(4) = 0 . (50)

Let us apply the unitary transformation. It is known [18, 34]
that one can

U1(σ · a)U−1
1 = σ3|a|. [34] (51)

Some relations for the componentsa should be assumed.
Moreover, in our caseθ should not depend onE andp. Oth-
erwise, we must take the non-commutativity[E,pi]− into
account again. Forα matrices we re-write (51) to

U1(α · θ)U−1
1 = |θ|




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 = α3|θ| . (52)
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The explicit form of theU1 matrix is (ar,l = a1 ± ia2):

U1 =
1√

2a(a + a3)

(
a + a3 al

−ar a + a3

)

=
1√

2a(a + a3)
[a + a3 + iσ2a1 − iσ1a2] ,

U1 =
(

U1 0
0 U1

)
. (53)

Let us apply the second unitary transformation:

U2α3U†2 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


α3




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (54)

The final equation is

[E2 − p2 −m2 − γ5
chiral|θ|]Ψ′(4) = 0 . (55)

In the physical sense this implies the mass splitting for a
Dirac particle over the non-commutative space,m1,2 =
±√m2 ± θ. This procedure may be attractive for explana-
tion of the mass creation and the mass splitting for fermions.

5. The conclusions

Currently, there exist additional alternative models of neu-
trino masses due to the amount of ambiguities that arise in the
experiments. For instance, the Liquid Scintillator Neutrino
Detector (LSND) results are not compatible with the oscilla-
tion parameters, creating a conflict with the expected results

of only three neutrino flavors. These results are tested by
other experiments, like MiniBooNE, MicroBooNE or KAR-
MEN. There are additional controversies. For example, if
neutrinos are an important fraction of the cosmological den-
sity, then they should be heavier than the splittings registered
by the atmospheric and solar oscillation frequencies. All
these results have also imply different models for the neu-
trino masses. A new kind of neutrino: the sterile neutrino has
been proposed, which could interact via gravity and not by
the other fundamental interactions of the Standard Model.

All these different results demand some theory that can
describe them successfully. In the paper we presented some
examples that generalize the Dirac equation in relativistic
quantum mechanics. The conclusion of the second Section
is: the dynamical properties of the massless particles (e. g.,
neutrinos and photons) may differ from those defined by the
well-known Weyl and Maxwell equations [18–20]. The main
points of the third Section are: there are “negative-energy
solutions” in that is previously considered as the “positive-
energy solutions” of relativistic wave equations, and vice
versa. Their explicit forms have been presented in the case
of the spin 1/2. The relations to the previous works have
been found. For instance, the doubling of the Fock space and
the corresponding solutions of the Dirac equation obtained
additional mathematical bases. The non-commutativity in
the Dirac equation may impliy the mass splitting,m1,2 =
±√m2 ± θ.

Acknowledgments

This paper was also presented at the 31st ICGTMP, June
19-25, 2016, CBPF, Rio de Janeiro, Brasil and at the XI
SILAFAE. Antigua Guatemala, Nov. 14-18, 2016. we appre-
ciate useful discussions with colleagues at the recent Confer-
ences.

i. Theṽ is still the solution of the Dirac equation. And it is related
to the standard-basis 4-spinors. We use tildes because we do not
yet know their polarization properties.

ii. In general we can continue with this term. However, the cal-
culations become immense and troubleome. This omitted term
may be related to the magnetic field as shown by Feynman-
Dyson [32] and Dvoeglazov [33].
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