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We present explicit examples of generalizations in relativistic quantum mechanics. First of all, we discuss the generalized spin-1/2 equations
for neutrinos. They have been obtained by means of the Gersten-Sakurai method for derivations of arbitrary-spin relativistic equations.
Possible physical consequences are discussed. Next, it is easy to check that both Dirac algebraic egugfiens:) = 0 and Det(p +

m) = 0 for u— andv— 4-spinors have solutions withy = +F,, = ++/p? + m?2. The same is true for higher-spin equations. Meanwhile,

every book considers the equaljiy = E, for bothu— andv— spinors of the(1/2,0) @ (0, 1/2) representation, thus applying the Dirac-
Feynman-Stueckelberg procedure for elimination of the negative-energy solutions. The recent Ziino works (and, independently, the articles
of several others) show that the Fock space can be doubled. We re-consider this possibility on the quantum field leved fer h@land

higher spin particles. The third example is: we postulate the non-commutativity of 4-momenta, and we derive the mass splitting in the Dirac
equation. The applications are discussed.
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1. Introduction these conservation principles, proposed the existence of a
new electrically neutral particle with spit/2 (obeying in
The problems of neutrino experiments and the problem ofonsequence the Dirac equation) and a tiny mass that should
mass splitting of fermions have long history. We trust thathe emitted together with the electron. The energy of the emit-
they should be solved on the fundamental level of basic defited electron was part of the discussions of the seventh Solvay
nitions of relativistic quantum equations. conference (1933). The existence of the neutrino proved the
In 1928, P.A.M. Dirac derived the so-called Dirac equa-conservation of energy, but it was also determined that its
tion to explain the behavior of the relativistic motion of an mass could be zero. The same year, E. Fermi used the neu-
electron and it was the first successful combination of quantrino in his theory of the beta decay in an article submitted
tum theory with the theory of relativity. It allows us to de- to Naturewhich was rejected because it contained specula-
scribe particles with spitt/2, Ref. [1]. However, one prob- tions too remote from reality to be of interest to the reader. It
lem arose with the Dirac equation. It predicts solutions withwas published in Italian biuovo Cimentand a few months
negative energy and to solve this problem, Dirac introducegater in German byZeitschrift fir Physik[4]. However the
an hypothesis known as hole theory. In this hypothesisproblem continued, how can a particle be detected without
the vacuum is a quantum state where all the electron eigersectric charge and whose mass could be zero? That is, how

states with negative energy are occupied. This description igan a particle be detected if it basically does not interact?
called the Dirac sea. Before the experimental discovery of

the positron in 1932, it was originally conceived as a hole in ~ The answer came from B. Pontecorvo in 1946. Because
the Dirac sea and allowed to introduce the term antimatter if the beta decay, a neutron would be transformed into one
a natural way, Refs. [2, 3]. Beside these important resultsproton, therefore a chemical element would be transformed to
a problematic fact existed for several years. The distribua second one whose atomic number would be greater by one
tion of the kinetic energy of beta particles showed a contin-unit (an additional proton). Thus, he proposed to put a huge
uous spectrum, however this result was not in concordanceontainer full of chlorine close to a nuclear reactor. The chlo-
with the conservation of energy law, because if beta decayine (N=17) would be transformed to argon-37, enough inert
were electron emission as was thought at the time, then thas to get a chemical reaction, but slightly radioactive (its half-
emitted electron should have been emitted at a specific erife is 34 days), making it possible to detect a neutrino [5].
ergy [4]. Additionally, an amount of momentum was missedThe experiment was unsuccessful because, unknown at that
and the angular momentum was not conserved. In a famousne, the nuclear reactors produce antineutrinos, instead of
letter written in 1930, W. Pauli as a desperate remedy to saveeutrinos. This experiment led F. Reines and C. Cowan to
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a new one in 1953 using the inverse beta decay (IBD). Theyos: the electron neutrino and the muon neutrino [6].

used a detector full of water with cadmium chloride (C4Cl In 1959, Pontecorvo listed 21 possible reactions involving
surrounded with a scintillator material (material that giveS Oﬂ:neutrinos [7] He observed that few reactions cannot happen
flashes of light in response to gamma rays) connected to phexcept if the electron neutrino and the muon neutrino were
tomultiplier tUbeS, to detect the flashes. Because of the |BD[,he same. To solve this pr0b|em’ he proposed that the neutri-
a positron (discovered in 1932) and a neutron would be crengs can vary between their states, that is, that neutrinos may
ated. The positron would be annihilated with some electroRransform into other kinds of neutrinos. This phenomenon is
in the media creating photons. On the other hand, the neymown asneutrino oscillationand it is actually an open re-
tron produced by the interaction of the neutrino with the hy-search area. There have been several attempts to describe the
drogen proton would slow down gradually until it is captured neutrino oscillations. In Ref. [10] it is proposed a description
by one of the cadmium nuclei. It would remain in an excitedfor the neutrino oscillations using fields of Dirac neutrinos
state, then it decays emitting photons. Both radiations coulgith definite masses, whereas in Ref. [11], it is proposed us-
be detected with a few microseconds of difference. Enouglihg massive Majorana neutrino fields (A Majorana field is
time to measure both signals, creating an unequivocal proqfescribed by a real-valued wave equation, in consequence a
of the presence of the neutrino [4]. However, the signal wasermion is also its own antiparticle. All the fermions in the
also detected even if the reactor was switched off, but th&tandard Model are described as Dirac fermions and none as
number of signals increased if the reactor was on. This efpajorana fermions).

fect could be a consequence of the cosmic rays. Thus, t_hey Our paper deals with some examples that pursue gener-
moved the experiment two years later to the Savannah RIVelj;; 4tions of the Dirac equation in the context of relativistic

sitg because it had better shielding against cosmic rays. Thtﬁjantum mechanics. The first example treats a generalized
shield was 11 m from the reactor apd 12 m under(~:]r0undspin—1/2 equation; the second one, deals with a couple of al-
They found almost four times more signals with the reactorgebraic equationsDet(p — m) = 0 and Det(j + m) = 0
on than off. After 25 years, the neutrino was finally captured, .\ o 4-spinors. Finally, the authors try to implement non-
and detected! [6]. !n 1_939' H. Bethe proposed a process fo(fommutativity of 4-momenta and derive a mass splitting in
the energy production in the stars through two cycles. One Otfhe Dirac equation

them, the proton-proton chain reaction, would produce neu-

trinos. In 1968, R. Davis and J.N. Bahcall detected solar neu-

trinos in the Homestake experiment using a similar idea as

the Reines-Cowan experiment. However, even when the e2. Generalized neutrino equations

periment was successful in detecting and counting solar neu-

trinos, the number detected was almost one third of the thedA. Gersten [12] proposed a method for derivations of mass-
retical prediction. This became tlselar neutrino problem less equations of arbitrary-spin particles. In fact, his method

Additionally, in 1935, H. Yukawa proposed the existenceis related to the van der Waerden-Sakurai [13] procedure for
of a particle with a mass approximately 300-400 times thehe derivation of the massive Dirac equation. In the present
electron mass that should be responsible for the strong intepaper we first apply this procedure to the spin-1/2 fields. As a
action between protons and neutrons inside the atomic nuclgigsult one obtains equations which generalize the well-known
Searching for this particle, in 1937 was detected a particléVeyl equations. However, these equations are known for a
with a mass 200 higher than the electron mass, negative elet®ng time [14]. Raspini [15, 16] analized them in detail.
tric charge but it did not interact with atomic nuclei. In con-  Let us look at the equation (4) of the Gersten paper [123]
sequence it was not the proposed by Yukawa and was calledr the two-component spinor field function:
muon () [4]. In that time, it was believed that muon was
an excited and heavier electron and it was found that part 2 222\7(2),, _ 2 S
of its energy decayed into an electron, therefore the differ- (B =c'p )I( = {EI( - U}
ence of both energies should be emitted as electromagnetic
radiation. However, the number of detected electrons was
seriously lower than should have shown up. Fermi and his
doctoral student J. Steinberger, thought that two neutrino&ctually, this equation is the massless limit of the Klein-
should also be produced. In 1948 [4], Steinberger experiGOdeﬂ equation for spin-1/2 in the Sakurai book [13]. In the
mentally confirmed this hypothesis, however, why did thesénassive case one should substituté:* into the right-hand
two emitted neutrinos not annihilate creating electromagnetigide of Eq.IL). However, instead of equation (3.25) of [13]
radiation? That possibility exists if both neutrinos were theone can define the two-component ‘right’ field function
same, then it should be possible to observe the disintegration
of muons into electrons and photons, a process not observed. P 1 (iha o - V) b =1 (2)

x [EI(2)+015~&}¢:0. 1)

Does there exist any fundamental property prohibiting this S mic
decay? The answer will come in 1953, when the leptonic
number was introduced, therefore there would be two neutriwith the different mass parameter, . In such a way we come

- afL‘o
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to the system of the first-order differential equations: which gives us yet another equation in the massless limit

( 9 m2c (ma = 0):

ih— + iho - V) or=—or, 3) 5

- (1 — ~
Oxo mi Z.’)/Mau . m;p(Qi’Y) v =0, (10)
0

th— —tho -V = micorR - 4

( Ozo ) oL 1PR ) differing in the sign at they; term.

The above procedure can be generalizedrig Lorentz
group representationsg,e., to any spins. The physical con-
ih(0/0x0) iho -V Pa tent of the generalizefl = 1/2 masslesgquations is not the
(iha -V ih(8/8z0)> (1/)3) same as that of the Weyl equation. The excellent discussion
5 9 can be found in Ref. [14]. The theory daasthave chiral in-
_¢ ( (m22/m1+m1) (”;2/7”1“”1)) <¢A> ., (5) variance. Those authors call the additional parameters as the
2 \(=mz/mitm)  (my/mitmi) ) \¥5 measures of the degree of chirality. Apart of this, Tokuoka
for the function¥ = column (4 p) = column(¢r +  INtroduced the concept of the gauge transformations for the
¢ ¢r—¢r). The generalized Ed5) can be written in the  4-SPinor fields. He also found some strange properties of the
covariant form: anti-commutation relations (s€8 in [14a]). And finally, the
2. 1 5 ) 5 Egs. [7,10) describefour states, two of which answer for
[W“a,t _mae(1=7") mic(l+7y )} ¥ =0. (6) thepositive energy, = |p|, and two others answer for the
mih 2 h 2 negative energy, = —|p|.

The standard representation of matrices has been used We just want to add the following remarks to the discus-

here. You may compare this framework with the spin-1SioN- The operator of thehiral-helicity 7; = (a - p) (in
case [17]. the spinorial representation) used in [14b] dnescommute,

e.g, with the Hamiltonian of the Eq/7}:

It can be re-written in the 4-component form:

If m; = mo we can recover the standard Dirac equation.
As noted in [14b] this procedure can be viewed as the sim- micl — A5
ple change of the representation-gf matrices. However, H,a-p|- = 27 2
this is true unlessn, # 0 only. Otherwise, the entries in
the transformation matrix become to be singular. Howeverfor the eigenstates of tlehiral-helicity the system of corre-
one can either repeat a similar procedure (the modified Sakisponding equations can be readT, |):
rai procedure) starting from thmassles&q. (4) of [12a] or

(v-P)- (11)

5
putms = 0in Eq. [6). It is necessary to stress that the term 0,0, — micl+y U, =0. (12)
‘masslessis used in the sense thatp” = 0. Themassless h 2
equationis: The conjugated eigenstates of the Hamiltorji&n + ¥ >
mic (14 ~°) and|¥; — ¥, > are connected, in fact, by> transforma-
"0, — TR U =0. (7) tion¥ — ~+°¥ ~ (a-p)¥. However, they® transfor-

mation is related to théT (t — —t only) transformation,

Then, we may have different physical consequences followwhich, in its turn, can be interpreted & — —F, if one
ing from (7) comparing with those which follow from the accepts the Stueckelberg idea about antiparticles. We asso-
Weyl equation. The mathematical reason of such a possibilitgiate| ¥ + ¥ > with the positive-energy eigenvalue of the
of different massless limits is that the corresponding changélamiltonianpy = |p| and|¥; — ¥ >, with the negative-
of representation of/* matrices involves mass parameters energy eigenvalue of the Hamiltonigm (= —|p|). Thus, the
my andms, themselves. free chiral-helicity massless eigenstates may oscillate one to

It is interesting to note that we can also repeat this pro-another with the frequeney = E /I (as the massive chiral-
cedure for other definition (or for even more general defini-helicity eigenstates, see [18a] for details). Moreover, a spe-

tions): cial kind of interaction which is not symmetric with respect
1 P to the chiral-helicity states (for instance, if the left chiral-
oL = ﬁ(mﬁ +iho - V), or=1. (8) helicity eigenstates interact with the matter only) may induce
3 0

changes in the oscillation frequency, like in the Wolfenstein
This is due to the fact that the parity properties of the two-(MSW) formalism.

component spinor are undefined in the two-component equa- The conclusion may be similar to that which was
tion. The resulting equation is achieved before: the dynamical properties of the mass-
) 5 5 less particlesd.g, neutrinos and photons) may differ from
mie (1+7°) mac(l-177) ¥ =0, (9) those defined by the well-known Weyl and Maxwell equa-

"o, —
Yomgh 2 I 2 tions [18-20].
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3. Negative energies in the Dirac Equation

Usually, everybody uses the following definition of the field operator [21] in the pseudo-Euclidean metrics:
=) / EP o (p)an(p)e™ P + un(B)Fh(P)]e ] (13)
(27T)3 n 2Ep h )

as giverab initio. After actions of the Dirac operator atp(Fip,z*) the 4-spinors {,— andv— ) satisfy the momentum-space
equations(p — m)uy(p) = 0 and(p + m)vy(p) = 0, respectively; thé is the polarization index. However, it is easy to prove
from the characteristic equatiof#t(p +m) = (pZ — p?> — m?)? = 0 that the solutions should satisfy the energy-momentum
relationpy = £FE, = +1/p? + m? in both cases.

Let us remind the general scheme of construction of the field operator, which has been presented in Ref. [22]. In the case
of the(1/2,0) & (0, 1/2) representation we have:

\I/(JS) = p5 p -m ) —ip- r\I/ 3 Z/d4p5 piruh(po,p)ah(po,p)
N ﬁ / %[6(])0 — Ep) +6(po + Ep)][0(po) + 6(— T Zuh p)an(p

- ﬁ > / jEp 1500 — Ey) + 8(po + E,)] [0(po)un(pan(p)e™* + 0(po)un(—p)an(—p)e ]

= @) Z / e 0(p0) [ (P)an (P) lpu=r, €~ 7 TP g (—p)an (=) pg—, €T Et P, (14)

During the calculations above we had to represent
O(po) + 6(—po) in order to get positive- and negative- IMuIt|pIy|ng(15) by i, (—p) we obtain
frequency parts. Moreover, during these calculations we did
not yet assumed, which equation this field operator (namely, agy(=p) = =i (0 n)mmbly, (@) (22)
theu— spinor) does satisfy, with negative- or positive- mass?

In general we should transform, (—p) to thev(p). The
procedure is the following one [23]. In the Dirac case we
should assume the following relation in the field operator:

The equations are self-consistent. In the0) @ (0, 1) rep-
resentation the similar procedure leads to somewhat different

situation:
> ()bl (p) = un(—p)an(—p). (15) agy(p) =[1-2(S-n)*Jpymam(-p).  (23)
h h
This signifies that in order to construct the
We know that [3] Sankaranarayanan-Good field operator, it satisfies

[V 0,0, — ([i10/0t]/ E)Ym?]¥(z) = 0, we need additional

gy (P)un (p) = +m5,u7 (16)  postulates. For instance, one can try to construct the left-
i, (P)ueny (—p) = (17)  and the right-hand side of the field operator separately each
other [24].
V() (P)vry (p) = *W&A, (18) First of all to mention, we have, in fact,(E,, p)
B (P)uny (1) = (19) anduy(—E,, p), andv, (E,, p) anduv,(—E,, p), originally,

which may satisfy the equations:

but we need\(,,y(»)(p) = () (p)u(r) (—p). By direct calcu-

lations, we find [Ep(£7°) =~ -p —m]up(£E,,p) =0.  (24)

Due to the propertie§/ '7°U = —+°, UT+'U = 4+~ with

_mbT Z Ay (Play (=p) - (20)  the unitary matrix
. U= 0 -1 _ 0.5
Hence A, = —im(o - n),n), n = p/|p|, and =1 o)==
(p) =Y (o -1)ymam(-p). (21)  inthe Weyl basis, we have
A 5
By’ =~ -p—m]Uup(~E,,p) =0.  (25)

Rev. Mex. Fis69 050703
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The properties of thé/— matrix are opposite to those of long ago:
PTAOP = 440, PiniP = —4% with the usualP = ~°,
thus giving [iv" 0y — m] ¥y (z) =0, (31)
[~Epy° +~ - p — m|Puy(—Ep, p) (70 - m] o) = 0. (32)
= —[p+ m] #2(E,, p) = 0. In fact, he studied all properties of this relativistic quantum
model (while he did not know yet the quantum field theory in
The relations of thev— spinors of the positive energy to 1937). Next, he added and subtracted these equations:
u— spinors of the negative energy are frequently forgotten, )
U7(Ep, p) = 7%un(—E,, p). Thus, unless the unitary trans- i Oup(x) — mx(z)
formationg do not change the phzsical content, we have that "9,x(x) — me(x)
the negative-energy spinorg+°u~ [see @5)] satisfy the
accustomed “positive-energy” Dirac equation. We shouldThus,y andy solutions can be presented as some superposi-
then expect the same physical content. Their explicit formsions of the Dirac 4-spinors— andv—. These equations, of
v?~%u~ are different from the textbook “positive-energy” course, can be identified with the equations for the Majorana-

0, (33)
0. (34)

Dirac spinors. They are the following ones: like A— andp—, which we presented in Ref. [18]:
—pt +m iV 9N () — mp?(x) =0, (35)
i(p) = N “br 26 A s
ulp) = om(—E, +m) | p~—m |’ (26) i Oup” () —mA”(z) =0, (36)
P iV 0\ () + mp®(z) =0, (37)
—Pi “w S A —
i) — N ptm ]| on iy 0up” () + mA?(x) =0 (38)
2m(—Ep, +m) +_pl Neither of them can be regarded as the Dirac equation. How-
p o —m ever, they can be written in the 8-component form as follows:
E, = /p?+m? > 0, py = +E,, p* = E +p., [iT"0, —m] ¥, (z) =0, (39)
pry = pa £ ip,. Their normalization is td—2N?2). Next, .
#(p) = v%u~. They are not equal toy, (p) = v uy(p). Ob- [(T#0, +m] ¥ _ (z) =0, (40)
viously, they also do not have well-known forms of the usual . h
v— spinors in the Weyl basis, differing by phase factors and"t
in the signs at the mass terms. P (z) P (x)
One can again prove that the matrix Vi (@) = ()\S(x)> o) = ()\A(x)> ’
_ o0 e 0 laxe e — 0 A* a1
P=e"y"=¢ <12X2 0) (28) N0 ) (41)

can be used in the parity operator as well as in the originalt is easy to find the corresponding projection operators, and
Weyl basis. However, if we would take the phase factor to bdhe Feynman-Stueckelberg propagator.

zero we obtain that while, (p) have the eigenvalue1 of In the previous papers we explained that the connection
the parity, but @ = (x — —x,p — —p)) with the Dirac spinors has been found [18, 28]. For instance,
PRii(p) = PRY*y*u(—E,,p) = —a(p), (29) /\i(p) 1_ i —1_ i uy1/2(P)
; 5.0 = Af(p) | L =i 1 =i =1 fu1/2(p) (42)
PRu(p) = PRy’y u(—Ep,p) = —u(p).  (30) A (p) L= =1 =i | | vap(p) |
)x‘f(p) i 1 4 -1 v_1/2(P)

In the case of choosing the phase fadtoe= 7 we recover
usual parity properties. We again confirmed that the relaprovided that the 4-spinors have the same physical dimen-
tive (particle-antiparticle) intrinsic parity has physical signif- sion. Thus, we can see that the two 4-spinor systems are
icance only. connected by the unitary transformations, and this represents
Similar formulations have been presented in Refs. [25]jtself the rotation of the spin-parity basis. However, it is usu-
and [26]. The group-theoretical basis for such doubling haslly assumed that the— andp— spinors describe the neutral
been given in the papers by Gelfand, Tsetlin and Sokolik [27]particles, meanwhile— andv— spinors describe the charged
who first presented the theory in the 2-dimensional represerparticles. Kirchbach [28] found the amplitudes for neutrino-
tation of the inversion group in 1956. M. Markov wrdtgo  less double beta deca@0y3) in this scheme. It is obvious
Dirac equations with the opposite signs at the mass term [25fom (42) that there are some additional terms comparing
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with the standard calculations of those amplitudes. As Markov wrote himself, he was expecting “new physics” from these
equations.

Barut and Ziino [26] proposed yet another model. They considetazperator as the operator of the charge conjugation.
Thus, the charge-conjugated Dirac equation has the different sign comparing with the ordinary formulation:

[i(7"0 + m]¥p, =0, (43)

and the so-defined charge conjugation applies to the whole system, fermion + electromagneticfield, in the covariant
derivative. The superpositions of tlie;  and¥% , also give us the “doubled Dirac equation”, as the equationsfoandp—

spinors. The concept of the doubling of the Fock space has been developed in the Ziino works (cf. [27,29]) in the framework
of the quantum field theory. In their case the self/anti-self charge conjugate states are simultaneously the eigenstates of the
chirality. Next, it is interesting to note that we have for the Majorana-like field operatgfp = b,(p)):

e o] ne | £ SR s (e e

o SRS esneres (S )] o

(

which, thus, naturally lead to the Ziino-Barut scheme of mas-
sive chiral fields, Ref. [26]. !
Finally, we would like to mention that, in general, in
the Weyl basis they— matrices arenot Hermitian,yl‘T =
A04H~0 So,~i" = —4i, i = 1,2, 3, the pseudo-Hermitian o _
matrix. The energy-momentum operatik, is obviously We also postulate the non-commutativity relatlons for the
Hermitian. So, the question, if the eigenvalues of the DiraccOmponents of 4-momentd®, p’]_ = 0% = §". There-
operatoriv/d, (the mass, in fact) would be always real? Thefore the Eq.46) will notlead to the well-known equation
guestion of the complete system of the eigenvectors of th&” — p> = m®. Instead, we have
non-Hermitian operator deserve careful consideration.
The main points of this Section are: there are “negative- 2 2
energy solutions” in that is previously considered as {E" = Ela-p)+(a-p)E—p
“positive-energy solutions” of relativistic wave equations, —m? —i(o® Ii9))[p x p]}¥4y =0. (49)
and vice versa. Their explicit forms have been presented in
the case of spin-1/2. Next, the relations to the previous works o
have been found. For instance, the doubling of the Fock spadeP" the sake of simplicity, we may assume the last term to be
and the corresponding solutions of the Dirac equation obZ€ro* Thus, we come to
tained additional mathematical bases. Similar conclusion can
be deduced for the higher-spin equations. {E2 —p2—m?— (a-0) } Wiy =0. (50)

whereo® are the ordinary Paulix 2 matrices. Obviously, the
inverse operators of the Dirac operators of both the positive-
and negative- masses exist in the non-commutative case.

4. Non-commutativity in the Dirac Equation . , :
Let us apply the unitary transformation. It is known [18, 34]

The non-commutativity [30] exibits interesting peculiarities that one can
in the Dirac case. We analized Sakurai-van der Waerden

method of derivations of the Dirac (and higher-spins too)

equation [31]:

(EIY + a-p +mp3)

Ui(o-a)U; ' = o3lal. [34] (51)

Some relations for the componenisshould be assumed.
X (EI(4) —oa-p-—mPB)¥y =0. (46)  Moreover, in our cas@ should not depend off andp. Oth-
As in the original Dirac work, we have erwise, we must take th_e non—comm_utanv[ﬁl, p']— into
account again. Far matrices we re-write51) to

B2=1, o'f+pa'=0, oa'a?+alat=207. (47)

For instance, their explicite forms can be chosen 1 0 0 0
_ i _1 0 -1 0 O

of — g _Oi ’ ﬂ: 0 layxo , (48) L{l(ae)ul = ‘0| 0 0 -1 0 :O‘3‘0" (52)
0 - fe 0 00 0 1
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The explicit form of thel/; matrix is @,,; = a1 £ ia2): of only three neutrino flavors. These results are tested by
other experiments, like MiniBooNE, MicroBooNE or KAR-

U, = I (a +as a ) MEN. There are additional controversies. For example, if

2a(a+az) \ —@r a+a3 neutrinos are an important fraction of the cosmological den-

sity, then they should be heavier than the splittings registered

= m[a + a3 +ioga; — io1as], by the atmospheric and_ solar (_)scillation frequencies. All
these results have also imply different models for the neu-

U — <U1 0 > (53) trino masses. A new kind of neutrino: the sterile neutrino has
! 0o U,)° been proposed, which could interact via gravity and not by

the other fundamental interactions of the Standard Model.

Let us apply the second unitary transformation: All these different results demand some theory that can

1 0 0 0 1 0 0 0 describe them successfully. In the paper we presented some
t 0 0 0 1 00 0 1 examples that generalize the Dirac equation in relativistic
Uosto =10 o 1 oo 0 1 0 quantum mechanics. The conclusion of the second Section
010 0 01 00 is: the dynamical properties of the massless partideg(
neutrinos and photons) may differ from those defined by the
10 0 0 well-known Weyl and Maxwell equations [18-20]. The main
_|01 0 0 (54) points of the third Section are: there are “negative-energy
00 -1 0 solutions” in that is previously considered as the “positive-
00 0 -1 energy solutions” of relativistic wave equations, and vice
The final equation is versa. Their explicit forms have been presented in the case
of the spin 1/2. The relations to the previous works have
[E? = p® —m® = Vil 0] ¥y = 0. (55)  been found. For instance, the doubling of the Fock space and

] o o the corresponding solutions of the Dirac equation obtained
In the physical sense this implies the mass splitting for &,qgitional mathematical bases. The non-commutativity in

Dirac particle over the non-commutative Spa¢e;> =  the Dirac equation may impliy the mass splitting; , =
+vm? £ 0. This procedure may be attractive for explana-i\/m_
tion of the mass creation and the mass splitting for fermions.
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