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1. Introduction

In real world, majority of useful applications have nonlinear
nature. Nonlinear partial differential equations (NLPDEs)
have fundamental significance because these equations are
used for mathematical modeling of various physical phe-
nomena [1, 2]. In particular, to find the exact solution of
NLPDEs which depend on time evolution known as nonlin-
ear evolution equations (NLEEs) arising in different branches
of science are a fascinating field of research [3–6]. The in-
vestigation of exact solitary wave solutions NLEEs is help-
ful to understand complex physical processes. Soliton the-
ory has vast applications in the fields of biophysics, quan-
tum mechanics, nonlinear optics, microbiology and engineer-
ing [7–10]. Solitons are solitary waves that travel with their
original speed and shape even after nonlinear collision with
other waves [11].

In recent decades, fractional NLPDEs have become an in-
teresting research area. In the analysis of numerous processes
in nonlinear sciences, fractional calculus has emerged as an
effective and efficient mathematical gadget [12–14].

The fractional model provides more degrees of freedom.
Moreover, FDEs own certain properties of a system other
than that handled by the traditional integer-order equations.
The solutions of FDEs contribute to innovative viewpoints in
their dynamical investigation. Researchers have made many
efforts to extract traveling wave solutions of FDEs [15–18].

This paper is devoted to finding soliton solutions for
NLEE namely Kaup-Boussinesq (KB) system by consider-
ing β-fractional and M-truncated derivatives. KB model is
adopted for the study of long and weakly nonlinear waves

in shallow water. Other physical applications of the gov-
erning system include ion sound waves in plasma, vibrations
and nonlinear lattice waves in a nonlinear series [19]. Many
methods have been implemented to solve KB equations in lit-
erature [20]. This article concerns with the solutions of FKB
equations using three robust and reliable integration schemes.
Also, the comparative study permits to envision fractional be-
havior more precisely.

The unified method allows a researcher to find two kinds
of traveling wave solutions, polynomial and rational form
of functional solutions. Many authors have used this tool
to recover the soliton solutions of NLPDEs [21]. GPREM
has been utilized by many researchers and scientists [22–24]
in recent years for obtaining new soliton solutions. More-
over,tan

(
φ(ζ)/2

)
-expansion technique has been applied on

NLPDEs [25] to obtain traveling wave solutions.
The manuscript includes twelve sections. Section 2 is al-

lotted to the preliminaries. The suggested model is consid-
ered in Sec. 3. In Sec. 4, techniques descriptions of all three
methods are provided. Section 5 covers the soliton extrac-
tion via unified method. Polynomial and rational function
solutions are obtained in Secs. 6 and 7 respectively. Soliton
solutions are developed through GPREM andtan

(
φ(ζ)/2

)
-

expansion method in Secs. 8 and 9. Section 10 and 11 show
the comparison of the results and their discussion. In Sec. 12,
concluding remarks are included.

2. Preliminaries

Some fundamental definitions of fractional calculus (FC)
have been presented in this section. Riemann-Liouville def-
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inition and the Caputo definition being the most famous and
commonly used definitions have some serious drawbacks.
Few of them are stated below,

• Riemann-Liouville fractional derivative of an arbitrary
constant is not zero.

• In Caputo definition the function is assumed to be dif-
ferentiable.

• The product law and quotient law for derivatives of
functions are not satisfied by these definitions.

• Chain rule and the index rule are also not satisfied by
these definitions.

In order to overcome the above disadvantages of the existing
definitions, a new form of conformable fractional derivative
termed asβ-derivative and truncated M-fractional derivative
are applied in this paper.

2.1. β-derivative

The β-derivative ia also termed as another kind of con-
formable derivative. Theβ-derivative of differential function
g(x) can be defined, as [40]

B
0 Dα

x g(x) = lim
ε→0

g

(
x + ε

(
x + 1

Γ(α)

)1−α
)
− g(x)

ε
,

0 < α < 1,

whereα is taken as fractional parameter.
Theorem 1: β-derivative has the following properties [40],

B
0 Dα

x (ag(x) + bh(x)) = a B
r Dα

x g(x) + b B
s Dα

x h(x),

∀ a, b ∈ <
B
0 Dα

x (g(x) ∗ h(x)) = h(x)B
r Dα

x g(x) + g(x)B
r Dα

x h(x),

B
0 Dα

x

{
g(x)
h(x)

}
=

h(x)B
r Dα

x g(x)− g(x)B
r Dα

x h(x)
h2(x)

,

B
0 Dα

x c = 0, for c any constant,

wheref andg are differential functions.
Truncated M-fractional derivative

It is defined as,

jD
α,λ
M f(φ) = lim

ε→0

f (φ +j Tλ(εφ−α))− f(φ)
ε

,

for φ > 0 andjTλ(.), λ > 0.
Theorem 2: Truncated M-fractional derivative has the fol-

lowing properties

jD
α,λ
M (af + bg) = ajD

α,λ
M (f) + bjD

α,λ
M (g), ∀a, b ∈ <

jD
α,λ
M (φz) = zφz−α z ∈ R,

jD
α,λ
M (fg) = fjD

α,λ
M (g) + gjD

α,λ
M (f),

jD
α,λ
M

(
f

g

)
=

fjD
α,λ
M (g)− gjD

α,λ
M (f)

g2
,

jD
α,λ
M (f)(φ) =

φ1−α

Γ(λ + 1)
df

dφ
,

jD
α,λ
M (fog)(φ) = f ′(g(φ))jD

α,λ
M g(φ),

wheref andg are differentiable functions of orderα, α ∈
(0, 1] andλ > 0.

3. Governing models

This paper investigatesKaup-Boussinesq (KB) Systemwith
β and M-fractional derivatives via three integrating tech-
niques such as unified approach, GPREM and improved
tan

(
φ(ζ)/2

)
-technique for extracting new soliton solutions.

The motion of water wave is well described by the Kaup-
Boussinesq system [37] given below

ut − vxxx − 2(uv)x = 0, (1)

vt + ux − (v2)x = 0,

whereu(x, t) represents the height of the water surface above
a horizontal bottom andv(x, t) is the horizontal velocity. The
governing model termed as Kaup-Boussinesq (KB) system
because it has used Boussinesq scaling in its derivation, and
Kaup [32] was the first who has investigated it. It has also
been used by Broer [33]. The Proposed KB system also be-
longs to the family of long-waves models invented by Boussi-
nesq, formed by [34, 35] and many others. In [36] solitary-
wave solution of the KB system is obtained. In [38, 39], the
authors have employed Adomian decomposition, homotopy
methods and successive approximation methods for solving
Kaup-Boussinesq system.

The fractional KB system usingβ-derivative has the fol-
lowing form

BDα
t u−B D3α

x v − 2BDα
x uv = 0, (2)

BDα
t v −B Dα

x u−B Dα
x v2 = 0

Dα
t = ∂α/∂tα andDα

x = ∂α/∂xα representβ-fractional
derivatives.

The fractional KB system using M-truncated derivative
has the following form

Dα,λ
M,tu−D3α,λ

M,x v − 2Dα,λ
M,xuv = 0, (3)

Dα,λ
M,tv −Dα,λ

M,xu−Dα,λ
M,xv2 = 0,

whereDα,λ
M,t andDα,λ

M,x represent M-derivatives.
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4. Description of suggested methodologies

The PDE or fractional PDE is converted into ODE using
traveling wave transformation. The unified method [29],
GPREM [31] andtan

(
φ(ζ)/2

)
-expansion [24] approaches

are discussed in this section.

• Technique I: Unified method

The unified method is an efficient analytical technique
that extracts polynomial function solutions and rational
solutions.

Polynomial function solutions

The converted ODE has a polynomial solution as

V (ζ) =
n∑

i=0

aiφ
i(ζ), (4)

whereφ(ζ) satisfying the ODE

(φ′(ζ))d =
dk∑

i=0

biφ
i(ζ), d = 1, 2, (5)

The constantsai andbi are to be found.

Heren andk are determined using the balancing prin-
ciple [29]. Ford = 1, provides elementary solutions
and ford = 2, elliptic solutions are extracted.

4.1. Rational function solution

The rational solution of converted ODE has the follow-
ing form

V (ζ) =
∑n

i=0 Aiφ
i(ζ)∑r

i=0 Biφi(ζ)
, n ≥ r, (6)

where

(φ′(ζ))d =
dk∑

i=0

biφ
i(ζ), d = 1, 2, (7)

whereAi, Bi andbi are constants to be determined.

Heren andk are calculated after employing the bal-
ancing principle [29].

• Technique II: GPRE

According to Technique II [31], the predicted solution
has the form

V (ζ) = a0 +
u∑

r=1

sr−1(ξ) [ars(ζ) + βrt(ζ)] , (8)

where constantsa0, ar andβr to be determined. The
functionss(ζ) andt(ζ) satisfy the ODEs given below

s
′
(ζ) = es(ζ)t(ζ), (9)

t
′
(ζ) = Y + et2(ζ)−ms(ζ), e = ±1, (10)

where

t2(ζ) = −e

[
Y − 2ms(ζ) +

m2 + i

Y
s2(ζ)

]
, (11)

where the constantsY > 0, i = ±1 andm 6=.

Equations (9-10) give the solutions as below.

Family 1:

Whene = −1, i = −1, Y > 0,

s1(ζ) =
Y sech(

√
Y ζ)

m sech(
√

Y ζ) + 1
,

t1(ζ) =
√

Y tanh(
√

Y ζ)
m sech(

√
Y ζ) + 1

Family 2: Fore = −1, i = 1, Y > 0,

s2(ζ) =
Y csch(

√
Y ζ)

m csch(
√

Y ζ) + 1
,

t2(ζ) =
√

Y coth(
√

Y ζ)
m csch(

√
Y ζ) + 1

.

Inserting Eq. (8) into ODE. Comparing coefficients of
similar exponents ofsa(ζ)tb(ζ) equal to zero. Ho-
mogenous system of equations are achieved.

The constantsa0, ar, βr are evaluated, after solving
the achieved system of equations. Substitution ofa0,
ar andβr into Eq. (8) provide the required exact solu-
tions.

• Technique III: tan
(
φ(ζ)/2

)
-expansion approach

According totan
(
φ(ζ)/2

)
-expansion approach [24],

the transformed ODE possess the solution as

V (ζ) =
m∑

r=0

ar

[
y + tan

(
φ(ζ)

2

)]r

+
m∑

r=1

br

[
y + tan

(
φ(ζ)

2

)]−r

, (12)

wherear andbr are constants.φ = φ(ζ) satisfies the
underneath ODE

φ′(ζ) = f sin(φ(ζ)) + g cos(φ(ζ)) + h. (13)

The above differential equation possesses families
(family 1-17) of solutions as discussed in Ref. [24].

Imbedding Eq. (12) in transformed ODE. Setting the
coefficients of analogous exponents oftan

(
φ(ζ)/2

)
andcot

(
φ(ζ)/2

)
equal to zero. We gain simultaneous

system of equations.

The solution of these equations provide us the values
of unknown constantsar andbr.
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5. Extraction of solitons for Kaup-Boussinesq
System via Unified Method

To solve the fractional systems given in Eq. (2) and Eq. (3),
the following transformations

u(x, t) = U(ζ),

v(x, t) = V (ζ), (14)

are used, whereζ represents the traveling wave variable and
obeying the following definition forβ-derivative and trun-
cated M-fractional derivative.

Forβ-derivative, ζ is taken as

ζ =
1
α

(
x +

1
Γ(α)

)α

− σ

α

(
t +

1
Γ(α)

)α

. (15)

ForM-derivative , ζ is taken as

ζ =
Γ(λ + 1)

α
(xα − σtα), (16)

where σ be soliton’s speed. Using Eq. (14) along with
Eq. (15) and Eq. (16) on Eq. (2)-(3), the following ODEs are

obtained as,

−σU
′ − V

′′′ − 2V U
′ − 2UV

′
= 0, (17)

−σV
′ − U

′ − 2V V
′
= 0. (18)

The above coupled system (17)-(18) becomes

U = −σV − V 2. (19)

Putting Eq. (19) into Eq. (17) and integrating once, gives

V
′′ − σ2V − 3σV 2 − 2V 3 = 0. (20)

The Eq. (20) has been solved in the following sections via
three proposed analytical techniques to drive new soliton so-
lutions for the proposed model.

6. Polynomial function solution

Balancing principle applied to Eq. (20) givesn = k − 1, for
all k ≥ 2.

Two cases, whenk = 2, d = 1 andk = 2, d = 2 are
discussed in the following subsections.

FIGURE 1. 3D-graphs of Eq. (24) forσ = 1, C = 0, λ = 0.8. a) presents the 3D-plot withβ-derivative forα = 0.5. b)shows the 3D-plot
with M-derivative forα = 0.5. c) presents the 3D-plot withβ-derivative forα = 0.7. d) presents the 3D-plot with M-derivative forα = 0.7.
e) shows the 3D-plot withβ-derivative forα = 0.9. f) presents the 3D-plot with M-derivative forα = 0.9.
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FIGURE 2. Line-plots for Eq. (24) withσ = 1, C = 0, λ = 0.8. a) shows the 2D-graphs of Eq. (24) withβ-derivatives forα = 0.5, 0.7, 0.9
at t = 1. b) shows the 2D-plots of Eq.(24) with M-derivatives forα = 0.5, 0.7, 0.9 at t = 1. c) depicts the line-plots of Eq. (24) with
β-derivatives and M-derivative forα = 1 at t = 1.

6.1. Soliton solution whenk = 2, d = 1

For k = 2, d = 1, the polynomial function solution of
Eq. (20) has the form

V (ζ) = a0 + a1φ(ζ), (21)

φ′(ζ) =
2∑

i=0

biφ
i(ζ). (22)

Using Eqs. (21)-(22) into Eq. (20) yields an algebraic equa-
tions inφ. The homogenous system of equations are achieved
by setting the coefficients ofφ(ζ) equal to zero. The con-
stants are obtained as

b0 = ±a0(a0 + 1)
a1

, b1 = ±(2a0 + 1), b2 = ±a1. (23)

Inserting Eq. (23) in Eqs. (21)-(22) and solving the auxiliary
equation Eq. (22), the solution of Kaup-Boussinesq system is
obtained as

v(x, t) = −1
2
σ

(
1 + tanh

[1
2
σ(ζ + C)

])
, (24)

u(x, t) =
1
4
σ2 sech2

(1
2
σ[ζ + C]

)
. (25)

6.2. Optical solitary wave solution whenk = 2, d = 2

For k = 2, d = 2, the optical solitary wave solutions of
Eq. (20) has the following form

V (ζ) = a0 + a1φ(ζ), (26)

φ′(ζ) = φ(ζ)
√

b0 + b1φ(ζ) + b2φ2(ζ). (27)

Using Eqs. (26)-(27) into Eq. (20) yields an algebraic equa-
tions in φ(ζ). The homogenous system of equations are
achieved by setting the coefficients ofφ(ζ) equal to zero. The
following values of unknown constants are given below

a0 = −σ, a1 = − b1

2σ
, b0 = σ2, b2 =

b2
1

4σ2
. (28)

Inserting Eq. (28) in Eq. (26)-(27) and solving the auxiliary
equation Eq. (27), the solution of Kaup-Boussinesq system is

obtained as

v(x, t) =
1

−1 + 2b1(cosh[σζ] + sinh[σζ])
, (29)

u(x, t) = − 2b1σ
2(cosh[σζ] + sinh[σζ])

(1− 2b1(cosh[σζ] + sinh[σζ]))2
. (30)

6.2.1. Optical elliptic wave solution

For k = 2, d = 2, the optical elliptic wave solution of
Eq. (20) has been obtained as,

V (ζ) = a0 + a1φ(ζ), (31)

φ′(τ) =
√

b0 + b2φ2(τ) + b4φ4(τ). (32)

Using Eq. (31)-(32) into Eq. (20) yields an algebraic equa-
tions in φ(ζ). The homogenous system of equations are
achieved by setting the coefficients ofφ(ζ) equal to zero. The
following values of unknown constants are given below

a1 = ±
√

b4, a0 = −σ

2
, σ2 = −2b2. (33)

Inserting Eq. (33) in Eq. (31)-(32) and solving the auxiliary
equation Eq. (32), the solution of Kaup-Boussinesq system is
obtained as

v(x, t) = −σ

2
±

√
b4φ(ζ), (34)

It is to mentioned here thatbi, i = 0, 2, 4 are arbitrary con-
stants and by taking particular values ofbi, different Jacobi
elliptic functions solutions have been obtained.

Upon takingb0 = −(1−m2
1)

2/4, b2 = (1 + m2
1)/2 and

b4 = −1/4, then

φ(ζ) = m1cn(ζ, m1) + dn(ζ, m1).

Eq. (34) takes the following form

v(x, t) = −σ

2
±

√
b4 (m1cn(ζ, m1) + dn(ζ, m1)) , (35)

u(x, t)=
σ2

2
∓ σ

√
b4 (m1cn(ζ,m1)+dn(ζ, m1))

−
(
−σ

2
±

√
b4 (m1cn(ζ, m1)+dn(ζ,m1))

)2

, (36)

Rev. Mex. Fis.70041302
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FIGURE 3. 3D-plots of Eq. (29) forσ = 1, b1 = 1, λ = 0.8. a) shows the surface plot withβ-derivative forα = 0.5. b) shows the
3D-plot with M-derivative forα = 0.5. c) shows the 3D-plot withβ-derivative forα = 0.7. d) depicts the surface plot with M-derivative
for α = 0.7. e) shows the 3D-plot withβ-derivative forα = 0.9. f) shows the 3D-plot with M-derivative forα = 0.9.

where0 < m1 < 1 is the modulus of the Jacobi elliptic func-
tions.

7. Rational function solution

For finding the rational function solution of Kaup-Boussinesq
system, the solution of Eq. (20) is taken as

V (ζ) =
∑n

i=0 Aiφ
i(ζ)∑r

i=0 Biφi(ζ)
, n ≥ r, (37)

(φ′(ζ))σ =
σk∑

i=0

biφ
i(ζ), (38)

where unknown constantsAi, Bi andbi are to be determined.
The balance principle to Eq. (20), grantsk = 1 and relation
n = r, that allows free choice ofn.

In the following subsections two possibilities depending
onk = 1, d = 2 are discussed.

7.1. Optical soliton rational solutions

For the first case, the Eq. (37)-Eq. (38) can be converted into

V (ζ) =
A0 + A1φ(τ)
B0 + B1φ(τ)

, (39)

φ′(τ) =
√

b0 + b1φ(τ) + b2φ2(τ). (40)

Using Eq. (39)-(40) into Eq. (20) yields an algebraic equa-
tions in φ. For finding the values ofp0, p1, q0, q1, b0, b1, b2

andσ, equating the coefficients ofφ equal to zero, homoge-
nous system of equations are achieved. After solving the sys-
tem of equations, following values of unknown constants are
obtained as

A0 = −b1B1

2σ
, A1 = −B1σ, b2 = σ2, b0 =

b2
1

4σ2
. (41)

Inserting Eq. (41) in Eq. (39)-(40) and solving the auxiliary
equation Eq. (40), the solution of Kaup-Boussinesq system is
obtained as

Rev. Mex. Fis.70041302
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FIGURE 4. 2D-plots for Eq. (29) withσ = 1, b1 = 1, λ = 0.8. a) shows the 2D-plots of Eq. (29) withβ-derivatives forα = 0.5, 0.7, 0.9
at t = 1. b) depicts the line-plots of Eq. (29) with M-derivatives forα = 0.5, 0.7, 0.9 at t = 1. c) shows the 2D-plots of Eq. (29) with
β-derivatives and M-derivative forα = 1 at t = 1.

v(x, t) =
B1σ (cosh[σζ] + sinh[σζ])

2b1B1 − 4B0σ2 − (cosh[σζ] + sinh[σζ]) B1
, (42)

u(x, t) =
2B1σ

2 (cosh[σζ]+ sinh[σζ])
(−b1B1+2B0σ

2
)

(−2b1B1+4B0σ2+(cosh[σζ]+ sinh[σζ])B1)
2 . (43)

7.2. Optical periodic rational solution

V (ζ) =
A0 + A1φ(ζ)
B0 + B1φ(ζ)

, (44)

φ′(ζ) =
√

b2
0 − b2

2φ
2(ζ). (45)

Using Eqs. (44)-(45) into Eq. (20) yields an algebraic equations inφ(ζ). For finding the values ofA0, A1, B0, B1, b0, b2 and
σ, equating the coefficients ofφ(ζ) to zero, simultaneous equations is procured. The following values of unknown constants
are given as

A0 = −b0B1, A1 = −B1σ

2
, b2 = − 1√

2
, B0 = 0. (46)

Inserting Eq. (46) in Eqs. (44)-(45) and solving the auxiliary equation (45), the solution of Kaup-Boussinesq system is obtained
as

v(x, t) = −1
2
σ

(
1 +

√
2 csc[

σ(ζ + C)√
2

]
)

, (47)

u(x, t) =
1
4
σ2

(
1− 2 csc2[

σ(ζ + C)√
2

]
)

. (48)

In all the above solutions obtained by Unified approach,ζ defined by Eq. (15) for β-derivative and Eq. (16) for truncated
M-fractional derivative.C be the constant of integration.

8. Extraction of soliton solutions via GPRE

Taking the homogeneous balance in Eq. (20), we obtainu = 1. Equation (8) becomes

V (ζ) = a0 + a1s(ζ) + β1t(ζ), (49)

wherea0, a1 andβ1 are unknowns constants. Fore = −1, GPRE extracts, following sets of solutions.
SET 1

a0 = ±σ

2
, a1 = ∓

√
m2 + i

2σ
, β1 = −1

2
, Y = σ2.

Rev. Mex. Fis.70041302



8 H. ALSAUD, N. RAZA, S. ARSHED, A. RASHID BUTT, AND M. INC

TakingFamily 1, the achieved solitons forSET 1 are given below

v(x, t) = ±σ

2
∓ σ

√
m2 − 1 sech(σζ)

2(m sech(σζ) + 1)
− σ tanh(σζ)

2(m sech(σζ) + 1)
, (50)

u(x, t) = −σ

(
±σ

2
∓ σ

√
m2 − 1 sech(σζ)

2(m sech(σζ) + 1)
− σ tanh(σζ)

2(m sech(σζ) + 1)

)

−
(
±σ

2
∓ σ

√
m2 − 1 sech(σζ)

2(m sech(σζ) + 1)
− σ tanh(σζ)

2(m sech(σζ) + 1)

)2

. (51)

The above solitons exist if(m2 − 1) > 0.
TakingFamily 2, the attained solitons forSET 1 are given below

v(x, t) = ±σ

2
∓ σ

√
m2 + 1 csch(σζ)

2(m csch(σζ) + 1)
− σ coth(σζ)

2(m csch(σζ) + 1)
, (52)

u(x, t) = −σ

(
±σ

2
∓ σ

√
m2 + 1 csch(σζ)

2(m csch(σζ) + 1)
− σ coth(σζ)

2(m csch(σζ) + 1)

)

−
(
±σ

2
∓ σ

√
m2 + 1 csch(σζ)

2(m csch(σζ) + 1)
− σ coth(σζ)

2(m csch(σζ) + 1)

)2

. (53)

The above soliton solutions exist if(m2 + 1) > 0.

9. Extraction of solitons via improvedtan
(
φ(ζ)/2

)
-expansion approach

Using the improvedtan
(
Φ(ζ)/2

)
-expansion approach, the solution fory = 0 of Eq. (12) becomes

D(µ) = a0 + a1

[
tan

(
φ(µ)

2

)]
+ b1

[
tan

(
φ(µ)

2

)]−1

, (54)

wherea0, a1 andb1 are to be calculated. Inserting Eq. (54) and its derivatives into Eq. (20 provides the ensuing solution sets
as
SET 1

a0 = −σ

2
, b1 =

σ2

16a1
, f = 0, g = −a1 − σ2

16a1
, h = a1 − σ2

16a1
. (55)

SET 2

a0 =
f − σ

2
, a1 = 0, g =

√
−f2 + h2 + σ2, b1 =

h +
√
−f2 + h2 + σ2

2
.

SET 3

a0 =
f − σ

2
, a1 =

1
2

(
h +

√
−f2 + h2 + σ2

)
, g = −

√
−f2 + h2 + σ2, b1 = 0.

Using Eq. (54) andSET 1, the following solutions are extracted from family2 of the proposed method [24].

v2(x, t) = −σ

2
− σ

4

(
tanh

[
σ

4
ζ̂

]
+ coth

[
σ

4
ζ̂

])
, (56)

u2(x, t) = −σ

(
−σ

2
− σ

4

[
tanh

{
σ

4
ζ̂

}
+ coth

{
σ

4
ζ̂

}])
−

(
−σ

2
− σ

4

[
tanh

{
σ

4
ζ̂

}
+ coth

{
σ

4
ζ̂

}])2

. (57)
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FIGURE 5. 3D-plots of Eq. (55) withσ = 1, λ = 0.8. a) exhibits the 3D-plot withβ-derivative forα = 0.5. b) exhibits the 3D-plot with
M-derivative forα = 0.5. c) exhibits the 3D-plot withβ-derivative forα = 0.7. d) exhibits the 3D-plot with M-derivative forα = 0.7. e)
exhibits the 3D-plot withβ-derivative forα = 0.9. f) exhibits the 3D-plot with M-derivative forα = 0.9.

FIGURE 6. 2D-plots for Eq. (55) withσ = 1, b1 = 1, λ = 0.8. a) shows the 2D-plots of Eq. (55) withβ-derivatives forα = 0.5, 0.7, 0.9
at t = 1. b) shows the 2D-plots of Eq. (55) with M-derivatives forα = 0.5, 0.7, 0.9 at t = 1. c) shows the 2D-plots of Eq. (55) with
β-derivatives and M-derivative forα = 1 at t = 1.

Using Eq. (54) andSET 2, the following solutions are extracted from family2, 5 and6 of the proposed method [24].

v2(x, t) =
f − σ

2
+

σ2 − f2

2
(

f + σ tanh
[

σ
2 ζ̂

]) , (58)
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u2(x, t) = −σ




f − σ

2
+

σ2 − f2

2
[
f + σ tanh

{
σ
2 ζ̂

}]


−




f − σ

2
+

σ2 − f2

2
[
f + σ tanh

{
σ
2 ζ̂

}]




2

, (59)

v5(x, t) =
1
2
σ coth

(
σζ̂

2

)
, (60)

u5(x, t) = −σ

(
1
2
σ coth

(
σζ̂

2

))
−

(
1
2
σ coth

(
σζ̂

2

))2

, (61)

v6(x, t) = −σ

2

(
1− cot

{
1
2

arctan
(

e2σζ̂ − 1

e2σζ̂ + 1
,

2eσζ̂

e2σζ̂ + 1

)})
, (62)

u6(x, t) =
σ2

2

(
1− cot

{
1
2

arctan
(

e2σζ̂ − 1

e2σζ̂ + 1
,

2eσζ̂

e2σζ̂ + 1

)})

− σ2

4

(
1− cot

{
1
2

arctan
(

e2σζ̂ − 1

e2σζ̂ + 1
,

2eσζ̂

e2σζ̂ + 1

)})2

. (63)

Using Eq. (54) andSET 3, the following solutions are extracted from family2, 5 and6 of the proposed method [24].

v2(x, t) =
f − σ

2
+

1
2

(
−f − σ tanh

(
σ

2
ζ̂

))
, (64)

u2(x, t) =
σ2

2 + 2 cosh
(

σζ̂

) , (65)

v5(x, t) = −σ

2

(
1 + tanh

(
σ

2
ζ̂

))
, (66)

u5(x, t) =
σ2

2 + 2 cosh
(

σζ̂

) , (67)

v6(x, t) = −σ

2

(
1− tan

{
1
2

arctan
(

e−2σµ̂ − 1

e−2σζ̂ + 1
,

2e−σζ̂

e−2σζ̂ + 1

)})
, (68)

u6(x, t) =
σ2

2

(
1− tan

{
1
2

arctan
(

e−2σζ̂ − 1

e−2σζ̂ + 1
,

2e−σζ̂

e−2σζ̂ + 1

)})

− σ2

4

(
1− tan

{
1
2

arctan
(

e−2σζ̂ − 1

e−2σζ̂ + 1
,

2e−σζ̂

e−2σζ̂ + 1

)})2

, (69)

whereζ̂ = ζ + C defined by Eq. (15) for β-derivative, Eq. (16) for M-truncated derivative.C be the constant of integration.

10. Comparative investigation withβ and M-Truncated fractional derivatives

The two-dimensional and three-dimensional plots of Eq. (24), Eq. (29) and Eq. (55) are presented in this paper to illustrate
the dynamics of obtained solutions. Figures 1 and 2 show the 3D-plots and 2D-plots of Eq. (24) for both definitions of
fractional derivatives with distinct values of fractional parameterα. The 2D-plots of Eq. (24) are presented in Fig. 2 for
α = 0.5, 0.7 0.9, 1 by taking independent variablet = 1 and−5 ≤ x ≤ 5. It has also been observed that upon takingα = 1,
both the fractional derivative overlap. Moreover, Figs. 3 and 4 show the 3D-plots and 2D-plots of Eq. (29) for both definitions
of fractional derivatives with distinct values of fractional parameterα. The 2D-plots of Eq. (29) are presented in Fig. 4 for

Rev. Mex. Fis.70041302



EXTRACTION OF SOLITON SOLUTIONS FOR THE FRACTIONAL KAUP-BOUSSINESQ SYSTEM: A COMPARATIVE STUDY 11

α = 0.5, 0.7 0.9, 1 by taking independent variablet = 1
and−5 ≤ x ≤ 5. It has also been observed that upon taking
α = 1, both the fractional derivative overlap. Figures 5 and 6
show the 3D-plots and 2D-plots of Eq. (55) forβ derivative
and M-derivative takingα = 0.5, 0.7, 0.9. The 2D-plots of
Eq. (24) are presented in Fig. 2 forα = 0.5, 0.7 0.9, 1 by
taking independent variablet = 1 and−5 ≤ x ≤ 5. It has
also been observed that upon takingα = 1, both the frac-
tional derivative overlap.

11. Results and discussion

The fractional KB model is investigated in this article via
three integrating schemes. Theβ-derivative and truncated M-
fractional derivative are applied for investigating fractional
nature of FKB model. Three most popular and novel ap-
proaches namely unified approach, GPRE method and im-
provedtan

(
φ(ζ)/2

)
-expansion method are used for obtain-

ing different types of solitons such as bright, dark, singular
soliton, combo soliton and periodic solutions. The graph-
ical representation of few obtained solutions are also pro-
vided in this article. In this paper, two fractional deriva-
tives are employed for discussing the fractional effects of
the obtained solutions of the governing model. It has been
noticed for assigning various values of fractional parameter
α, 0 < α < 1, the β- derivative approaches the classical
derivative (forα = 1) faster than M-truncated derivative.

12. Conclusion

In this article, we have developed soliton solutions of frac-
tional Kaup-Boussinesq system that depict the propagation of
long waves at the surface of a perfect fluid. The full spectrum
of soliton solution includes dark, bright, singular soliton,
combo soliton and periodic solutions. This has been obtained
by applying Technique I, Technique II and Technique III.
These three techniques are efficient integration tools for find-
ing exact solitary wave solutions of various NLPDEs arising
in nonlinear sciences. The suitable choice of parametric val-
ues allow us to discuss the fractional behavior of the attained
solutions. 2D and 3D graphs illustrate the physical impor-
tance of procured results. Moreover, the comparison between
β-derivative andM -derivative is provided for different frac-
tional parametric values. On comparing our obtained results
with [36–39], it has been observed that our obtained solutions
for the proposed model are new. Only the solutions found in
Eq. (24) and Eq. (25) are similar with the solutions obtained
in [38, 39]. The acquired solutions may give a decent en-
hancement to theory of water waves. All the three techniques
are very effective in finding the full spectrum of solitary wave
solutions which possess a significant part in many real-world
problems occurring in mathematical physics and engineering.
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