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This paper is based on finding soliton solutions to fractional Kaup-Boussinesq (FKB) system. The fractional derivativeg-slesivatve

and truncated M-fractional derivative are used in this study. The unified approach, generalized projective riccati equations method (GPREM)
and improvedian (¢(C)/2)-expansi0n approaches are efficiently used for obtaining bright soliton, dark soliton, singular soliton, periodic
soliton, dark-singular combo soliton and dark-bright combo soliton. The numerical simulations are also carried out by 3D and 2D, graphs of
some of the obtained solutions to discuss the fractional effects.
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1. Introduction in shallow water. Other physical applications of the gov-
erning system include ion sound waves in plasma, vibrations
In real world, majority of useful applications have nonlinearand nonlinear lattice waves in a nonlinear series [19]. Many
nature. Nonlinear partial differential equations (NLPDEs)methods have been implemented to solve KB equations in lit-
have fundamental significance because these equations aature [20]. This article concerns with the solutions of FKB
used for mathematical modeling of various physical phe-equations using three robust and reliable integration schemes.
nomena [1, 2]. In particular, to find the exact solution of Also, the comparative study permits to envision fractional be-
NLPDESs which depend on time evolution known as nonlin-havior more precisely.
ear evolution equations (NLEES) arising in different branches  The unified method allows a researcher to find two kinds
of science are a fascinating field of research [3-6]. The inof traveling wave solutions, polynomial and rational form
vestigation of exact solitary wave solutions NLEEs is help-of functional solutions. Many authors have used this tool
ful to understand complex physical processes. Soliton theto recover the soliton solutions of NLPDEs [21]. GPREM
ory has vast applications in the fields of biophysics, quanhas been utilized by many researchers and scientists [22—24]
tum mechanics, nonlinear optics, microbiology and engineerin recent years for obtaining new soliton solutions. More-
ing [7-10]. Solitons are solitary waves that travel with their over,tan (¢(¢)/2)-expansion technique has been applied on
original speed and shape even after nonlinear collision wittNLPDESs [25] to obtain traveling wave solutions.
other waves [11]. The manuscript includes twelve sections. Section 2 is al-
In recent decades, fractional NLPDESs have become an iotted to the preliminaries. The suggested model is consid-
teresting research area. In the analysis of numerous proces$¥€d in Sec. 3. In Sec. 4, techniques descriptions of all three
in nonlinear sciences, fractional calculus has emerged as dRethods are provided. Section 5 covers the soliton extrac-

effective and efficient mathematical gadget [12—14]. tion via unified method. Polynomial and rational function

The fractional model provides more degrees of freedomsolutions are obtained in Secs. 6 and 7 respectively. Soliton

Moreover, FDEs own certain properties of a system othepolutions are developed through GPREM and (6(¢)/2)-

than that handled by the traditional integer-order equation<SXPansion method in Secs. 8 and 9. Section 10 and 11 show
The solutions of FDES contribute to innovative viewpoints in e comparison of the results and their discussion. In Sec. 12,
their dynamical investigation. Researchers have made marfPncluding remarks are included.

efforts to extract traveling wave solutions of FDEs [15-18].

This paper is devoted to finding soliton solutions for 2. Preliminaries
NLEE namely Kaup-Boussinesq (KB) system by consider-
ing S-fractional and M-truncated derivatives. KB model is Some fundamental definitions of fractional calculus (FC)
adopted for the study of long and weakly nonlinear waveshave been presented in this section. Riemann-Liouville def-
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inition and the Caputo definition being the most famous andowing properties

commonly used definitions have some serious drawbacks. | o o
Few of them are stated below, 3Dy (af +bg) = a; Dy (f) + b; D37 (9), Va,beR

)
. . . - . D3N (¢7) =267 z€ER,
e Riemann-Liouville fractional derivative of an arbitrary
)

constant is not zero. iDSA(fg) = ;DS g) + g; DSANS),
a, oA
e In Caputo definition the function is assumed to be dif- ;DS (f) _ LiDhi(9) 293DM (f)7
ferentiable. 9 Y
11—«
N d
. - D) = T
e The product law and quotient law for derivatives of I'(A+1)do

functions are not satisfied by these definitions. o o
D3 (fog)(@) = f'(9(9)); D51 9(9),
e Chain rule and the index rule are also not satisfied bywhere f and g are differentiable functions of order, a €
these definitions. (0,1} andX > 0.

In order to overcome the above disadvantages of the existing
definitions, a new form of conformable fractional derivative
termed ag3-derivative and truncated M-fractional derivative This paper investigatdéaup-Boussinesq (KB) Systenwith
are applied in this paper. [ and M-fractional derivatives via three integrating tech-
niques such as unified approach, GPREM and improved
tan (¢(¢)/2)-technique for extracting new soliton solutions.
The motion of water wave is well described by the Kaup-
Boussinesq system [37] given below

. Governing models

2.1. [-derivative

The (-derivative ia also termed as another kind of con-
formable derivative. Thg-derivative of differential function Up — Vg — 2(uv)y = 0, (1)

g(x) can be defined, as [40]
v 4 Uy — (V%) = 0,

g (;C +e (x + ﬁ) ' a) —g(x) wher_eu(a:, t) represents the height of the water surf_ace above
6 Dgg(x) = lim , a horizontal bottom and(z, t) is the horizontal velocity. The
£—0 € governing model termed as Kaup-Boussinesq (KB) system
0<ac<l, because it has used Boussinesq scaling in its derivation, and
Kaup [32] was the first who has investigated it. It has also
wherea is taken as fractional parameter. been used by Broer [33]. The Proposed KB system also be-

longs to the family of long-waves models invented by Boussi-
nesq, formed by [34, 35] and many others. In [36] solitary-
wave solution of the KB system is obtained. In [38, 39], the
authors have employed Adomian decomposition, homotopy
Va,beR methods and successive approximation methods for solving
B o B o B o Kaup-Boussinesq system.

o D7 (9(x) * h(x)) = h(x),’ Dgg(x) + g(x);” D h(x), The fractional KB system using-derivative has the fol-

5 e {g(m) } _ h(@)PDgg(x) — g(x)PDgh(z) ~ loWingform

Theorem 1: G-derivative has the following properties [40],

6 D (ag(w) + bh(z)) = a 7 Dgg(x) +b I Dh(z),

h(x) h2(x) ’ B ey, —B Doy — 2B Doy = 0, @)
§D%c =0, forcany constant Bpey B Doy B Dey? =0
wheref andg are differential functions. D¢ = 9%/ot* and DY = 9%/0x* represeni3-fractional
Truncated M-fractional derivative derivatives.

The fractional KB system using M-truncated derivative

It is defined as, :
has the following form

SD5 F(6) = tig LT D) = 1(9) D3hu — DYo — D5 =0, ®

e—0 € ’

D%y — Dy — DA 2 =0,
for¢ > 0and;T\(.), A > 0. Mt M,z M,z

Theorem 2: Truncated M-fractional derivative has the fol- whereDj}’if andDﬂfx represent M-derivatives.
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4. Description of suggested methodologies

The PDE or fractional PDE is converted into ODE using
traveling wave transformation. The unified method [29],
GPREM [31] andtan (¢(§)/2)—expansion 24] approaches
are discussed in this section.

e Technique I: Unified method

The unified method is an efficient analytical technique
that extracts polynomial function solutions and rational
solutions.

Polynomial function solutions
The converted ODE has a polynomial solution as

V(¢) =) ai¢'(C), 4
=0

whereg(¢) satisfying the ODE

dk
(@) =D _b:id'(¢), d=1,2, )
=0

The constants,; andb; are to be found.

Heren andk are determined using the balancing prin-
ciple [29]. Ford = 1, provides elementary solutions
and ford = 2, elliptic solutions are extracted.

4.1. Rational function solution

The rational solution of converted ODE has the follow-
ing form
Zi:o A’Ld) (C) >r

NS T

(6)

where
dk 4
(¢I(C))d = Zbl(bl(g)) d= 1,2, (7)
=0

whereA;, B; andb; are constants to be determined.
Heren and k are calculated after employing the bal-
ancing principle [29].

e Technique Il: GPRE

According to Technique Il [31], the predicted solution
has the form

V() =ao+ > &) [ars(C) + 5], (8)

where constants, a,. and 3, to be determined. The
functionss(¢) and¢(() satisfy the ODEs given below

’

s (€) = es(Q)t(C), 9)

’

t () =Y +et?(¢) —ms(C), e==1, (10)

where
m2+i 9

t2(¢) = —e Y —2ms(Q) + ——s7(Q)|, (11)

where the constan®s > 0, = +1 andm #.
Equations/®-10) give the solutions as below.

Family 1:
Whene = -1,i=-1,Y >0,
51(C) = Y sech(v/Y Q)
' _msech(ﬁg)—f—l’
H(C) = VY tanh(vVY()
B msech(vY¢) + 1

Family 2: Fore=-1,i=1,Y > 0,

52(C) = Y esch(vVY€)
2 mesch(vVY () +17
£a(¢) = \/?coth(\/?()
2 mesch(vVY Q)+ 1

Inserting Eq./8) into ODE. Comparing coefficients of
similar exponents ok?(¢)t*(¢) equal to zero. Ho-
mogenous system of equations are achieved.

The constants, a,., 8, are evaluated, after solving
the achieved system of equations. Substitution®f
a, andg,. into Eq. B) provide the required exact solu-
tions.

Technique 111: tan (¢(¢)/2)-expansion approach

According totan (¢(¢)/2)-expansion approaci24],
the transformed ODE possess the solution as

V0= $oa i (49)]
+

r=0
1

ST |

wherea, andb, are constantsy = ¢(({) satisfies the
underneath ODE

¢'(¢) = fsin(¢(C)) + gcos(¢(C)) + h.  (13)

The above differential equation possesses families
(family 1-17) of solutions as discussed in R&4J.

Imbedding Eq.12) in transformed ODE. Setting the
coefficients of analogous exponents tafi (¢(¢)/2)
andcot (¢(¢)/2) equal to zero. We gain simultaneous
system of equations.

The solution of these equations provide us the values
of unknown constants, andb,..

Rev. Mex. Fis70041302
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5. Extraction of solitons for Kaup-Boussinesq
System via Unified Method

To solve the fractional systems given in ER) &nd Eq. 8),
the following transformations

v(z,t) = V(C), (14)

obtained as,
—oU -V —2vU —20V =0, (17)
—oV —U —2vV =o. (18)
The above coupled systerh)-(18) becomes

U=—-oV -V2 (19)

are used, wheré represents the traveling wave variable andPutting Eq./L9) into Eq. [17) and integrating once, gives

obeying the following definition for3-derivative and trun-
cated M-fractional derivative.
For g-derivative, ( is taken as

e

For M-derivative, ( is taken as

(=T Do ey, (16)
«
where o be soliton’s speed. Using Eql4) along with

Eq. (15) and Eq./L6) on Eg. @)-(3), the following ODEs are

’

V' — 02V —30V2 —2V3 =0. (20)
The Eq. [R0) has been solved in the following sections via

three proposed analytical techniques to drive new soliton so-
lutions for the proposed model.

6. Polynomial function solution

Balancing principle applied to Ec2Q) givesn = k — 1, for
all k> 2.

Two cases, whek = 2, d =1andk =2, d = 2are
discussed in the following subsections.

FIGURE 1. 3D-graphs of Eq. (24) for = 1, C = 0, A = 0.8. a) presents the 3D-plot with-derivative fora: = 0.5. b)shows the 3D-plot
with M-derivative fora: = 0.5. c) presents the 3D-plot with-derivative fora. = 0.7. d) presents the 3D-plot with M-derivative far= 0.7.
e) shows the 3D-plot witlB-derivative fora: = 0.9. f) presents the 3D-plot with M-derivative far = 0.9.
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FIGURE 2. Line-plots for Eq. (24) withr = 1, C = 0, A = 0.8. a) shows the 2D-graphs of Eq. (24) wjthderivatives forx = 0.5, 0.7, 0.9
att = 1. b) shows the 2D-plots of Eq.(24) with M-derivatives for= 0.5, 0.7, 0.9 att = 1. c) depicts the line-plots of Eq. (24) with
(B-derivatives and M-derivative fax = 1 att = 1.

6.1. Soliton solution whenk =2, d=1 obtained as
. . . 1
For k = 2,d = 1, the polynomial function solution of v(z,t) = : ) (29)
Eq. (20) has the form (1) —1 4 2b;(cosh[o(¢] + sinh[o(])
2b102(cosh[o(] + sinh[o(])
V() =ag+ , 21 ) =— . 30
(€) = ao + a16(¢) (21) u(z, ) (1 — 2by (cosh[o(] +sinh[a§]))2 (30)
2
¢'(C) =Y _bid'(Q). (22)  6.2.1. Optical elliptic wave solution
=0

For k 2, d = 2, the optical elliptic wave solution of
Ic_:iq. (20) has been obtained as,

Using Egs. [21)-(22) into Eq. 20) yields an algebraic equa- v
tions in¢. The homogenous system of equations are achieve

by setting the coefficients af(¢) equal to zero. The con- V(¢) = ap + a16(¢), (31)
stants are obtained as ,
ap(ag + 1) ¢'(7) = Vbo + b2¢?(7) + badp' (7). (32)
b =& ap by = £(2a0 + 1), by =+a1. (23) Using Eq. 1B1)-(32) into Eq. 20) yields an algebraic equa-

tions in ¢(¢). The homogenous system of equations are
achieved by setting the coefficientsdgf)) equal to zero. The
following values of unknown constants are given below

Inserting Eq./23) in Egs. 21)-(22) and solving the auxiliary
equation Eq/22), the solution of Kaup-Boussinesq system is
obtained as

a1 = ++/ba, 0% = —2b,. (33)

g
ap = ——,

v(z,t) = —%a (1 + tanh [%a(q + 0)] ) (24) 07 7
Inserting Eq.83) in Eq. (31)-(32) and solving the auxiliary

1 1 equation Eq.32), the solution of Kaup-Boussinesq system is
u(e,t) = o*sech?(SolC + ). (25)  optained as
6.2. Optical solitary wave solution whenk = 2, d = 2 v(z,t) = f% + /bs9(0), (34)

For k = 2,d = 2, the optical solitary wave solutions of It is to mentioned here that,: = 0, 2,4 are arbitrary con-

Eq. (20) has the following form

V(¢) = a0 + a16(¢), (26)

stants and by taking particular valuestgf different Jacobi
elliptic functions solutions have been obtained.
Upon takingby = —(1 —m?2)2/4, by = (1 +m?)/2 and

¢ () = d(O)V/bo + b16(C) + b2 (). @7) b= —1/4, then

Using Egs.[26)-(27) into Eq. 20) yields an algebraic equa- ¢(C) = maen(C,ma) + dn(C, my).
tions in ¢(¢). The homogenous system of equations aregq. (34) takes the following form

achieved by setting the coefficients@f) equal to zero. The
following values of unknown constants are given below v(z,t) = _% + /by (mien(C,my) + dn(¢,mq)), (35)
2

b b
L ! (28) u(x’t):% :FU\/a(mlcn(Caml)"i_dn(Caml))

2
) bOZUa b2

apg = —0, a1 = ——— = —,
’ 20 402

Inserting Eq.[28) in Eqg. (26)-(27) and solving the auxiliary
equation Eq.27), the solution of Kaup-Boussinesq system is

(- Z /b mien(Com) dn(C.m))) L @6)

Rev. Mex. Fis70041302
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T

FIGURE 3. 3D-plots of Eq. (29) forr = 1, b1 = 1, A = 0.8. a) shows the surface plot with-derivative foraw = 0.5. b) shows the
3D-plot with M-derivative fora. = 0.5. ¢) shows the 3D-plot wittB-derivative fora = 0.7. d) depicts the surface plot with M-derivative
for a = 0.7. e) shows the 3D-plot witi¥-derivative fora = 0.9. f) shows the 3D-plot with M-derivative far = 0.9.

where0 < m; < 1isthe modulus of the Jacobi elliptic func- 7.1. Optical soliton rational solutions
For the first case, the E(B7)-Eqg. (38) can be converted into

tions.
7. Rational function solution )= %, (39)
0 1
¢ (1) = \/bo + b1p(T) + bap?(7). (40)

For finding the rational function solution of Kaup-Boussinesq
system, the solution of Ec20) is taken as
Using Eq. B9)-(40) into Eq. 20) yields an algebraic equa-

V() = o Ao Q) o (37) tionsin¢. For finding the values oo, 1, qo. 1, bo, by, bo
Yoo Bid'(€)’ = ando, equating the coefficients af equal to zero, homoge-

nous system of equations are achieved. After solving the sys-
tem of equations, following values of unknown constants are

ok
/ [ bz % , 38
(¢'(0) g ¢'(0) 38)  obtained as
2
where unknown constant;, B; andb; are to be determined. A, = —b;Bl, Ay = —Byo, by =07, by = 4b12' (41)
o a

The balance principle to E¢20), grantsk = 1 and relation
Inserting Eq./41) in Eq. (39)-(40) and solving the auxiliary

n = r, that allows free choice of.
In the following subsections two possibilities dependingequation Eq./40), the solution of Kaup-Boussinesq system is

onk =1, d= 2 are discussed. obtained as

Rev. Mex. Fis70041302
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FIGURE 4. 2D-plots for Eq. (29) withr = 1, by = 1, A = 0.8. a) shows the 2D-plots of Eq. (29) withderivatives fora = 0.5, 0.7, 0.9
att = 1. b) depicts the line-plots of Eq. (29) with M-derivatives tor= 0.5, 0.7, 0.9 at¢t = 1. c) shows the 2D-plots of Eq. (29) with
[B-derivatives and M-derivative fax = 1 att = 1.

- By o (cosh[o(] + sinh[o(])
v(z,t) = 2by By — 4Byo? — (cosh[o(] + sinh[o(]) By’ “

_ 2By0” (cosh[o¢]+ sinh[o(]) (=b1B1+2Byo?)

u(x,t) - o (43)
(=2by B1+4Bgo?+(cosh[o(]+ sinh[o(]) B1)
7.2. Optical periodic rational solution
Ao+ A19(Q)
VO = B+ Biol0) @)
¢'(C) = /b5 — b3¢* (). (45)

Using Egs. 44)-(45) into Eq. 20) yields an algebraic equations ¢{¢). For finding the values afly, A1, By, B1, b, b2 and
o, equating the coefficients @f(¢) to zero, simultaneous equations is procured. The following values of unknown constants
are given as

Bio 1
Ao = —bo By, Ay =", bzz—ﬁ,

2
Inserting Eq./46) in Eqs. @4)-(45) and solving the auxiliary equatiod$), the solution of Kaup-Boussinesq system is obtained
as

By = 0. (46)

o(z,t) = —%a (1 + ﬁcsc["“};c)]) , (7)
u(z,t) = %02 (1 — 20802[0({%@]) . (48)

In all the above solutions obtained by Unified approacldefined by Eq.15) for 5-derivative and Eq.16) for truncated
M-fractional derivative.C' be the constant of integration.

8. Extraction of soliton solutions via GPRE
Taking the homogeneous balance in E2f)( we obtainu = 1. Equation|8) becomes

V(¢) = ao + a1s(¢) + B1t(¢), (49)

whereag, a; andg; are unknowns constants. Foe= —1, GPRE extracts, following sets of solutions.
SET 1

vm?2 +1 1

g
ag = 5) a; = + 2% )

Rev. Mex. Fis70041302
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TakingFamily 1, the achieved solitons f@ET 1 are given below

0 _ovm? —1sech(a() o tanh(o()
V@) = 25 F Sinsech(o0) + 1) 2(msech(o0) + 1) (50)

w(ot) = —o £ 3 OY/mE—Lsech(oq)  otanh(o()
’ 2 2(msech(c¢) +1)  2(msech(c¢) +1)
_ o ovm2 — 1sec h(c() 3 o tanh(o() 2
(i 9 2(msech(a¢) + 1) 2(msech(o¢) + 1)) . (51)

The above solitons exist {fn? — 1) > 0.
TakingFamily 2, the attained solitons f@ET 1 are given below

0 __ovm?+ lesch(o() o coth(o()
@) = 25 F S esch(o0) +1)  2(mesch(od) + 1) (52)

ovm? + 1cesch(o() o coth(o() )

et = (iz 2(mesch(o) +1)  2(mesch(od) + 1)

3 o ovm?+ 1lcesch(o() o coth(a() ’ (53)
2 2(mesch(e¢)+1)  2(mecesch(o¢) +1)

The above soliton solutions exist(if2? + 1) > 0.

9. Extraction of solitons via improved tan (¢(§)/2)-expansion approach

Using the improvedan (@(g)/z)-expansion approach, the solution fo= 0 of Eq. (12) becomes

D100 =+ [an (%2 - (402 -

whereag, a; andb; are to be calculated. Inserting E&4f and its derivatives into Eq20 provides the ensuing solution sets
as

SET1
o o2 o2 o2
ao 9 1 164, / y 9 a1 160, aq 164, (55)
SET 2
_ h /__ £2 h2 2
aO_f207 a1—07 g_V_f2+h2+U27 bl: i f2+ +U.
SET3

— 1
aO:f2U, al:i(th —f2+h2+a2), g=—V—-f2+h?>+02, b =0.

Using Eq. B4) andSET 1, the following solutions are extracted from familyof the proposed metho@4].
g g g » (2
577 (tanh [4C] + coth [4@“}) , (56)

us(a,t) = —o (—; - % [tanh {Zé} + coth {ZC}D - <—; - % [tanh {ZE} + coth{ E}DQ‘ (57)

Rev. Mex. Fis70041302
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FIGURE 5. 3D-plots of Eq. (55) withv = 1, A = 0.8. a) exhibits the 3D-plot witlB-derivative fora. = 0.5. b) exhibits the 3D-plot with
M-derivative fora = 0.5. c) exhibits the 3D-plot withg-derivative fora. = 0.7. d) exhibits the 3D-plot with M-derivative far = 0.7. €)
exhibits the 3D-plot with3-derivative forae = 0.9. f) exhibits the 3D-plot with M-derivative forx = 0.9.
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FIGURE 6. 2D-plots for Eq. (55) withr = 1, b1 = 1, A = 0.8. a) shows the 2D-plots of Eq. (55) withrderivatives forae = 0.5, 0.7, 0.9
att = 1. b) shows the 2D-plots of Eq. (55) with M-derivatives for= 0.5, 0.7, 0.9 att = 1. c¢) shows the 2D-plots of Eq. (55) with
(B-derivatives and M-derivative fax = 1 att = 1.

Using Eq.64) andSET 2, the following solutions are extracted from family5 and6 of the proposed metho@4)].

f;a o? — f? ’ (58)
2 (f+0tanh [%é])
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2

_ 2 _ g2 _ 2 42
ug(x,t) = —0o f20+ o —f - f20+ o= ) (59)
Q{f—&-atanh{ggﬂ Z[f—katanh{;CH
. .
vs(x,t) = o coth (UC) (60)
2 2
1
us(z,t) = (0’ coth (f)) ( o coth (Cf;)) , (61)
20’5 _ 05
vg(nlc,t):—g <l—cot{1arctan (e - 1, 2? >}> , (62)
2 2 €200 +1 €206 +1
o2 1 e20C —1  2¢7¢
ug(x,t) = — [ 1 — cot = arctan - ,——
2 2 €296 +1 e20¢ 1
R R 2
2 1 20¢ _ 1 92 o
7 1 =cot { arctan (e . , ¢ ) } ) (63)
4 2 €29¢ +1 e20¢ +1
Using Eq. b4) andSET 3, the following solutions are extracted from family5 and6 of the proposed metho@4].
-0 1 o
vo(z,t) = / 5 +§ <—f—crtanh (2C)> , (64)
uz(z,t) = (65)
2 + 2 cosh ( )
vs(z,t) = <1 + tanh <; )) ) (66)
us(z,t) = ——— (67)
2 + 2 cosh (Ué)
o 1 720;1 7(74
ve(z,t) = —= | 1 —tan { arctan ( > } (68)
2 2 —20( +1 6—20{ +1
0.2 1 —205 -1 —UC
ug(x,t) = — | 1 — tan { = arctan
2 2 e=20¢ 4+ 1" e—20¢ 4 1
2 1 —20’6 -1 —UC
~ 7 [1—tan{ - arctan (69)
4 2 e—20C 4 1 ¢—20¢ +1

where( = ¢ + C defined by Eq.15) for 3-derivative, Eq.16) for M-truncated derivativeC' be the constant of integration.

10. Comparative investigation with and M-Truncated fractional derivatives

The two-dimensional and three-dimensional plots of Eq. (24), Eq. (29) and Eq. (55) are presented in this paper to illustrate
the dynamics of obtained solutions. Figures 1 and 2 show the 3D-plots and 2D-plots of Eq. (24) for both definitions of
fractional derivatives with distinct values of fractional parameterThe 2D-plots of Eq. (24) are presented in Fig. 2 for

a = 0.5, 0.70.9, 1 by taking independent variable= 1 and—5 < z < 5. It has also been observed that upon taking 1,

both the fractional derivative overlap. Moreover, Figs. 3 and 4 show the 3D-plots and 2D-plots of Eq. (29) for both definitions
of fractional derivatives with distinct values of fractional parameieThe 2D-plots of Eq. (29) are presented in Fig. 4 for

Rev. Mex. Fis70041302
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a = 0.5, 0.7 0.9, 1 by taking independent variabte= 1  12. Conclusion

and—5 < z < 5. It has also been observed that upon taking

o = 1, both the fractional derivative overlap. Figures 5 and 6N this article, we have developed soliton solutions of frac-
show the 3D-plots and 2D-plots of Eq. (55) férderivative  tional Kaup-Boussinesq system that depict the propagation of
and M-derivative takingr = 0.5, 0.7, 0.9. The 2D-plots of ~10ng waves at the surface of a perfect fluid. The full spectrum
Eq. (24) are presented in Fig. 2 far= 0.5, 0.7 0.9, 1 by  ©Of soliton solution includes dark, bright, singular soliton,
taking independent variable= 1 and—5 < z < 5. Ithas ~ ¢ombo soliton and periodic solutions. This has been obtained
also been observed that upon takimg= 1, both the frac- by applying Technique I, Technique Il and Technique III.
tional derivative overlap. These three techniques are efficient integration tools for find-
ing exact solitary wave solutions of various NLPDESs arising
in nonlinear sciences. The suitable choice of parametric val-
ues allow us to discuss the fractional behavior of the attained
solutions. 2D and 3D graphs illustrate the physical impor-
tance of procured results. Moreover, the comparison between
(B-derivative and\M -derivative is provided for different frac-

. o ) o ] _ tional parametric values. On comparing our obtained results
The fractional KB model is investigated in this article via yith 36-39], it has been observed that our obtained solutions
three integrating schemes. Thederivative and truncated M- for the proposed model are new. Only the solutions found in
fractional derivative are applied for investigating fractional Eq. (24) and Eq. (25) are similar with the solutions obtained
nature of FKB model. Three most popular and novel ap, [38 39]. The acquired solutions may give a decent en-
proaches namely unified approach, GPRE method and inkancement to theory of water waves. All the three techniques
provedtan (¢(¢)/2)-expansion method are used for obtain- are very effective in finding the full spectrum of solitary wave
ing different types of solitons such as bright, dark, singularsejytions which possess a significant part in many real-world

soliton, combo soliton and periodic solutions. The graphyroplems occurring in mathematical physics and engineering.
ical representation of few obtained solutions are also pro-

vided in this article. In this paper, two fractional deriva- Fynding

tives are employed for discussing the fractional effects of

the obtained solutions of the governing model. It has beefhe authors would like to extend their sincere appreciation
noticed for assigning various values of fractional parameteto Researchers Supporting Project number (RSP2024R472),
a,0 < a < 1, the 8- derivative approaches the classical King Saud University, Riyadh, Saudi Arabia.

derivative (fora. = 1) faster than M-truncated derivative.

11. Results and discussion
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