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Artificial neural network for the single-particle localization
problem in quasiperiodic one-dimensional lattices
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The use of machine learning algorithms to address classification problems in several scientific branches has increased over the past years. In
particular, the supervised learning technique with artificial neural networks has been successfully employed in classifying phases of matter.
In this article, we use a fully connected feed-forward neural network to classify extended and localized single-particle states that arise from
quasiperiodic one-dimensional lattices. We demonstrate that our neural network achieves to correctly uncover the nature of the single-particle
states even when the wave functions come from a more complex Hamiltonian than the one used to train the network.
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1. Introduction

Ever since the seminal work of Landau [1], the study of
phases and continuous phase transitions via an order param-
eter has been a fundamental paradigm in condensed mat-
ter physics. In the Landau scheme, the purpose of an or-
der parameter is to signal where the phase of a certain sys-
tem breaks a given symmetry of the underlying microscopic
Hamiltonian [2]. This process in which the ground state of
a physical system ends with a lower number of symmetries
than the original Hamiltonian has been called spontaneous
symmetry breaking [2]. A plethora of phases of matter such
as crystals [3], magnets [4, 5], and conventional supercon-
ductors [3] can be identified by the spontaneous symmetry
breaking mechanism. However, not all phases of matter can
be classified by an order parameter. We refer to those that
are recognized by another attribute. For instance, the many-
body localization transition which manifests itself through a
change in the entanglement dynamics [6, 7], the BEC-BCS
crossover that can be detected by the decay of the correlation
functions [8, 9], and the so-called topological phases of mat-
ter [10, 11] that are distinguished by the evaluation of topo-
logical invariants such as the Chern number [12].

Although the conventional and non-conventional phases
of matter can not be characterized by the same theoretical
scheme, machine learning techniques offer the possibility of
classifying them by using different algorithms and proce-
dures [13–16]. In fact, machine learning has emerged as a
powerful tool to classify and identify phases of matter. For
instance, it has been used to predict crystal structures [17],
solve impurity problems [18], and classify thermal and quan-
tum phases of matter [19–23]. More recently, recurrent neu-
ral networks have been employed to build variational wave
functions for quantum many-body problems [24], and con-
volutional neural networks have been used to distinguish the

dynamics of an Anderson insulator from a many-body local-
ized phase [25].

In this manuscript, we use machine learning techniques
to address the problem of single-particle localization in one-
dimensional quasiperiodic lattices with both, nearest neigh-
bor and next-nearest neighbor tunneling. In particular, us-
ing supervised learning, where the learner needs to be trained
with previously classified data, we demonstrate the efficiency
of an artificial neural network for addressing the classification
of extended and localized wave functions. For this purpose,
we first train the neural network (NN) using the eigenstates
obtained from the exact diagonalization of the well-known
Aubry-Andŕe (AA) model [26]. It has been recognized that
this model is a suitable one to identify how single-particle
localization emerges as a result of correlated disorder in a
lattice [26, 27]. In contrast to the one-dimensional Ander-
son model [28], where any strength of the uncorrelated disor-
der yields the exponential localization of the single-particle
eigenstates, in the AA model there is a threshold in the cor-
related disorder that signals the transition between extended
and localized single-particle eigenstates. To avoid confusion
with the uncorrelated or random disorder, we shall use qua-
sidisorder to indicate the correlated disorder introduced in
the AA model. After the training procedure, we probe the
performance of the neural network by classifying eigenstates
belonging to a particular generalization of the Aubry-André
model that includes next-nearest neighbor tunneling. Using
the inverse participation ratio (IPR), we demonstrate that the
NN classifies above96% of the profiles correctly. Our results
are of relevance in the study of disordered systems with ma-
chine learning techniques and can serve as a benchmark for
further theoretical studies.

The manuscript is organized as follows, in Sec. 2, we
introduce the two models where the machine learning tech-
nique is accomplished, these models are the Aubry-André
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and the Extended Aubry-André. Both of them represent a
quasiperiodic lattice in one dimension. Section 3 displays the
theoretical tools used to probe the performance of the neural
network. The architecture and physical parameters of the net-
work are also exposed in Sec. 3. The results of the classifica-
tion task are shown in Sec. 4. Finally, in Sec. 5, we discuss
and summarize our findings.

2. Model

To study the localization phenomenon in quasiperiodic lat-
tices through a neural network, we first consider the well-
known Aubry-Andŕe model [26] on a lattice havingL sites
with periodic boundary conditions. The Hamiltonian of the
AA model is:

ĤAA = −J1

∑

〈i,j〉
ĉ†i ĉj + ∆

∑

i

cos(2πβi + φ)n̂i, (1)

whereĉi (ĉ†i ) is the annihilation (creation) operator at sitei,
n̂i = ĉ†i ĉi is the corresponding particle number operator, and
J1 is the nearest-neighbor tunneling amplitude. The quasidis-
order is characterized by its strength∆, an incommensurable
parameterβ = (

√
5− 1)/2, and a random phaseφ ∈ [0, 2π).

A given value ofφ leads to a particular realization of the qua-
sidisorder. However, one is always interested in extracting
the main effects of disordered media, independently of how
the disorder is distributed on the lattice. Therefore one has
to average over an ensemble of realizations, namely to con-
sider different values ofφ. As it is well-known, all single-
particle states of the Aubry-André model are extended for
∆/J1 < 2, localized when∆/J1 > 2, while multifractal at
the transition point∆/J1 = 2 [29]. That is to say, that for a
given value of∆/J1, the AA model does not display a mix-
ture between localized and extended eigenstates on the same
spectrum. A natural extension of the Aubry-André model
arises when tunneling to next-nearest-neighbors is included.
In such a case, the Hamiltonian of the so-called Extended
Aubry-Andŕe (EAA) model is the following:

FIGURE 1. The ground state IPR of the AA model as a function of
the quasidisorder strength∆/J1 for a lattice withL = 233 sites.
We average over ten realizations of the phaseφ. The vertical dashed
line indicates the critical quasidisorden∆c/J = 2.

ĤEAA = ĤAA − J2

∑

〈〈i,j〉〉
ĉ†i ĉj , (2)

beingJ2 the next-nearest-neighbor tunneling amplitude. The
notation〈〈i, j〉〉 indicates that the sum runs over next-nearest-
neighbor sites. In contrast to the AA model, the EAA model
can exhibit both, localized and extended eigenstates on the
same spectrum. In other words, it emerges an energy value,
called mobility edge, that separates extended states from lo-
calized states [30]. As we shall see, our neural network is
capable of identifying the mobility edge even though it was
trained with data belonging to the Aubry-André model.

3. Methods

3.1. Localization tools

Before proceeding to the description of the neural network,
we introduce an important and widely used physical quan-
tity that is a footprint of the localization transition. This pa-
rameter, called the inverse participation ratio (IPR), gives a
measure of the inverse of lattice sites where the wave func-
tion has a non-negligible amplitude. For a normalized state
|ψ〉 =

∑L
i=1 ψ(i)|i〉, its inverse participation ratio is defined

as follows:

IPRψ =
L∑

i=1

|ψ(i)|4, (3)

whereψ(i) is the probability amplitude of the state|ψ〉 at
site i. The IPR vanishes for spatially extended states while
remaining finite for localized states. In Fig. 1, we illus-
trate the inverse participation ratio IPR0 associated with the
ground state of the AA model as a function of the quasidis-
order strength∆/J1. We average over ten realizations of the
random phaseφ ∈ [0, 2π). From Fig. 1, one can notice that
the IPR0 becomes different from zero for∆/J1 > 2 and it
approaches unity as the quasidisorder increases. This pecu-
liar behavior makes the IPR a suitable parameter to test the
performance of the neural network.

The definition for the IPR in Eq. (3) is related to a single
state|ψ〉. However, when one is interested in the typical value
of the IPR in the whole spectrum of eigenstates, it is useful to
calculate the average of the IPR over the eigenstates. That is,
for a given value of∆/J1 and a given realization associated
with the phaseφ ∈ [0, 2π), we define the averageIPR as the
mean of the inverse participation ratio of each eigenfunction
resulting from the diagonalization procedure:

IPR =
1
L

L∑

j=1

IPRj =
1
L

L∑

j=1

L∑

i=1

|ψj(i)|4, (4)

where the subscriptj indicates thej-th eigenstate (ordered
according to the energy value from lowest to highest), and the
indexi signals the lattice site. The average inverse participa-
tion ratio is a measure of the amount of extended or localized
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states in the whole spectrum [27]. As we shall see, both the
inverse participation ratio IPRψ and the average inverse par-
ticipation ratioIPR allow us to monitor the performance of
the neural network.

3.2. Data preparation

Like any machine learning implementation, the first task is
to provide the raw data that will feed the learning algorithm
[14, 15]. For this purpose, we perform numerical exact di-
agonalization to obtain the eigenstates of the Hamiltonian in
Eq. (1) for 42 evenly spaced values of∆/J1 over the in-
terval [0, 4], and40 realizations of the random phaseφ for
each value of the quasidisorder strength∆/J1. Since the aim
of this manuscript is the classification of extended and local-
ized wave functions, we avoid the value associated with the
critical quasidisorder strength∆c/J1 = 2 within the interval
[0, 4], since as stated above, at the critical quasidisorder, the
wave functions are neither localized nor extended but exhibit
multifractality [29]. In order to obtain a broad classification,
we kept not only the ground state but all theL eigenstates re-
sulting from the diagonalization procedure. Each wave func-
tion is collected as a row vector~ψj = (ψj(1) · · ·ψj(L)) into
aΩ× L matrix:

Ψ =




ψ1(1) ψ1(2) · · · ψ1(L)
...

...
.. .

...
ψΩ(1) ψΩ(2) · · · ψΩ(L)




Ω×L

, (5)

whereΩ = L × 40 × 42 is the total number of stored wave
functions. The supervised learning algorithm needs to be
trained and tested with previously classified data. To carry
out this demand, in addition to the matrixΨ, it is necessary
to provide a tag that allows to distinguish between localized
and extended states. This can be done by introducing a matrix
V of size2 × Ω, thej-th column ofV indicates whether the
wave functionψj is localized or extended using the one-hot
encoding [15]. That is:(

1
0

)
→ ψj is extended

(
0
1

)
→ ψj is localized

(6)

The matricesΨ andV are the unique data needed to train and
test the network. To ensure that a similar number of localized
and extended states are used in the NN training procedure,
we randomly shuffle the rows of the matrixΨ and order the
columns of the matrixV accordingly. Shuffling the data is
generally considered good practice since it prevents any bias
during the training procedure [14, 15]. After shuffling the
rows ofΨ, we divide the 100% of the dataset composing the
matricesΨ andV into partitions of 80 % and 20 %, the for-
mer set is used to feed the training procedure while the pur-
pose of the latter set is to verify the efficiency of the neural
network. As is common in the machine learning literature,
we call the largest set the training set and the smallest set the
test set.

3.3. Artificial neural network architecture and training
procedure

Artificial neural networks are nonlinear models which are
used for supervised learning, the structure and architecture
of NNs are originally inspired by biological neural networks
[15]. An artificial neural network contains several layers of
interconnected nodes. These nodes, called neurons, are the
basic units of a neural network. Typically, the first layer
of neurons is called the input layer, the middle layers “hid-
den layers” and the last layer is called the output layer. To
perform supervised learning on the dataΨ, we design fully
connected feed-forward neural networks. A depiction of the
neural networks considered is shown in Fig. 2. Essentially,
the networks consist of an input layer withL neurons, a sin-
gle hidden layer withLh neurons, and an output layer with
two neurons Ext and Loc. Each neuron of the output layer
corresponds to one of the two possible outcomes, namely, an
extended or localized wave function. Notice that the number
of neurons in the input layer is fixed by the number of lattice
sites considered. In contrast, the number of neurons in the
hidden layer is fine-tuned to the value that gives the highest
precision. That is, a reasonable range of values ofLh is pro-
posed, the neural network corresponding to each proposed
value is trained, and theLh that yields the highest accuracy
when classifying the wave functions belonging to the test set
is chosen.

We now describe the full action of the network on the
data. The feed-forward attribute of the NN means that the
flow of data is from left to right, with the output of one layer
serving as the input for the next. In the first layer, a given
input vector~ψ = (ψ(1) · · ·ψ(L)) of dimensionL is mapped

FIGURE 2. Schematic representation of the artificial neural net-
works considered. The network consists of an input layer with
L neurons, a single hidden layer withLh neurons, and an output
layer which contains two neurons Ext and Loc, each of which cor-
responds to one of the two possible results, namely, an extended or
localized wave function.
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into a vector~a(2) of dimensionLh via an affine linear trans-
formation(Θ,~b(1)) followed by the application of a function
g1, called the activation function:

a
(2)
k = g1

(∑

l

Θ(1)
kl ψ(l) + b

(1)
k

)
, (7)

whereΘ(1) is a Lh × L matrix, and both,~b(1) and~a(2) are
vectors of sizeLh. The passage from the hidden layer to the
output layer of the outcome~a(2) = (a(2)

1 · · · a(2)
Lh

) is accom-
panied by the application of both, an affine transformation
(Θ(2),~b(2)) and an activation functiong2:

yk = g2

(∑

l

Θ(2)
kl a

(2)
l + b

(2)
k

)
. (8)

Here,Θ(2) is a2 × Lh matrix, and~b(2) as well as~y are vec-
tors with two entries. Each of the two entries of the output
vector~y corresponds to the value of the neurons Ext and Loc,
respectively. The elements of the matricesΘ(1) andΘ(2) are
called weights, and the entries of the vectors~b(1) and~b(2) are
referred to as biases. The weights and biases parametrize the
nonlinear model implemented by the network. As shown in
Eqs. (7) and (8), the passage of the data from one layer to an-
other requires two activation functionsg1 andg2, these func-
tions help the neural network to learn complex patterns in the
data [14, 15]. We choose a rectified linear unit (ReLU) func-
tion as the activation function of the input layer, whereas a
normalized exponential (softmax) activation function is used
in the output layer:

g1(x) = max(0, x)

g2(xk) =
exk

∑K
k=1 exk

,
(9)

whereK is the number of classes that the NN has to clas-
sify. As pointed out, in this manuscriptK = 2, extended and
localized profiles. Like all supervised learning procedures, a
loss function must be specified, this function, denoted byJ ,
quantifies the precision of the NN and has to be minimized

with respect to all weights and biases in order to optimize
the neural network classification [15]. We employ a cross-
entropy cost function supplemented with L2 regularization to
prevent overfitting [14, 15]. The cost function can be written
as follows:

J(Θ(1),Θ(2),~b(1),~b(2)) =
1
Ω

Ω∑

i=1

2∑

k=1

[
Vik log(y(i)

k )

+ (1− Vik) log(1− y
(i)
k )

]

+
λ

2Ω

2∑

l=1

∑

i,j

|Θ(l)
ij |2, (10)

whereV is the matrix of tags andλ is the regularization pa-
rameter. Similarly to the number of neurons in the hidden
layer, the value ofλ has to be tuned to improve the perfor-
mance. In Eq. (10), we denotey(i)

k as the outcome of the k-th
neuron in the output layer when classifying the wave vector
~ψi. Notice that the first term in Eq. (10) depends implicitly on
the weights and biases due to the presence ofy

(i)
k . The min-

imization of the cost function is implemented by using the
Adam optimization algorithm [31]. To carry out all the above
recipes we employ the TensorFlow software library [32]. In
the following section, we shall evaluate the performance of
the NN with the test set.

4. Results

4.1. Testing set

After cost function minimization, the neural network perfor-
mance is analyzed using previously unseen data, that is, the
data belonging to the test set. In Fig. 3a) we show the av-
erage test accuracy of the output layer as a function of the
quasidisorder strength∆/J1 for several system sizesL. One
can notice two facts, the first one is that the region in which
the neural network makes most inaccuracies corresponds to a
neighborhood close to the transition point∆/J1 = 2. The

FIGURE 3. a) Average test accuracy of the output layer as a function of the quasidisorder strength∆/J1 for system sizesL = 55, 89, 144
and233. b) Average output layer outcome as a function of the quasidisorder strength∆/J1 for L = 233. In both panels a) and b), the orange
line signals the transition point∆/J1 = 2.

Rev. Mex. Fis.69020502



ARTIFICIAL NEURAL NETWORK FOR THE SINGLE-PARTICLE LOCALIZATION PROBLEM IN QUASIPERIODIC. . . 5

TABLE I. Number of neurons and total parameters used in the neu-
ral network for the lattice withL = 233 sites.

Layer Number of neurons

Input layer 233

Hidden layer 32

Output layer 2

Total number of parameters: 7554.

second important issue is that the accuracy in classifying the
wave functions improves as the system size is increased. This
leads to the conclusion that the main source of errors in the
classification made by the neural network is due to finite size
errors.

Figure 3b) illustrates the average output layer outcome as
a function of the quasidisorder strength∆/J1 for the largest
system size consideredL = 233. The red and blue curves
correspond to the outcome of the neurons Loc and Ext of
the output layer, respectively. The NN has no previous in-
formation about the Hamiltonian or the distribution of the
spatial disorder, nevertheless, the critical disorder estimated
by the crossing point of the extended and localized curves is
∆/J1 = 2.05 which disagrees by less of3% of the actual
value∆c/J1 = 2.0. In the following, we shall consider only
the neural network for the lattice withL = 233 sites. A sum-
mary of the number of parameters in this neural network is
show in Table I.

4.2. Extended Aubry-André model

To go beyond the test set, we probe the neural network per-
formance on wave functions of the extended Aubry-André
model in Eq. (2). In contrast to the AA Hamiltonian, the
EAA Hamiltonian includes, as stated above, tunneling to
next-nearest neighbors which gives rise to the emergence
of mobility edges [30]. We should point out here that
the network was only trained with data generated from the
AA model. Thus, the eigenstates belonging to the EAA
model are new for the network. In Fig. 4, we show the
average output layer outcomes and the IPR of each eigen-
vector in the spectrum for(J2/J1,∆/J1) = (0.2, 1.5)
(Fig. 4a)), (J2/J1, ∆/J1) = (0.4, 3.0) (Fig. 4b)), and
(J2/J1,∆/J1) = (0.5, 2.6) (Fig. 4c)). These results corre-
spond to the average over20 realizations of the random phase
φ ∈ [0, 2π). Considering more phases, that is, increasing the
number of realizations, would reduce the dispersion of the
outcome of the neurons but without changing which neuron
gives the largest result. The black arrow in each panel of
Fig. 4 indicates the eigenstate number at which the mobility
edge takes place. That is, where the wave functions change
from extended to localized or vice versa. Surprisingly the
NN is able to classify well the nature of the wave functions
even when the spectrum has an extended-localized-extended
structure as shown in Fig. 4c). It is interesting to note that
although neither the Ext nor Loc neurons of the output layer

FIGURE 4. Average output layer outcomes of the neural net-
work and the IPR of each eigenvector in the spectrum for pair
of values of(J2/J1, ∆/J1). a) (J2/J1, ∆/J1) = (0.2, 1.5), b)
(J2/J1, ∆/J1) = (0.4, 3.0), and c)(J2/J1, ∆/J1) = (0.5, 2.6).
Each curve represents the average over20 realizations of the ran-
dom phaseφ. The black arrow in each panel indicates the eigen-
state number at which the mobility edge takes place.

are standard parameters to test localization as the IPR, those
outputs allow to recognize the extended-localized transition.
Hence, new parameters that diagnose the nature of the wave
functions are produced during the training of the network.
The abrupt change and roughly constant behavior of the Ext
and Loc neurons show that both quantities are more percep-
tible to the spatial nature of the wave functions, this charac-
teristic may be advantageous over the IPR when generalizing
the classification task to multifractal states.

Now, we turn to the classification of the resulting wave
functions of the EAA model when we vary the qua-
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FIGURE 5. Average IPR of the resulting eigenstates of the EAA model as a function of∆/J1 for fixed J2/J1. a) J2/J1 = 0.1, b)
J2/J1 = 0.2, (c) J2/J1 = 0.3, and d)J2/J1 = 0.4. The orange curve signals the transition boundary from extended to localized states
forecasted by the neural network. We consider20 realizations of the random phaseφ.

FIGURE 6. a) Average IPR of the eigenfunctions of the EAA model as a function of next-nearest-neighbor tunneling amplitudeJ2/J1 and
quasidisorder strength∆/J1. b) Value of the neuron Ext in the output layer as a function ofJ2/J1 and∆/J1.

sidisorder strength∆/J1 for a fixedJ2. In Fig. 5 we show
in a density color scheme the IPR of all the eigenvectors ob-
tained from the diagonalization procedure of Hamiltonian in
Eq. (2) as a function of∆/J1 for a fixed J2. In particu-
lar, we considerJ2/J1 = 0.1, J2/J1 = 0.2, J2/J1 = 0.3,
andJ2/J1 = 0.4 for Figs. 5a)-d), respectively. The results
were obtained after taking an average of20 random phases
φ ∈ [0, 2π). The orange curve signals the transition from
extended to localized wave functions estimated by the neural
network. As one can see from Fig. 5, the decision bound-
ary determined by the NN is in agreement with the extended-
localized transition forecasted by the IPR. In other words, the

NN captures the nature of all the wave functions in the spec-
trum of the EAA model.

To conclude this study we concentrate now on the aver-
ageIPR. This quantity gives a measure of the amount of
extended or localized states in a given spectrum. In Fig. 6,
we show the averageIPR (Fig. 6a)) and the value of the neu-
ron Ext in the output layer (Fig. 6b)) as a function of both,
next-nearest-neighbor tunneling amplitudeJ2/J1 and qua-
sidisorder strength∆/J1. In addition to the average over the
wave functions composing the spectrum, we averaged over
20 random realizations ofφ ∈ [0, 2π). One can notice that
Figs. 6a) and 6b) shares a very similar structure, meaning that

Rev. Mex. Fis.69020502
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the NN achieves to capture the nature of the wave functions
in the whole space of parameters(∆/J1, J2/J1) of the EAA
model.

5. Conclusion

In this manuscript, we have illustrated the capacity of an
artificial neural network to classify extended and local-
ized single-particle states that arise in quasiperiodic one-
dimensional lattices. In particular, we first train and test the
artificial neural network using eigenstates belonging to the
celebrated Aubry-André (AA) model. By collecting not just
the ground state bul all eigenstates, we accomplish an excel-
lente classification in both, the low- and high-energy sectors
of the model. Then, we demonstrate the versatility of the
network by probing its performance on the eigenstates of the
Extended Aubry-Andŕe (EAA) model. Our results show that
the neural network does not learn the IPR parameter, since
quantitatively speaking the IPR and the output layer values
do not match. This means that new parameters that sense
the localization are conceived by the network. Surprisingly,
the performance of the neural network is satisfactory since it
classifies above96% of the profiles correctly. We found that
misclassified states are mainly due to finite size effects close

to the localized-extended transition.
The study here addressed shows the efficiency and capac-

ity of a neural network to classify profiles that come from
a more complex model than the one used to train the NN.
Although our analysis focuses on one-dimensional models
with nearest neighbor and next neighbor hopping, supervised
learning with neural networks can also be used to analyze
the localization phenomena in higher dimensions and in lat-
tices with power-law hopping, where the peculiar multifrac-
tal states arise. The classification of extended and localized
single-particle states through neural networks provides a use-
ful benchmark to tackle the many-body localization prob-
lem using supervised learning techniques. Diagnosing many-
body phases of matter requires, in addition to fully connected
neural networks, the use of convolutional neural networks or
principal component analysis to deal with the exponential di-
mension of quantum many-body states [25].
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