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Artificial neural network for the single-particle localization
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The use of machine learning algorithms to address classification problems in several scientific branches has increased over the past years.

particular, the supervised learning technique with artificial neural networks has been successfully employed in classifying phases of matter.
In this article, we use a fully connected feed-forward neural network to classify extended and localized single-particle states that arise from

quasiperiodic one-dimensional lattices. We demonstrate that our neural network achieves to correctly uncover the nature of the single-particle
states even when the wave functions come from a more complex Hamiltonian than the one used to train the network.
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1. Introduction dynamics of an Anderson insulator from a many-body local-
ized phase [25].

Ever since the seminal work of Landau [1], the study of In this manuscript, we use machine learning techniques
phases and continuous phase transitions via an order parate-address the problem of single-particle localization in one-
eter has been a fundamental paradigm in condensed matimensional quasiperiodic lattices with both, nearest neigh-
ter physics. In the Landau scheme, the purpose of an obor and next-nearest neighbor tunneling. In particular, us-
der parameter is to signal where the phase of a certain sy@g supervised learning, where the learner needs to be trained
tem breaks a given symmetry of the underlying microscopiawnith previously classified data, we demonstrate the efficiency
Hamiltonian [2]. This process in which the ground state ofof an artificial neural network for addressing the classification
a physical system ends with a lower number of symmetrie®f extended and localized wave functions. For this purpose,
than the original Hamiltonian has been called spontaneouse first train the neural network (NN) using the eigenstates
symmetry breaking [2]. A plethora of phases of matter suctobtained from the exact diagonalization of the well-known
as crystals [3], magnets [4, 5], and conventional superconAubry-André (AA) model [26]. It has been recognized that
ductors [3] can be identified by the spontaneous symmetryhis model is a suitable one to identify how single-particle
breaking mechanism. However, not all phases of matter calocalization emerges as a result of correlated disorder in a
be classified by an order parameter. We refer to those thdattice [26, 27]. In contrast to the one-dimensional Ander-
are recognized by another attribute. For instance, the manygon model [28], where any strength of the uncorrelated disor-
body localization transition which manifests itself through ader yields the exponential localization of the single-particle
change in the entanglement dynamics [6, 7], the BEC-BC&igenstates, in the AA model there is a threshold in the cor-
crossover that can be detected by the decay of the correlatiorlated disorder that signals the transition between extended
functions [8, 9], and the so-called topological phases of matand localized single-particle eigenstates. To avoid confusion
ter [10, 11] that are distinguished by the evaluation of topo-with the uncorrelated or random disorder, we shall use qua-
logical invariants such as the Chern number [12]. sidisorder to indicate the correlated disorder introduced in

Although the conventional and non-conventional phased€ AA model. After the training procedure, we probe the
of matter can not be characterized by the same theoreticR€rformance of the neural network by classifying eigenstates
scheme, machine learning techniques offer the possibility of€longing to a particular generalization of the Aubry-Agadr
classifying them by using different algorithms and proce_moo'lel that |nclu'd'es next—ngarest neighbor tunneling. Using
dures [13-16]. In fact, machine learning has emerged as the inverse participation ratio (IPR), we demonstrate that the
powerful tool to classify and identify phases of matter. ForNN classifies abqv96% of the prof_|les correctly. Our res_ults
instance, it has been used to predict crystal structures [17§r€ of relevance in the study of disordered systems with ma-
solve impurity problems [18], and classify thermal and quan_chlne Iearmng.techmqges and can serve as a benchmark for
tum phases of matter [19-23]. More recently, recurrent neufurther theoretical studies.
ral networks have been employed to build variational wave The manuscript is organized as follows, in Sec. 2, we
functions for quantum many-body problems [24], and con-introduce the two models where the machine learning tech-
volutional neural networks have been used to distinguish thaique is accomplished, these models are the Aubry-Andr
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and the Extended Aubry-Anér Both of them represent a
quasiperiodic lattice in one dimension. Section 3 displays the Hepn = Han — Jo Z é;féj, )
theoretical tools used to probe the performance of the neural (i)

network. The architecture and physical parameters of the nefb—

work are also exposed in Sec. 3. The results of the classific eingJ; the next-nearest-neighbor tunneling amplitude. The

tion task are shown in Sec. 4. Finally, in Sec. 5, we discus?o.t""tiom<Z‘Zj>> indicates that the sum runs over next-neares-
and summarize our findings ' ' neighbor sites. In contrast to the AA model, the EAA model

can exhibit both, localized and extended eigenstates on the
same spectrum. In other words, it emerges an energy value,
2. Model called mobility edge, that separates extended states from lo-
L ) L calized states [30]. As we shall see, our neural network is
To study the localization phenomenon in quasiperiodic Iat'capable of identifying the mobility edge even though it was

tices through a ne,ural network, we first_ ConsiQer th_e wellsined with data belonging to the Aubry-Arédmodel.
known Aubry-Andé model [26] on a lattice having sites

with periodic boundary conditions. The Hamiltonian of the
AA model is: 3. Methods

Hpa = — 1 Z élej + A ZCOS(%&' +0)i, (1) 31, Localization tools
(i,9) i
wheregé; (éT) is the annihilation (creation) operator at sife Befgre proceedlng o the descrlpt!on of the neura_l network,
v e introduce an important and widely used physical quan-

~ A-I-A . . .
n; = ¢, ¢; is the corresponding particle number operator, and. . . o o . X
J, is the nearest-neighbor tunneling amplitude. The quasidis-lty that is a footprint of the localization transition. This pa

: . . X rameter, called the inverse participation ratio (IPR), gives a
order is characterized by its strengil) an incommensurable . . X
measure of the inverse of lattice sites where the wave func-
parametep = (v/5— 1)/2, and a random phasgec [0, 27). : - ; .
. . ] tion has a non-negligible amplitude. For a normalized state
A given value ofg leads to a particular realization of the qua- L NN NV o :
2 ! ; ; ) = >,L 1 w(49)]4), its inverse participation ratio is defined
sidisorder. However, one is always interested in extractin S foIIowls_'
the main effects of disordered media, independently of how ' L
the disorder is distributed on the lattice. Therefore one has IPRy = E |1/)(i)|47 (3)
to average over an ensemble of realizations, namely to con- i—1
sider different values op. As it is well-known, all single-
particle states of the Aubry-Andrmodel are extended for
A/Jy < 2, localized whemA/J; > 2, while multifractal at

where (i) is the probability amplitude of the state) at
sitei. The IPR vanishes for spatially extended states while
remaining finite for localized states. In Fig. 1, we illus-

the translltlonprOISA<r<]]1 ZAQ [29(}' lT(;1at IS totze_ly, lthat for_a trate the inverse participation ratio IpRssociated with the
given value ofA/.J1, the model does not display a mix- . nq state of the AA model as a function of the quasidis-

ture between localized and e_xtended e|genstate§ on the Sa'%l%er strengthA /J;. We average over ten realizations of the
spectrum. A natural extension of the Aubry-Aaddmodel

. . . o random phas 0,2m). From Fig. 1, one can notice that
arises when tunneling to next-nearest-neighbors is lncludeq phase € [0, 2m) g

In such a case, the Hamiltonian of the so-called Extende e IPR becomes different from zero fak/.J, > 2 and it

, : - pproaches unity as the quasidisorder increases. This pecu-
Aubry-Andre (EAA) model is the following: liar behavior makes the IPR a suitable parameter to test the

performance of the neural network.

1 The definition for the IPR in Eq/3] is related to a single
0.8 state|y)). However, when one is interested in the typical value
' of the IPR in the whole spectrum of eigenstates, it is useful to
-~ 061 calculate the average of the IPR over the eigenstates. That is,
a'd for a given value ofA/.J; and a given realization associated
Q4] with the phase € [0, 27), we define the averadeR as the
mean of the inverse participation ratio of each eigenfunction
0.21 | resulting from the diagonalization procedure:
01 - 1L 1 I L
0 1 2 3 4 5 6 7 8 IPR=—-> IPRj=2> > [w@' @)
A/Jl j=1 j=1i=1

FIGURE 1. The ground state IPR of the AA model as a function of Where the subscript indicates thej-th eigenstate (ordered

the quasidisorder strength/.J; for a lattice withL, = 233 sites. ~ according to the energy value from lowest to highest), and the
We average over ten realizations of the phas€he vertical dashed ~ indexi signals the lattice site. The average inverse participa-
line indicates the critical quasidisordéx./J = 2. tion ratio is a measure of the amount of extended or localized
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states in the whole spectrum [27]. As we shall see, both th8.3. Artificial neural network architecture and training
inverse participation ratio IPRand the average inverse par- procedure
ticipation ratiolPR allow us to monitor the performance of

the neural network. Artificial neural networks are nonlinear models which are

used for supervised learning, the structure and architecture
of NNs are originally inspired by biological neural networks
Like any machine learning implementation, the first task is[15]. An artificial neural network contains several layers of
to provide the raw data that will feed the learning algorithminterconnected nodes. These nodes, called neurons, are the
[14, 15]. For this purpose, we perform numerical exact di-Pasic units of a neural network. Typically, the first layer
agonalization to obtain the eigenstates of the Hamiltonian iff neurons is called the input layer, the middle layers “hid-
Eq. (1) for 42 evenly spaced values a@f/.J; over the in- den layers” and the last layer is called the output layer. To
terval [0, 4], and 40 realizations of the random phagefor ~ Perform supervised learning on the datawe design fully
each value of the quasidisorder strength/; . Since the aim connected feed-forward neural networks. A depiction of the
of this manuscript is the classification of extended and localheural networks considered is shown in Fig. 2. Essentially,
ized wave functions, we avoid the value associated with théhe networks consist of an input layer withneurons, a sin-
critical quasidisorder strength,/.J; = 2 within the interval ~ gle hidden layer withl;, neurons, and an output layer with
[0, 4], since as stated above, at the critical quasidisorder, thé0 neurons Ext and Loc. Each neuron of the output layer
wave functions are neither localized nor extended but exhibi€orresponds to one of the two possible outcomes, namely, an
multifractality [29]. In order to obtain a broad classification, €xtended or localized wave function. Notice that the number
we kept not only the ground state but all theigenstates re- of neurons in the input Iayer is fixed by the number of lattice
Su|ting from the diagona”zation procedure_ Each wave funcSites considered. In contrast, the number of neurons in the
tion is collected as a row vectar; = (4;(1)---1;(L)) into  hidden layer is fine-tuned to the value that gives the highest

3.2. Data preparation

aq x L matrix: precision. That is, a reasonable range of values;ois pro-
1 2) ... I posed_, the.neural network corrt_esponding_to each proposed
1/)1_( ) 1/}1.( ) %{ ) value is trained, and thg, that yields the highest accuracy
= : : : 5 () when classifying the wave functions belonging to the test set
va(l) ¥a(2) -+ Yall)/ o, is chosen.

whereQ) = L x 40 x 42 is the total number of stored wave We now describe the full action of the network on the
functions. The supervised learning algorithm needs to belata. The feed-forward attribute of the NN means that the
trained and tested with previously classified data. To carrylow of data is from left to right, with the output of one layer
out this demand, in addition to the matrix it is necessary serving as the input for the next. In the first layer, a given
to provide a tag that allows to distinguish between localizednput vectory) = (¢ (1) - - - /(L)) of dimensionL is mapped
and extended states. This can be done by introducing a matrix
V of size2 x , the j-th column of V' indicates whether the
wave functiony; is localized or extended using the one-hot
encoding [15]. That is:

(é) — 1); is extended
(6)

<1) — 1; is localized
The matricesl andV are the unigue data needed to train and 3
test the network. To ensure that a similar number of localized

and extended states are used in the NN training procedure
we randomly shuffle the rows of the matrix and order the
columns of the matrid” accordingly. Shuffling the data is
generally considered good practice since it prevents any bias
during the training procedure [14, 15]. After shuffling the
rows of U, we divide the 100% of the dataset composing the
matricest andV” into partitions of 80 % and 20 %, the for- FIGURE 2. Schematic representation of the artificial neural net-

mer set is used to feed the training procedure while the PU%orks considered. The network consists of an input layer with

pose of the latter set is to verify the efficiency of the neuraly, neyrons, a single hidden layer with, neurons, and an output
network. As is common in the machine learning IIter<'31th€‘,Iayer which contains two neurons Ext and Loc, each of which cor-

we call the largest set the training set and the smallest set thesponds to one of the two possible results, namely, an extended or
test set. localized wave function.
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into avectord(f) of dimensionZ;, via an affine linear trans- with respect to all weights and biases in order to optimize
formation(©, b(V)) followed by the application of a function the neural network classification [15]. We employ a cross-

g1, called the activation function: entropy cost function supplemented with tegularization to
prevent overfitting [14, 15]. The cost function can be written
- q <Z @](cll)wa) + b}(j)) : 7 as follows:
l 1 Q2
@ p» il
where®™) is a L, x L matrix, and bothp(") anda® are (O, 0,1, 52 - Q ZZ { ik log(y

vectors of sizel,,. The passage from the hidden Iayer to the k=L

output layer of the outcom&® = (a! - a(lif) is accom- + (1= Vi) log(1 — (1))}
panied by the application of both, an affine transformation

A o l

a2 OG0

(0@, 5(2)) and an activation functiop:
2 =1 4,5
(Z 0Pa + b ) ®) ’

whereV is the matrix of tags and is the regularization pa-
rameter. Similarly to the number of neurons in the hidden
layer, the value of\ has to be tuned to improve the perfor-
mance. In Eq.10), we denote;/k as the outcome of the k-th
Cheuron in the output layer when classifying the wave vector
;. Notice that the first term in Eq10) depends implicitly on

referred to as biases. The weights and biases parametrize t e weights and biases due to the presen(y‘{, 6 The min-

i del impl ted by th work. As sh ization of the cost function is implemented by using the
noniineéar model implemented by the networ S Shown nAdam optimization algorithm [31]. To carry out all the above
Egs. [7) and B), the passage of the data from one layer to an-

recipes we employ the TensorFlow software library [32]. In
other requires two activation functiogs andgs, these func-

. . the following section, we shall evaluate the performance of
tions help the neural network to learn complex patterns in thehe NN with the test set.

data [14, 15]. We choose a rectified linear unit (ReLU) func-

tion as the activation function of the input layer, whereas a

normalized exponential (softmax) activation function isused4. Results

in the output layer:

Here,0® is a2 x L, matrix, andb(®) as well asj are vec-
tors with two entries. Each of the two entries of the output
vectorj corresponds to the value of the neurons Ext and Loc
respectively. The elements of the matrié¥d) andO(® are
called weights, and the entries of the vectdts andb2 are

01(x) = max(0, z) 4.1. Testing set
eTk (9)  After cost function minimization, the neural network perfor-
ga(w) = ﬁv mance is analyzed using previously unseen data, that is, the
k=1 data belonging to the test set. In Fig. 3a) we show the av-
where K is the number of classes that the NN has to claserage test accuracy of the output layer as a function of the
sify. As pointed out, in this manuscripf = 2, extended and quasidisorder strength /.J; for several system sizds One
localized profiles. Like all supervised learning procedures, &an notice two facts, the first one is that the region in which
loss function must be specified, this function, denoted’by the neural network makes most inaccuracies corresponds to a
quantifies the precision of the NN and has to be minimizecheighborhood close to the transition poiat/J; = 2. The

1 ]_ TV V7V7V7VVvVvVYIVYYYY s T sy i
0.81 T 0.8
o —— >
© 0.67 —t— : 0.6 —%— Extended
=]
- ) ¢ = —&— Localized
<L(’ 04 —— [ =233 = L
0.21 Oo2
0 AN A A A A S A ARG
0 1 2 8 4 0 1 2 3 4
a) AfJy b) AJJ

FIGURE 3. a) Average test accuracy of the output layer as a function of the quasidisorder sttehgthior system sized, = 55,89, 144
and233. b) Average output layer outcome as a function of the quasidisorder strangthfor L = 233. In both panels a) and b), the orange
line signals the transition poink/.J; = 2.
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TABLE |. Number of neurons and total parameters used in the neu- ' ' I '
ral network for the lattice with., = 233 sites. Mobility
Layer Number of neurons — IPR Edge

Input layer 233 0.51 Extended

Hidden layer 32 — Localized

Output layer 2

Total number of parameters: 7554. 0l ﬂ ] llL..n o
0 50 100 150 200

second important issue is that the accuracy in classifying the a)
wave functions improves as the system size is increased. This
leads to the conclusion that the main source of errors in the

Eigenstate number

classification made by the neural network is due to finite size 1| WWW
errors. Mobility
Figure 3b) illustrates the average output layer outcome as Edge
a function of the quasidisorder strengiy J; for the largest — IPR
system size considered = 233. The red and blue curves 0.51 Extended
correspond to the outcome of the neurons Loc and Ext of — Localized
the output layer, respectively. The NN has no previous in-
formation about the Hamiltonian or the distribution of the n h
spatial disorder, nevertheless, the critical disorder estimated A Y S e
by the crossing point of the extended and localized curves is 0 50 100 150 200

A/J; = 2.05 which disagrees by less &6f% of the actual b)
valueA./J; = 2.0. In the following, we shall consider only

the neural network for the lattice with = 233 sites. A sum- 11 ’ A Mt ‘rV 'S
mary of the number of parameters in this neural network is
show in Table I. Mobility
— IPR
Edge

Extended
Localized /

Eigenstate number

4.2. Extended Aubry-André model 0.5

To go beyond the test set, we probe the neural network per-
formance on wave functions of the extended Aubry-Andr

model in Eq. 2). In contrast to the AA Hamiltonian, the \ A j_ -

EAA Hamiltonian includes, as stated above, tunneling to 01, : : : :
next-nearest neighbors which gives rise to the emergence 0 50 . 100 150 200
of mobility edges [30]. We should point out here that C Eigenstate number

the network was only trained with data generated from the

. . FIGURE 4. Average output layer outcomes of the neural net-
AA model. Thus, the eigenstates belonging to the EAAwork and the IPR of each eigenvector in the spectrum for pair

model are new for the network. In Fig. 4, we show _theof values of(Jz/Ji, AJJy). &) (Ja/Ji, AJJ1) = (0.2,1.5), b)
average output layer outcomes and the IPR of each €igen, /7. A/J) = (0.4,3.0), and ¢)(Jz/J1, AJJy) = (0.5,2.6).
vector in the spectrum fo(.J,/Ji,A/Ji1) = (0.2,1.5)  Each curve represents the average @¢erealizations of the ran-

(Fig. 4a)), (J2/J1,A/J1) = (0.4,3.0) (Fig. 4b)), and dom phases. The black arrow in each panel indicates the eigen-
(Jo/J1,A/J1) = (0.5,2.6) (Fig. 4c)). These results corre- state number at which the mobility edge takes place.

spond to the average oval realizations of the random phase

¢ € [0,2m). Considering more phases, that is, increasing theire standard parameters to test localization as the IPR, those
number of realizations, would reduce the dispersion of theutputs allow to recognize the extended-localized transition.
outcome of the neurons but without changing which neurorHence, new parameters that diagnose the nature of the wave
gives the largest result. The black arrow in each panel ofunctions are produced during the training of the network.
Fig. 4 indicates the eigenstate number at which the mobilityrhe abrupt change and roughly constant behavior of the Ext
edge takes place. That is, where the wave functions chang#d Loc neurons show that both quantities are more percep-
from extended to localized or vice versa. Surprisingly thetible to the spatial nature of the wave functions, this charac-
NN is able to classify well the nature of the wave functionsteristic may be advantageous over the IPR when generalizing
even when the spectrum has an extended-localized-extenddte classification task to multifractal states.

structure as shown in Fig. 4c). It is interesting to note that Now, we turn to the classification of the resulting wave
although neither the Ext nor Loc neurons of the output layerfunctions of the EAA model when we vary the qua-
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0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

U050 100 150 200 0 0 .
a) o€ 5 2 b) 0 50 100 150 200
Eigenestate Number Eigenestate Number

¥

0.8 L

0.6 5

0.4 0.4

0.2 0.2

, : 0 ) - : : 0
0 50 100 150 200 0 50 100 150 200
c) Eigenestate Number d) Eigenestate Number

FIGURE 5. Average IPR of the resulting eigenstates of the EAA model as a functiah /o for fixed J2/Ji. a) J2/J1 = 0.1, b)
Jo/J1 = 0.2, (c) J2/J1 = 0.3, and d)J2/J1 = 0.4. The orange curve signals the transition boundary from extended to localized states
forecasted by the neural network. We consi2lérealizations of the random phage

4 4
0.6

3 3 0.8
s 04 =5 0.6
< <] 0.4

, 0.2

L 1 0.2

0 0
% b 0 8 1.0
b)

0 02 04 06 08 L0 0 02 04 06 08
a) Jo/ Ty Jof Sy

FIGURE 6. a) Average IPR of the eigenfunctions of the EAA model as a function of next-nearest-neighbor tunneling aniplitiidend
quasidisorder strength /.J;. b) Value of the neuron Ext in the output layer as a functiodof.J, andA/J;.

sidisorder strengti\/.J; for a fixed Jo. In Fig. 5 we show NN captures the nature of all the wave functions in the spec-
in a density color scheme the IPR of all the eigenvectors obtrum of the EAA model.

tained from the diagonalization procedure of Hamiltonian in
Eq. (2) as a function ofA/J; for a fixed Jo. In particu-
lar, we considet/y/J; = 0.1, Jy/J; = 0.2, Jo/J; = 0.3,
andJ,/J; = 0.4 for Figs. 5a)-d), respectively. The results
were obtained after taking an average26frandom phases
¢ € [0,2m). The orange curve signals the transition from ext-nearest-neighbor tunneling amplitudg/J; and qua-
extended to localized wave functhns estimated _b)_/ the NeUrd;yisorder strengti\/J;. In addition to the average over the
network. A.S one can see fr_om Fig. 5, the .deCISIOI’l bound?/vave functions composing the spectrum, we averaged over
ary determined by the NN is in agreement with the extended

. - 20 random realizations af € [0,27). One can notice that
localized transition forecasted by the IPR. In other words, thef:igs. 6a) and 6b) shares averg/ simi)lar structure, meaning that

To conclude this study we concentrate now on the aver-
agelPR. This quantity gives a measure of the amount of
extended or localized states in a given spectrum. In Fig. 6,
we show the averag®R (Fig. 6a)) and the value of the neu-
ron Ext in the output layer (Fig. 6b)) as a function of both,

Rev. Mex. Fis69 020502
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the NN achieves to capture the nature of the wave functiont the localized-extended transition.

in the whole space of parametérs/.Jy, Jo/.J;) of the EAA The study here addressed shows the efficiency and capac-
model. ity of a neural network to classify profiles that come from

a more complex model than the one used to train the NN.
5. Conclusion Although our analysis focuses on one-dimensional models

with nearest neighbor and next neighbor hopping, supervised
In this manuscript, we have illustrated the capacity of anlearning with neural networks can also be used to analyze
artificial neural network to classify extended and local-the localization phenomena in higher dimensions and in lat-
ized single-particle states that arise in quasiperiodic onetices with power-law hopping, where the peculiar multifrac-
dimensional lattices. In particular, we first train and test thetal states arise. The classification of extended and localized
artificial neural network using eigenstates belonging to thesingle-particle states through neural networks provides a use-
celebrated Aubry-Andr (AA) model. By collecting not just ful benchmark to tackle the many-body localization prob-
the ground state bul all eigenstates, we accomplish an excdlem using supervised learning techniques. Diagnosing many-
lente classification in both, the low- and high-energy sectordody phases of matter requires, in addition to fully connected
of the model. Then, we demonstrate the versatility of theneural networks, the use of convolutional neural networks or
network by probing its performance on the eigenstates of therincipal component analysis to deal with the exponential di-
Extended Aubry-Ande (EAA) model. Our results show that mension of quantum many-body states [25].
the neural network does not learn the IPR parameter, since
guantitatively speaking the IPR and the output layer values
do not match. This means that new parameters that sengecknowledgments
the localization are conceived by the network. Surprisingly,
the performance of the neural network is satisfactory since iThis work was patrtially funded by Grant No. IN108620
classifies above6% of the profiles correctly. We found that from DGAPA (UNAM). G.A.D.-C acknowledges a CONA-
misclassified states are mainly due to finite size effects clos€YT scholarship.
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