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In this study, we explain the impact of nonlinearity and wave dispersion parameters on the soliton pulses of the (2+1)-dimensional Kundu-
Mukherjee-Naskar equation. In this regard, some new optical solitons are received via the unified method to the aforesaid equation to explain
such impact on the soliton pulses. The presented optical solitons are expressed by the dark, bright, periodic, bell, kink, and singular soliton
solutions. Considering both effects help stabilize the soliton pulses during their propagation by generating new dynamics depending upon the
nonlinearity and the wave dispersion parameters of the studied equation. All the characteristics of the soliton pulses are exhibited graphically.
It is found from the graphical outputs that the soliton profiles are decreasing and increasing with the increase of nonlinearity and dispersion
parameters, respectively. The outcomes reveal that the soliton pulses are balanced due to the influences of nonlinearity and wave dispersion
parameters of the aforementioned equation. It is mentioned that the impact of wave dispersion and nonlinearity parameters on the soliton
pulses has not been discussed before. Therefore, the applied method permits the explanation of the various wave dynamics by analyzing the
attained soliton solutions in nonlinear optical fibers systems, which can be used for further studies.
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1. Introduction

1.1. Background and literature review

It is well known that the nonlinear Schrödinger equation
(NLSE) explains the underlying mechanism broadly in nu-
merous fields, such as quantum mechanics [1], plasma
physics [2], nonlinear optics [3], optical fibers [4, 5], fluid
dynamics [6], and hydrodynamics [7]. The related research
of the NLSE has mainly focused on their results in fiber optic
communication systems. Kundu-Mukherjee-Naskar (KMN)
equation is one of the equations that explain the hidden phe-
nomena in the aforementioned fields. More specifically, the
KMN equation can be used in fiber amplifiers, optical fiber,
data transmission, and so on. Recently, many scholars have
studied the different forms of the NLSE about Kerr and
non-Kerr law nonlinearities to study optical soliton by using
powerful techniques, such as the modified simple equation
method [8], the sine-Gordon expansion method [9], the ex-
tended simple equation method [10], the modified analytical

method [11], the modified Kudryashov method [12] and so
on.

In 2013, Kundu and Mukherjee [13] studied the inte-
grable higher-dimensional NLSE and described its features,
solutions, and applications. One year later, the KMN equa-
tion was first introduced by Kunduet al. [14], which is a
new extension of the NLSE (See in section 1.3). The KMN
model is the most important model for describing the rough
ocean waves and noticeably (2+1)-dimensional characteris-
tics. This model can also be used to propagate light waves
through coherently excited resonant waveguides, especially
in the case of bending light [15]. Moreover, this model can
be useful for the learning of isolated pulses in the (2+1)-
dimensional equation [16]. Recently, many scholars have
been addressed the exact solutions of the KMN model by
using different techniques, such as the first integral method
[17], the method of undetermined coefficients and Lie sym-
metry [18], the trial equation technique [19], the modified
simple equation approach [20], the new extended algebraic
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method [21], the ansatz approach and the sine Gordon ex-
pansion method [22], the F-expansion and functional variable
methods [23], the new extended direct algebraic method [24],
and the exp-function method [25]. Very recently, Kumaret
al. [26] discussed the effects of fractional parameters and
wave obliqueness of the KMN model by analyzing the soli-
ton pulses, obtained via the generalized Kudryashov and the
new auxiliary equation methods. It is noteworthy to mention
here that dark, bright, singular, singular period, rough wave,
bell, anti-bell type soliton solutions are reported in the previ-
ous literature. However, the impacts of wave dispersion and
nonlinearity parameters on soliton pulses of the KMN model
have not been investigated, as well as the unified method ap-
plications’ to the KMN equation.

1.2. Objective of the study

The main goal of this research is to apply the unified method
for exploring some new optical solitons, such as dark, bright,
periodic, and singular soliton solutions to an integrable KMN
equation, which can be of great significance in the field of
fiber optics and optical communications. It is noted to men-
tion here that optical solitons are solitary light waves that hold
their form over an expansive interval, which produce crystal
clear phone calls cross-country and internationally. Further-
more, we will also explain the impacts of wave dispersion
and nonlinearity on the attained soliton pulses of the KMN
model.

1.3. Mathematical model

In this study, we consider the following (2+1) dimensional
KMN equation [14–26] as

iut + σuxy + iκ (uu∗x − u∗ux) = 0, i =
√−1. (1)

In Eq. (1), the spatial variables are represented byx andy,
the time variable stands ont, the dependent variableu(x, y, t)
is the nonlinear wave envelope andu∗(x, y, t) is represented
by the complex conjugate ofu(x, y, t). The second term in
Eq. (1) represents the evolution of the wave followed by the
wave dispersion term that is given by the coefficient ofσ.

The constantκ ensures the existence of the different
case of nonlinearity media which does not fall into the
conventional Kerr law nonlinearity or any known non-Kerr
law media [16]. The nonlinear term in this equation ac-
counts for “current-like” nonlinearity that stems from chi-
rality [20]. The utmost significant feature of the (2+1)-
dimensional KMN model is that it has been given as a new
extension of the nonlinear Schrödinger (NLS) equation with
the inclusion of different forms of nonlinearity with regard to
Kerr and non-Kerr law nonlinearities to study soliton pulses.

1.4. Arrangement of the study

The rest of the paper is organized as follows: the overview of
the unified method is presented in Sec. 2. Mathematical anal-

ysis is presented in Sec. 3. Graphical analysis of the obtained
solutions and the impacts of wave dispersion and nonlinear-
ity on soliton pulses are discussed in Sec. 4. Finally, we give
a general conclusion in Sec. 5.

2. Overview of the unified method

The unified method [27, 28] is the amalgamation of all hy-
perbolic tangent function methods, such as the tanh-function
scheme, the extended tanh-function technique, the modi-
fied extended tanh-function method, and the complex tanh
function scheme. In Ref. [28], Gozukizilet al., explored
the analytic solution to the Rabinovich wave equation and
compared between the family of tanh function method and
unified method. Besides, they compared the tanh method
[29–31], the extended tanh method [32], the modified ex-
tended tanh method [33], and the complex tanh-function
method [34] with results generated with the unified method.
Later, Akcagil and Aydemir [34] applied the unified method
to the Lonngren wave equation. They proved that the unified
method gives many more general solutions in an elegant way
than the family of the tanh-function methods [29–31] and the
family of (G′/G)-expansion method, and the(G′/G, 1/G)-
expansion method. Besides the unified method, many other
methods have been applied for obtaining analytic solutions
for NLEEs, such as the(G′/G2)-expansion method [35],
the Hirota bilinear method [36, 37], the sine-Gordon equa-
tion method [38], the extended sinh-Gordon equation expan-
sion method [39], the enhanced(G′2/G)-expansion method
[40–42], theexp(−φ (ξ)-expansion method [43], the modi-
fied simple equation [44], the improved F-expansion method
[44], the newφ6-model expansion method [45], the gener-
alized bilinear method [46], the extended Fan sub-equation
technique [47], and many more.

The main overviews of the unified method are as follows.
Consequently, we consider the general form of the nonlinear
partial differential equation as

L (u, ut, ux, uy, utt, uxx, uyy, uxt, uxy, uyt, ......) = 0. (2)

Using wave transformation

u(x, y, t) = u(Ω), Ω = x + y − vt, (3)

wherev is the traveling wave. Inserting Eq. (3) into Eq. (2)
yields the following ODE:

K(u, u
′
, u

′′
, ....) = 0. (4)

Let us consider that Eq. (4) has the following solutions:

u(Ω) = A0 +
T∑

j=1

(
AjX

j + BjX
−j

)
, (5)

whereT is the homogeneous balance parameter which can
be determined by balancing between highest order linear and
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nonlinear terms of Eq. (4), andX = X (Ω) satisfies the Riccati differential equation as follow:

X
′
= X2 (Ω) + γ, (6)

whereX
′
= dX/dΩ, Aj , Bj (j = 1, 2, 3, ..., T ) andγ are constants. Eq. (6) has the following solutions:

Cluster 01: If γ < 0, then the hyperbolic function solutions are

X (Ω) =

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

, (7)

X (Ω) =
−

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

, (8)

X (Ω) =
√−γ − 2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)− sinh
(
2
√−γ (Ω + η)

) , (9)

X (Ω) = −√−γ +
2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)
+ sinh

(
2
√−γ (Ω + η)

) . (10)

Cluster 02: If γ > 0, then the trigonometric function solutions are

X (Ω) =

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P
, (11)

X (Ω) =
−

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P
, (12)

X (Ω) = i
√

γ − 2iM
√

γ

M + cos
(
2
√

γ (Ω + η)
)− i sin

(
2
√

γ (Ω + η)
) , (13)

X (Ω) = −i
√

γ +
2iM

√
γ

M + cos
(
2
√

γ (Ω + η)
)

+ i sin
(
2
√

γ (Ω + η)
) . (14)

Cluster 03: If γ = 0, then the rational function solution is

X (Ω) = − 1
Ω + η

, (15)

whereM, P ∈ R andη is an arbitrary constant.
We put Eqs. (5) and (6) in Eq. (4) and associating all the coefficient ofXi = −N ≤ i ≤ N to zero yield a set of algebraic
equations forAj , Bj andγ. PuttingAj , Bj , Ω andγ into Eq. (5) and using the general solutions of Eq. (6), it can be obtained
the solutions of Eq. (2) directly based on the value ofγ.

3. Mathematical analysis

Let us consider the complex wave transformation as follows

u (x, y, t) = U (Ω) eiψ(x,y,t). (16)

In Eq. (16), the amplitude and phase element of the soliton areU(Ω) andψ(x, y, t) respectively, whereΩ = ax − by − vt
andψ = −px − qy + mt + m0. Here,p andq represent the frequencies of the soliton in thex andy directions respectively,
whereasm andm0 signifies the wave number and phase of the soliton respectively. In addition, the parametersa andb in
Eq. (16) represent the inverse width of the soliton withx andy directions, respectively andv represents the speed of the soli-
ton. Plugging the above transformation into Eq. (1) and equating real and imaginary parts, we attained the following equations:

σabU
′′ − (m + σpq) U − 2κpU3 = 0, (17)

and
v = −σ (pb + qa) . (18)
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Applying the balance statement on Eq. (17), yieldsT = 1. So, the solution of Eq. (17) can be expressed in the following form:

U (Ω) = A0 + A1X (Ω) + B1X (Ω)−1
. (19)

Among them,A0, A1, andB1 are constant to be determined later and the functionX (Ω) satisfies the Eq. (6). Inserting Eq. (19)
along with Eq. (6) into Eq. (17) and collecting all terms with the same power ofX (Ω) together, equating each coefficient to
zero yields a set of algebraic equations in terms ofA0, A1, B1 andm. The following solution sets are obtained:

Set one: m6 = −2σab− σpq, A0 = 0, A1 = ±
√

σab

κp
, B1 = 0. (20)

Set two: m = 4σab− σpq, A0 = 0, A1 = ±
√

σab

κp
, B1 = ±

√
σab

κp
. (21)

Set three: m = −2σab− σpq, A0 = 0, A1 = 0, B1 = ±
√

σab

κp
. (22)

Inserting Eqs. (20)–(22) into Eq. (19) along with the Eqs. (7)–(10), one can attain the following hyperbolic function solutions:

Group one:

u1,2 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

)
,

u3,4 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

)
,

u5,6 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
√−γ − 2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)− sinh
(
2
√−γ (Ω + η)

)
)

,

u7,8 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−√−γ +

2M
√−γ

M + cosh
(
2
√−γ (Ω + η)

)
+ sinh

(
2
√−γ (Ω + η)

)
)

,

whereΩ = ax + by + σ(pb + qa)t and ψ = −px− qy + (2γσab− σpq)t + m0.

Group two:

u9,10 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

+ (R0)
−1

)
,

u11,12 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

+ (R1)
−1

)
,

u13,14 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
√−γ − 2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)− sinh
(
2
√−γ (Ω + η)

) + (R2)
−1

)
,

u15,16 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−√−γ +

2M
√−γ

M + cosh
(
2
√−γ (Ω + η)

)
+ sinh

(
2
√−γ (Ω + η)

) + (R3)
−1

)
,
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where

R0 =

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

,

R1 =
−

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

,

R2 =
√−γ − 2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)− sinh
(
2
√−γ (Ω + η)

) ,

R3 = −√−γ +
2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)
+ sinh

(
2
√−γ (Ω + η)

) ,

Ω = ax + by + σ(pb + qa)t and ψ = −px− qy + (2γσab− σpq)t + m0.

Group three:

u17,18 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

)−1

,

u19,20 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
− (M2 + P 2) γ −M

√−γ cosh
(
2
√−γ (Ω + η)

)

M sinh
(
2
√−γ (Ω + η)

)
+ P

)−1

,

u21,22 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
√−γ − 2M

√−γ

M + cosh
(
2
√−γ (Ω + η)

)− sinh
(
2
√−γ (Ω + η)

)
)−1

,

u23,24 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−√−γ +

2M
√−γ

M + cosh
(
2
√−γ (Ω + η)

)
+ sinh

(
2
√−γ (Ω + η)

)
)−1

,

whereΩ = ax + by + σ(pb + qa)t andψ = −px− qy + (2γσab− σpq)t + m0.

Inserting Eqs. (20)–(22) into Eq. (19) along with the Eqs. (11)–(14), one can attain the following trigonometric function
solutions:

Group four:

u25,26 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P

)
,

u27,28 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P

)
,

u29,30 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
i
√

γ − 2iM
√

γ

M + cos
(
2
√

γ (Ω + η)
)− i sin

(
2
√

γ (Ω + η)
)
)

,

u31,32 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−i
√

γ +
2iM

√
γ

M + cos
(
2
√

γ (Ω + η)
)

+ i sin
(
2
√

γ (Ω + η)
)
)

,

whereΩ = ax + by + σ(pb + qa)t andψ = −px− qy + (2γσab− σpq)t + m0.
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Group five:

u33,34 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P
+ (R4)

−1

)
,

u35,36 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P
+ (R5)

−1

)
,

u37,38 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
i
√

γ − 2iM
√

γ

M + cos
(
2
√

γ (Ω + η)
)− i sin

(
2
√

γ (Ω + η)
) + (R6)

−1

)
,

u39,40 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−i
√

γ +
2iM

√
γ

M + cos
(
2
√

γ (Ω + η)
)

+ i sin
(
2
√

γ (Ω + η)
) + (R7)

−1

)
,

where

R4 =

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P
,

R5 =
−

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P
,

R6 = i
√

γ − 2iM
√

γ

M + cos
(
2
√

γ (Ω + η)
)− i sin

(
2
√

γ (Ω + η)
) ,

R7 = −i
√

γ +
2iM

√
γ

M + cos
(
2
√

γ (Ω + η)
)

+ i sin
(
2
√

γ (Ω + η)
) ,

Ω = ax + by + σ(pb + qa)t and ψ = −px− qy + (−4γσab− σpq)t + m0.

Group six:

u41,42 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P

)−1

,

u43,44 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−

√
(M2 − P 2) γ −M

√
γ cos

(
2
√

γ (Ω + η)
)

M sin
(
2
√

γ (Ω + η)
)

+ P

)−1

,

u45,46 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
i
√

γ − 2iM
√

γ

M + cos
(
2
√

γ (Ω + η)
)− i sin

(
2
√

γ (Ω + η)
)
)−1

,

u47,48 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
−i
√

γ +
2iM

√
γ

M + cos
(
2
√

γ (Ω + η)
)

+ i sin
(
2
√

γ (Ω + η)
)
)−1

,

whereΩ = ax + by + σ(pb + qa)t andψ = −px− qy + (2γσab− σpq)t + m0.
Inserting Eqs. (20)–(22) into Eq. (19) along with the Eq. (15), one can attain the rational function solutions.

Group seven:

u49,50 (x, y, t) = ±eiψ(x,y,t)

√
σab

κp

(
1

Ω + η

)
,

whereΩ = ax + by + σ(pb + qa)t and ψ = −px− qy − σpqt + m0.

4. Graphical illustrations of the attained solutions

In this section, we will discuss the physical behaviors of the solutions obtained from the KMN equation via some graphical
illustrations. The impacts of wave dispersion (σ) and nonlinearity (κ) parameters on some attained optical solitons are also
presented and explained graphically.
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FIGURE 1. 3D structures of the solutionu3(x, y = 0, t): a) real part, b) imaginary part, c) modulus, and d)-f): 2D line plots of a)-c) att = 0,
respectively, for selecting the free parameters values asa = 1.01, b = 1, σ = 1, κ = 1, p = 1, q = −3.5, M = 1.5, P = 1.3, η = 0.4,
m0 = 1.4 andγ = −1.04.

FIGURE 2. 3D structures of the solutionu5(x, y = 0, t): a) real part, b) imaginary part, c) modulus, and d)-f): 2D line plots of a)-c) att = 0,
respectively, for selecting the free parameters values asa = 1.5, b = 2, σ = 0.2, κ = 1, p = 2, q = 1.7, M = 1.5, P = 1.3, η = 0.5,
m0 = 2 andγ = −0.02.

4.1. Graphical analysis of the diverse wave solutions

Taking into account the special value of the free parameters,
the 3D and 2D wave structures of the solutions obtained from
the KMN equation are considered to show the behavior of the

solution. In addition, the 3D wave profile is exposed to show
the temporal and spatial changes of the obtained optical soli-
ton solution. The 3D wave profile for the real and imaginary
parts and modulus of the optical solutionu1(x, y = 0, t) are
depicted in Figs. 1a)-c) respectively. The optical solution
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FIGURE 3. 3D structures of the solutionu15(x, y = 0, t): a) real part, b) imaginary part, c) modulus, and d)-f): 2D line plots of a)-c) at
t = 0, respectively, for selecting the free parameters values asa = 1, b = 1, σ = 1, κ = 0.01, p = 1, q = 1.5, M = 1, η = 1, m0 = 0 and
γ = −0.1.

FIGURE 4. 3D structures of the solutionu41(x, y = 0, t): a) real part, b) imaginary part, c) modulus, and d)-f): 2D line plots of a)-c) at
t = 0, respectively, for selecting the free parameters values asa = 0.01, b = 0.02, σ = 0.59, κ = 0.12, p = 0.52, q = 0.5, M = 2.5,
P = 0.1, η = 0.9, m0 = 2.5 andγ = 0.56.

u1(x, y = 0, t) represents the periodic wave solution for the
real and imaginary parts, as portrayed in Fig. 1a) and b). On
the other hand, the modulus of the above solution represents
the singular soliton, which is depicted in Fig. 1c). The above
mentioned can be confirmed from their 2D cross-sectional
views att = 0, as shown in Figs. 1d)-f). The 3D and 2D

wave profiles of the optical solutionu5(x, y = 0, t) repre-
sent the real and imaginary parts and modulus of the optical
solutionu5(x, y = 0, t), as shown in Figs. 2a)-f). The 3D
structure of the real and imaginary parts of the optical so-
lution u5(x, y = 0, t) signifies the periodic wave structure,
which is shown in Fig. 2a) and b), however, Fig. 2d) and e)
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FIGURE 5. Impacts on wave dispersion on the solution|u1(x, y = 0, t)|: a)-e) forσ = 0.1, 0.3, 0.5, 0.7, and0.9, respectively, witha = 2.5,
b = 0.2, κ = 0.01, p = 2.5, q = −2.5, M = 0.02, P = 0.021, η = 1, m0 = 1, γ = −0.25, and f) the variation of the soliton profiles at
t = 1 of a)-e) along with x-axis.

FIGURE 6. Impacts on wave dispersion on the solution|u25(x, y = 0, t)|: a)-e) forσ = 0.06, 0.09, 0.12, 0.15, and0.18, respectively, with
a = 1.2, b = 1, κ = 1, p = 1, q = 1, M = 0.07, P = 0.03, η = 1.5, m0 = 4.6, γ = 1.5, and f) the variation of the soliton profiles at
t = 1 of a)-e) along with x-axis.

display the 2D line plots of the real and imaginary parts of
the mentioned solution att = 0 respectively. The modulus
of the optical solutionu5(x, y = 0, t) also demonstrate the
anti-bell soliton solution, which is depicted in Fig. 2(c). As

shown in Fig. 2f), the 2D graph att = 0 confirms this type of
anti-bell soliton solution. Figures 3a)-f) display the 3D and
2D wave
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FIGURE 7. Impacts on wave dispersion on the solution|u47(x, y = 0, t)|: (a)-(e) forσ = 0.01, 0.05, 0.10, 0.15, and0.2, respectively, with
a = 0.15, b = 0.1, κ = 1, p = 1, q = −1, M = 1.1, P = 0.1, η = 0.1, m0 = 1.5, γ = 0.03, and (f) the variation of the soliton profiles at
t = 1 of (a)-(e) along with x-axis.

FIGURE 8. Impacts on nonlinearity of the solution|u25(x, y = 0, t)|: a)-e) forκ = 1, 1.2, 1.4, 1.6, and1.8, respectively, witha = 0.15,
b = 0.1, σ = 0.06, p = 1, q = −1, M = 1.1, P = 0.1, η = 0.1, m0 = 1.5, γ = 0.03, and f) the variation of the soliton profiles att = 1
of a)-e) along with x-axis.

profile of the optical solutionu15(x, y = 0, t). These are
real and imaginary parts and modulus of the mentioned so-
lution. Figures 3a) and b) show the 3D wave structure and
represent the lump wave solution of the mentioned solution

whereas Figs. 3d) and 3e) display the 2D line plots of the
real and imaginary parts of the mentioned solution att = 0
respectively.
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FIGURE 9. Impacts on nonlinearity of the solution|u25(x, y = 0, t)|: a)-e) forκ = 2, 4, 6, 8, and10, respectively, witha = 0.15, b = 0.1,
σ = 0.02, p = 1, q = −1, M = 1.1, P = 0.1, η = 0.1, m0 = 1.5, γ = 0.03, and f) the variation of the soliton profiles att = 1 of a)-e)
along with x-axis.

The modulus of the optical solutionu15(x, y = 0, t) also
demonstrate the anti-bell soliton solution, which is depicted
in Fig. 2c). As shown in Fig. 2f), the 2D graph att = 0
confirms this type of anti-bell soliton solution. The 3D and
2D wave structures of the solutions obtained from the KMN
equation are considered to show the behavior of the solu-
tion. In addition, the 3D wave profile is exposed to show
the temporal and spatial changes of the obtained optical soli-
ton solution. The 3D wave profile for the real and imaginary
parts and modulus of the optical solutionu41(x, y = 0, t)
are depicted in Figs. 4a)-c) respectively. The optical solution
u41(x, y = 0, t) represents the periodic wave solution for the
real and imaginary parts, as portrayed in Figs. 4a) and b). On
the other hand, the modulus of the above solution represents
the kink solution, which is depicted in Fig. 4c). The above
mentioned can be confirmed from their 2D cross-sectional
views att = 0, as shown in Figs. 4d)-f).

4.2. Impacts of wave dispersion and nonlinearity pa-
rameters on soliton pulses

The unified method is applied to the integrable KMN equa-
tion to obtain the optical soliton solutions. The obtained so-
lutions involve wave dispersion and nonlinearity terms. The
impacts of wave dispersion and nonlinearity parameters on
soliton pulses are explained graphically for showing the ef-
fectiveness of the unified method.

The impacts of wave dispersion on the attained optical
solution |u1(x, y = 0, t)| is shown in Fig. 5 by selecting

the free parameters asa = 2.5, b = 0.2, κ=0.01,p = 2.5,
q = −2.5, M = 0.02, P = 0.021, η = 1, m0 = 1, and
Y = −0.25. For choosing the dispersion parametric values
σ=0.1, 0.3, 0.5, 0.7, and 0.9, the soliton profiles of the solu-
tion |u1(x, y = 0, t)| are presented in Figs. 5a)-e), respec-
tively. The wave profile can change for differentσ values.
The cross-sectional variation att = 1 of the soliton profiles
along the x-axis is displayed in Fig. 5f). In Fig. 5f), it can be
seen that the soliton profiles along the x-axis are changed for
all values of dispersionσ = 0.1, 0.3, 0.5, 0.7, and 0.9.

The amplitude of the wave profiles is increased when the
value of the dispersion parameterσ decreases. Again, the
3D and 2D shapes of the wave profile of the optical solution
|u25(x, y = 0, t)| is depicted in Figs. 6a)-f). As seen in Figs.
6a)-e), the 3D wave structure represents the periodic wave
solution for the dispersion valuesσ = 0.06, 0.09, 0.12, 0.15,
and 0.18, respectively, with the free parameters asa = 1.2,
b = 1, κ = 1, p = 1, q = 1, M = 0.07, P = 0.3, η=1.5,
m0 = 4.6, andY = 1.5. Figure 6f) represents the 2D com-
bined graphs of the solution|u25(x, y = 0, t = 1)| for select-
ing the distinct dispersion valuesσ = 0.06, 0.09, 0.12, 0.15,
and 0.18. In this case, it can be observed from Fig. 6f) that the
amplitude of the soliton increases as the values ofσ increase.
It is also seen from Fig. 6f) that the signal of the wave profile
solution is moved to upward positive values. However, the
periods of the solitons are almost the same. Furthermore, the
3D and 2D wave profiles of the solution|u47(x, y = 0, t)|
are presented in Figs. 7a)-f). The 3D wave structures of the
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solutionu47(x, y = 0, t) is presented in Figs. 7a)-e) for dis-
tinct dispersion valuesσ = 0.01, 0.05, 0.10, 0.15, and 0.2,
respectively, to select the free parameter values asa = 0.15,
b = 0.1, κ = 1, p = 1, q = −1, M = 1.1, P = 0.1, η = 0.1,
m0 = 1.5, Y = 0.03. The solution of|u47(x, y = 0, t)|
represents the bell-shaped profiles. To confirm such shapes
and characteristics of Figs. 7a)-e), the line variation of the
profiles att = 1 is shown in Fig. 7f). It is seen from the
Fig. 7f) that the amplitude of the wave profiles of the solu-
tion |u47(x, y = 0, t = 1)| increases with the increase of
the valuesσ. On the other hand, the impact of the nonlin-
earity parameter of solutions|u25(x, y, t)| and|u47(x, y, t)|
are shown in Figs. 8 and 9, respectively. It is palpable from
Figs. 8a)-e) that the intensities of the periodic wave profile
decrease due to the increase of the nonlinearity parameters
κ = 1, 1.2, 1.4, 1.6, and 1.8, respectively. To justify such
shapes and characteristics of Figs. 8a)-e), the line variation
of that profiles att = 1 is presented in Fig. 8f). The same
behaviors are also found and displayed for the bright shape
soliton profiles, which are presented in Figs. 9a)-f). From
the above mentioned discussion, it is reasonable to mention
from the graphical outputs that the wave dispersion (σ) and
nonlinearity (κ) parameters of the model can play a notable
role in increasing and decreasing the wave profile intensity
for displaying the new wave characteristics. Therefore, it is
also confirmed from the above mentioned discussion that the
soliton profile remains unchanged owing to the balance of the
wave dispersion and nonlinearity impacts of the model. It is
worth mentioning that no experimental results have been pro-
duced and compared with our produced results due to the lack
of experimental equipment in our laboratory. Therefore, the
choice of wave dispersion and nonlinearity parameter values
of the optical solutions are predicted. For this reason, it was
quite difficult to sort out the types of fiber or laser and their
wavelength, which are the main limitations of our study.

5. Conclusion

Implementing the unified method to the KMN equation, we
have received some new optical solutions representing the

dark, bright, periodic, bell, kink, and singular solitons. We
have displayed some 2D and 3D graphs of some received
representative solutions including bright, dark, singular, and
periodic wave solutions by selecting appropriate values of the
free parameters to understand the impacts of wave dispersion
and nonlinearity parameters of the KMN equation. For the
bright, dark, and periodic wave solitons, it is seen that the
wave amplitude increases when the wave dispersion (σ) in-
creases. On the other hand, the wave amplitudes of the bright
soliton and periodic wave decrease due to the increase in the
nonlinearity parameter (κ). Thus, the amplitude of the soli-
ton profile remains unchanged due to the balance of the wave
dispersion and nonlinearity impacts of the model. The valid-
ity for the resulting outcomes was performed by substituting
the attained solutions back into the equation of our choice
through the use of Maple 17. Thus, the complete study ap-
proves that the executed method is a powerful tool for pro-
ducing a variety of optical soliton solutions to NLEEs arising
in optical fibers, and optical engineering. The outcomes ob-
tained in this study may illuminate the researchers for further
studies to understand the unseen behaviors of soliton profiles
in the field of fiber optics and optical communications.
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