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In this study, we explain the impact of nonlinearity and wave dispersion parameters on the soliton pulses of the (2+1)-dimensional Kundu-

Mukherjee-Naskar equation. In this regard, some new optical solitons are received via the unified method to the aforesaid equation to explair
such impact on the soliton pulses. The presented optical solitons are expressed by the dark, bright, periodic, bell, kink, and singular soliton
solutions. Considering both effects help stabilize the soliton pulses during their propagation by generating new dynamics depending upon the
nonlinearity and the wave dispersion parameters of the studied equation. All the characteristics of the soliton pulses are exhibited graphically.
It is found from the graphical outputs that the soliton profiles are decreasing and increasing with the increase of nonlinearity and dispersion
parameters, respectively. The outcomes reveal that the soliton pulses are balanced due to the influences of nonlinearity and wave dispersic
parameters of the aforementioned equation. It is mentioned that the impact of wave dispersion and nonlinearity parameters on the solitor
pulses has not been discussed before. Therefore, the applied method permits the explanation of the various wave dynamics by analyzing tf
attained soliton solutions in nonlinear optical fibers systems, which can be used for further studies.
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1. Introduction method [11], the modified Kudryashov method [12] and so

on.
1.1. Background and literature review
In 2013, Kundu and Mukherjee [13] studied the inte-

It is well known that the nonlinear Sabdlinger equation grable higher-dimensional NLSE and described its features,
(NLSE) explains the underlying mechanism broadly in nu-solutions, and applications. One year later, the KMN equa-
merous fields, such as quantum mechanics [1], plasmBon was first introduced by Kundat al. [14], which is a
physics [2], nonlinear optics [3], optical fibers [4, 5], fluid new extension of the NLSE (See in section 1.3). The KMN
dynamics [6], and hydrodynamics [7]. The related researcimodel is the most important model for describing the rough
of the NLSE has mainly focused on their results in fiber opticocean waves and noticeably (2+1)-dimensional characteris-
communication systems. Kundu-Mukherjee-Naskar (KMN)tics. This model can also be used to propagate light waves
equation is one of the equations that explain the hidden phahrough coherently excited resonant waveguides, especially
nomena in the aforementioned fields. More specifically, then the case of bending light [15]. Moreover, this model can
KMN equation can be used in fiber amplifiers, optical fiber,be useful for the learning of isolated pulses in the (2+1)-
data transmission, and so on. Recently, many scholars hadimensional equation [16]. Recently, many scholars have
studied the different forms of the NLSE about Kerr andbeen addressed the exact solutions of the KMN model by
non-Kerr law nonlinearities to study optical soliton by using using different techniques, such as the first integral method
powerful techniques, such as the modified simple equatiofiL7], the method of undetermined coefficients and Lie sym-
method [8], the sine-Gordon expansion method [9], the exmetry [18], the trial equation technique [19], the modified
tended simple equation method [10], the modified analyticabimple equation approach [20], the new extended algebraic
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method [21], the ansatz approach and the sine Gordon eysis is presented in Sec. 3. Graphical analysis of the obtained
pansion method [22], the F-expansion and functional variablsolutions and the impacts of wave dispersion and nonlinear-
methods [23], the new extended direct algebraic method [24]ty on soliton pulses are discussed in Sec. 4. Finally, we give
and the exp-function method [25]. Very recently, Kuneér a general conclusion in Sec. 5.

al. [26] discussed the effects of fractional parameters and
wave obliqueness of the KMN model by analyzing the soli-2
ton pulses, obtained via the generalized Kudryashov and the’
new auxiliary equation methods. Itis noteworthy to mentionThe unified method [27, 28] is the amalgamation of all hy-
here that dark, bright, singular, singular period, rough waveperholic tangent function methods, such as the tanh-function
bell, anti-bell type soliton solutions are reported in the previ-scheme, the extended tanh-function technique, the modi-
ous literature. However, the impacts of wave dispersion anieq extended tanh-function method, and the complex tanh
nonlinearity parameters on soliton pulses of the KMN modekynction scheme. In Ref. [28], Gozukizit al., explored
have not been investigated, as well as the unified method agne analytic solution to the Rabinovich wave equation and

Overview of the unified method

plications’ to the KMN equation. compared between the family of tanh function method and
o unified method. Besides, they compared the tanh method
1.2. Objective of the study [29-31], the extended tanh method [32], the modified ex-

The main goal of this research is to apply the unified methoéended tanh methOd [33], and the g:omplex anh—function
for exploring some new optical solitons, such as dark, brightmethod [34] with results generated with the unified method.

periodic, and singular soliton solutions to an integrable KMNLater’ Akcagil and Aydemir [34] applied the unified method

equation, which can be of great significance in the field 0110 the Lonngren wave equation. They proved that the unified

' ; : C : thod gives many more general solutions in an elegant way

fiber optics and optical communications. It is noted to men-"€ . .

tion here that optical solitons are solitary light waves that holothar.] the family of the tanh -function methods [29-31] and the
: Lo ; family of (G’ /G)-expansion method, and th&'/G,1/G)-

their form over an expansive interval, which produce crystal ! ’

clear phone calls cross-country and internationally. FurtherSXPansion method. Besides the unified method, many other

more, we will also explain the impacts of wave dispersionmethods have been applied for obtaining analytic solutions

/ 2\ i
and nonlinearity on the attained soliton pulses of the KMNfor NI.‘EES‘ .STUCh as theG'/G7) expansion method [35],
model. the Hirota bilinear method [36, 37], the sine-Gordon equa-

tion method [38], the extended sinh-Gordon equation expan-
sion method [39], the enhanc¢d’?/G)-expansion method
[40-42], theexp(—¢ (£)-expansion method [43], the modi-
In this study, we consider the following (2+1) dimensional fied simple equation [44], the improved F-expansion method
KMN equation [14—26] as [44], the newgb-model expansion method [45], the gener-
alized bilinear method [46], the extended Fan sub-equation

iUy + OUgy + ik (uuy —u'ug) =0, i=+/~1. (1)  technique [47], and many more.

The main overviews of the unified method are as follows.
Consequently, we consider the general form of the nonlinear
partial differential equation as

1.3. Mathematical model

In Eq. (1), the spatial variables are representedcbgndy,
the time variable stands enthe dependent variablézx, y, t)
is the nonlinear wave envelope antiz, y, t) is represented

by the complex conjugate o,f(x,y,t). The second termin | (U Uty Uiy Uy Ut U Uy Uty Uy Ut oeoee )=0. (2)
Eq. (1) represents the evolution of the wave followed by the
wave dispersion term that is given by the coefficient of Using wave transformation
The constants ensures the existence of the different
case of nonlinearity media which does not fall into the u(z,y,t) =u(Q), Q=z+y—ut, 3)

conventional Kerr law nonlinearity or any known non-Kerr
law media [16]. The nonlinear term in this equation ac-wherev is the traveling wave. Inserting E)(into Eq. 2)
counts for “current-like” nonlinearity that stems from chi- Yyields the following ODE:
rality [20]. The utmost significant feature of the (2+1)- rou
dimensional KMN model is that it has been given as a new K(uwu,u,....) =0. (4)
extension of the nonlinear Satinger (NLS) equation with
the inclusion of different forms of nonlinearity with regard to
Kerr and non-Kerr law nonlinearities to study soliton pulses. T

u(Q) = Ag+ > (A4 X7+ B;X ), (5)
1.4. Arrangement of the study =1

Let us consider that Ec4) has the following solutions:

The rest of the paper is organized as follows: the overview ofvhereT" is the homogeneous balance parameter which can
the unified method is presented in Sec. 2. Mathematical anabe determined by balancing between highest order linear and
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nonlinear terms of Eq4), andX = X (Q) satisfies the Riccati differential equation as follow:
X =X2(Q) +7, ®)

whereX ' = dX/dQ, A;, B; (j =1,2,3,...,T) andy are constants. Eq6) has the following solutions:
Cluster 01: If v < 0, then the hyperbolic function solutions are

_ V= (M2 + P?)y — M/=7cosh (2y/=7 (2 + 7))

X () M sinh (2¢/=7 (2 +n)) + P 7 "
— /= (M2 F P~y — My =7 cosh (2/=7 (2 + 7))
X(Q) = . ’ ®
M sinh (2¢/=7 (2 + 7)) + P
R 2My—
X =v=y M + cosh (2v/=y (@ + 1)) — sinh (2v/= (2 + 7))’ Y
L 2My—y
X = o o @V (@ ) s (3 (0 1 7)) Y
Cluster 02: If v > 0, then the trigonometric function solutions are
- VO = P2y — M /ycos (27 (2 +1)) (11)
M sin (2,7 (2 +n)) + P 7
X () - Y OF P50 = My/eos (2/7 (2 + 1) (12)
Msin (2,7 (Q+n)) + P ’
o 2iM /7
O = s A @ ) — s 2y @1 ) -
y 2iM /5
X = Y s (27 @+ ) + isin (207 (@ 1)) 0
Cluster 03 If v = 0, then the rational function solution is
1

whereM, P € R andn is an arbitrary constant.

We put Egs. B) and 6) in Eq. 4) and associating all the coefficient &F = —N < i < N to zero yield a set of algebraic
equations ford ;, B; and~. PuttingA4,, B;, 2 and~y into Eq. 5) and using the general solutions of E@), (t can be obtained
the solutions of Eq/3) directly based on the value of

3. Mathematical analysis
Let us consider the complex wave transformation as follows
w(z,y,t) = U (Q) eVEvh), (16)

In Eq. (16), the amplitude and phase element of the solitonla(®) andv (z,y, t) respectively, wher€ = ax — by — vt
andy = —px — qy + mt + mg. Here,p andq represent the frequencies of the soliton in thendy directions respectively,
whereasn andmy signifies the wave number and phase of the soliton respectively. In addition, the parasmetelisin

Eq. (16) represent the inverse width of the soliton wittandy directions, respectively andrepresents the speed of the soli-
ton. Plugging the above transformation into E).gnd equating real and imaginary parts, we attained the following equations:

ocablU’ — (m + opq) U — 2kpU® = 0, (17)

and
v=—0(pb+qa). (18)
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Applying the balance statement on Efi7), yieldsT = 1. So, the solution of Eq\1(/) can be expressed in the following form:
U(Q) =Ap+ AX (Q) +BiX (Q) . (19)

Among them Ay, A1, andB; are constant to be determined later and the functiq?) satisfies the Eq6j. Inserting Eq.19)
along with Eq.6) into Eq. {L7) and collecting all terms with the same powerXf((2) together, equating each coefficient to
zero yields a set of algebraic equations in terma@f A, B; andm. The following solution sets are obtained:

b

Set one: m6 = —20ab— apg, Ay =0, A = ﬂ, B, = 0. (20)

Set two: m — doab— opg. Ay =0, A —+2% B -4 [0 (21)
KD

Set three: m = —20ab—opq, Ay=0, A; =0, By =44/ —. (22)

Kp

Inserting Eqgs.l20)—(22) into Eq. [19) along with the Eqs/4)—(10), one can attain the following hyperbolic function solutions:

Group one:

s (g t) — et |70 (VZOTF PRy = My cosh 2V~ (2 + )
1,2 (%, Y, Kp M sinh (Q\ﬁ’)’ (Q+ 77)) +P ’
us 4 (z,y,t) = £V @vD) cab — (M? + P?)y — M/ cosh (2y/=7 (2 + 1))
5.4 (2,9, p” M sinh (2= (2 + 7)) + P ’
| b 2My/—y
Jy,t) = eV @w) [T ’
us 6 (T,y,t) e p V= M + cosh (QF,Y Q-+ 77)) — sinh (QF’V (Q+ 77))
| b 2M/—y
g, t) = ge@vd) [T oy ’
ur s (z,y,t) = +e " V= M + cosh (2¢/=7 (2 + 7)) + sinh (2v/=7 (2 + 7))

whereQ) = ax + by + o(pb + ga)t and ¢ = —px — qy + (2yoab — opq)t + my.

Group two:

) V= (M?+ P2)y— M./— h (2¢/—7 (2 _
o 10 (2,1 8) = L pit(@wd) Uab + 7 cos ( \FV( +77)) + (Ro) 1 7
KD M sinh (2= (2 +1n)) + P
) —/=(M?2+P?)y—M,/— h (24/—7 (2 _
U112 (x,y,t) — iezw(w,y t) Uab + ) 7y COS ( \/7’)’( +77)) n (Rl) 1 7
Kp M sinh (2¢/=y (2 +7n)) + P
;i b 2M - 1
. t) = eyt [T % +(R 7
.14 (Y1) c Kp 77 M+ cosh (2v=7 (2 +n)) — sinh (2y/=y (2 + 7)) (B2)
) b 2M\/—~ _1
, )t =4 ip(z,y,t) Ua /—~ + + (R ,
u15,16 (7, 9:1) € Kp " M + cosh (2@7 (Q+ T])) + sinh (Q\ﬁfy (Q+ 17)) (7t3)
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where

V= (M2 + P2y — M/~ cosh (2y/=7 (2 + 7))

o= M sinh (2¢/=7 (2 + 7)) + P ’
p _ —V= P+ Py - My=ycosh (2y=y (2 +1))
L M sinh (2¢/=~ (2 + 7)) + P ’
_ = 2M/—
R =v=r M + cosh (2¢/=7 (2 +n)) — sinh (2/=7 (2 + 7))’
Ry=—V—7+ 2My=

M + cosh (2¢/=7 (2 +n)) +sinh (2/=7 (2 + 7))’
Q=ax+by+o(pb+qa)t and 1 =—px — qy+ (2yoab — opq)t + my.

Group three:

oab
Kp

urris (z,y,t) = £V @v:D

V= (M?+ P?%)y Mﬁcosh@ﬁv(ﬁ—&-n)))l

M sinh (2/=y (2 +n)) + P

u x,y,t) = i
19,20 (7,9, 1) Kp M sinh (2¢/=7 (Q+n)) + P

aab
Kp

2M =5 -
Vs M + cosh (2¢/=7 (2 + 7)) — sinh (2y/=7 (2 + 7)) ) ’

U21,22 (.’1?7 Y, t) - ieiw(ﬁﬁ,y,t)

aab
Kp

A 2

-1
U z,y,t) = +elV@vt) + ,
20,24 (2,9, 1) M + cosh (2¢/=7 (2 + 7)) + sinh (2y/=7 (2 + 7))

L it (@pnt) aab ( \/— (M? + P2)n — M/=7 cosh (2@’7 Q4+ 77)) ) -

whereQ) = ax + by + o(pb + ga)t andy = —pzx — qy + (2yoab — opq)t + my.

Inserting Egs.|20)—(22) into Eqg. {19) along with the Egs.11)—(14), one can attain the following trigonometric function
solutions:

Group four:

Ung 30 (,y, t) = £V @D

Uns 06 (2, y, 1) = £eV(@V:) oab —/(M2 — P2)y — M /7 cos (2,7 (2 +1n))
, » Kp M sin (2f (Q+ 77)) +P )
Ut o8 (T, y, 1) =+ (@91 oab —/(M? — P?)y — M /7 cos (2,7 (2 +n))
; v KD Msin (2,7 (Q+n)) + P )
Jab (

2iM /7 )
M +cos (2,7 (Q+ 1)) —isin (2,7 (2 + 1))

u31,32 (2,9,t) = e (@v:t)

=2 =
E@

(_if 2iM /7 )
M +cos (2,7 (2 + 1)) +isin (27 (2 +1n))

whereQ) = ax + by + o(pb + qa)t andy = —px — qy + (2yoab — opq)t + my.

Rev. Mex. Fis68061301
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Group five:

S

oab
Kp

s 34 (2,y, 1) = £V (@VD

<ﬁ/(M2 — P2y — M /7cos (2,7 (2 +1n))

Msin (2,7 (2 + 1)) + P +(R4)1>’

S

] } 7t = i
u3s,36 (T, 9, 1) Kp Msin (2,7 (Q+n)) + P

ﬂwww>oa<VMPP%wMme@¢wQ+m>+mdl>

S

usrss (z,y,t) = et @t [TD
P

A 2iM /5

-1
M + cos (2,/7 (2 +n)) —isin (2,/7 (2 + 1)) + (Rs) >7

(s
<4¢ el +ma1>,

3

S

a

u39,40 (T,y,t) = L (@vt)
Kp

+ M + cos (2,7 (2 + 1)) + isin (2,/7 (2 +n))
where

V(M2 — P?)y — M /ycos (2,7 (2+n))

Msin (27 (2 +n)) + P ’

—/(M? — P2)y — M /7y cos (2,7 (2 + 1))

Msin (2,7 (2 +1)) + P ’

2iM /7
M +cos (2,7 (Q+n)) —isin (2,7 (Q+1n))’
2iM /v

G M + cos (2,7 (Q+n)) +isin (2,7 (2 +1n))’
Q=ar+by+o(pb+qa)t and 1 = —pzx — qy + (—4dyoab — opq)t + my.

Ry =

Rs =

RGZi Y —

Group six:

Msin (2,7 (Q+n)) + P

-1
Us1,a2 (T, Y, t) = j:eilf’(w,y,t)\/% < (M2 — P2)y — M /7 cos (2,/7 (2 +n)) )
9 ) b Kp 7

-1
Ugs s (z,y, 1) = ieiw(x,y,t)\/% < (M2 7P2)77M\/7ycos (QW(QJFT,)))
’ e KD 9

Msin (2,7 (Q+n)) + P

oab e 2iM /7 o
Kp M + cos (2,7 (Q+n)) —isin (2,/7 (2 +n)) ’

Uas 46 (T, Y, 1) = Lt (@y5t)

-1
. 2iM
Uar s (€,y,t) = +el V(000 e —iy/y + vl ;
KD M + cos (2,7 (Q+n)) +isin (2,7 (2 +1))

whereQ) = ax + by + o(pb + qa)t andy = —px — qy + (2yoab — opq)t + my.
Inserting Eqgs.20)—(22) into Eq. [19) along with the Eq./15), one can attain the rational function solutions.

Group seven:
, b 1
1) = Lt (@yst) gab
U49,50 (xayv ) € Q+77

whereQ) = ax + by + o(pb + qa)t and ¢ = —px — qy — opqt + my.

4. Graphical illustrations of the attained solutions

In this section, we will discuss the physical behaviors of the solutions obtained from the KMN equation via some graphical
illustrations. The impacts of wave dispersiar) @nd nonlinearity £) parameters on some attained optical solitons are also
presented and explained graphically.

Rev. Mex. Fis68061301
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FIGURE 1. 3D structures of the solutioms (x, y = 0, t): @) real part, b) imaginary part, c) modulus, and d)-f): 2D line plots of a)-t)a0,
respectively, for selecting the free parameters valuesasl.01,b = 1,0 =1,k =1,p=1,¢g= -3.5,M = 1.5, P = 1.3, n = 0.4,
mo = 1.4 andy = —1.04.
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FIGURE 2. 3D structures of the solutioms (x, y = 0, ¢): @) real part, b) imaginary part, ¢) modulus, and d)-f): 2D line plots of a)-t)a0,
respectively, for selecting the free parameters valuesasl.5,b = 2,0 =02,k = 1,p=2,¢q =17, M = 1.5, P = 1.3, = 0.5,
mo = 2 andy = —0.02.

4.1. Graphical analysis of the diverse wave solutions

solution. In addition, the 3D wave profile is exposed to show
the temporal and spatial changes of the obtained optical soli-

Taking into account the special value of the free parametergpn solution. The 3D wave profile for the real and imaginary
the 3D and 2D wave structures of the solutions obtained fronparts and modulus of the optical solutien(z,y = 0, t) are
the KMN equation are considered to show the behavior of thelepicted in Figs. 1a)-c) respectively. The optical solution
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FIGURE 3. 3D structures of the solution:5(z,y = 0,¢): a) real part, b) imaginary part, c) modulus, and d)-f): 2D line plots of a)-c) at
t = 0, respectively, for selecting the free parameters values-ad,b=1,0 =1,k =0.01,p=1,¢g=15,M =1,n=1,mo = 0 and

v = —0.1.
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FIGURE 4. 3D structures of the solutions1(z,y = 0,¢): a) real part, b) imaginary part, ¢c) modulus, and d)-f): 2D line plots of a)-c) at
t = 0, respectively, for selecting the free parameters values-2s0.01, b = 0.02, 0 = 0.59, xk = 0.12, p = 0.52, ¢ = 0.5, M = 2.5,

P =0.1,7=0.9,mo = 2.5andy = 0.56.

u1(z,y = 0,t) represents the periodic wave solution for thewave profiles of the optical solutions(x,y = 0,t) repre-
real and imaginary parts, as portrayed in Fig. 1a) and b). Osent the real and imaginary parts and modulus of the optical
the other hand, the modulus of the above solution represenslutionus(z,y = 0,t), as shown in Figs. 2a)-f). The 3D
the singular soliton, which is depicted in Fig. 1c). The abovestructure of the real and imaginary parts of the optical so-
mentioned can be confirmed from their 2D cross-sectionalution us(z,y = 0,t) signifies the periodic wave structure,
views att = 0, as shown in Figs. 1d)-f). The 3D and 2D which is shown in Fig. 2a) and b), however, Fig. 2d) and e)
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FIGURE 5. Impacts on wave dispersion on the solutjen(z, y = 0,t)|: a)-e) fore = 0.1, 0.3,0.5,0.7, and0.9, respectively, withe = 2.5,

b=0.2,k=0.01p=254¢g=—-25 M =0.02, P=0.021,n = 1, mo = 1, v = —0.25, and f) the variation of the soliton profiles at
t = 1 of a)-e) along with x-axis.
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display the 2D line plots of the real and imaginary parts ofshown in Fig. 2f), the 2D graph at= 0 confirms this type of
the mentioned solution @t = 0 respectively. The modulus anti-bell soliton solution. Figures 3a)-f) display the 3D and
of the optical solutionus(x,y = 0,t¢) also demonstrate the 2D wave

anti-bell soliton solution, which is depicted in Fig. 2(c). As
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b=0.1,0=006,p=1,q=—-1,M =1.1, P =0.1,7 = 0.1, mg = 1.5, v = 0.03, and f) the variation of the soliton profilesat 1

of a)-e) along with x-axis.

profile of the optical solution:15(x,y = 0,t). These are whereas Figs. 3d) and 3e) display the 2D line plots of the
real and imaginary parts and modulus of the mentioned sareal and imaginary parts of the mentioned solution at 0

lution. Figures 3a) and b) show the 3D wave structure andespectively.
represent the lump wave solution of the mentioned solution
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The modulus of the optical solutiom;;(z,y = 0,¢) also  the free parameters as= 2.5, b = 0.2, k=0.01,p = 2.5,
demonstrate the anti-bell soliton solution, which is depictedy = —2.5, M = 0.02, P = 0.021,n = 1, mg = 1, and
in Fig. 2c). As shown in Fig. 2f), the 2D graph&at= 0 Y = —0.25. For choosing the dispersion parametric values
confirms this type of anti-bell soliton solution. The 3D and ¢=0.1, 0.3, 0.5, 0.7, and 0.9, the soliton profiles of the solu-
2D wave structures of the solutions obtained from the KMNtion |u, (z,y = 0,t)| are presented in Figs. 5a)-e), respec-
equation are considered to show the behavior of the soluively. The wave profile can change for differentvalues.
tion. In addition, the 3D wave profile is exposed to showThe cross-sectional variation @ét= 1 of the soliton profiles
the temporal and spatial changes of the obtained optical solalong the x-axis is displayed in Fig. 5f). In Fig. 5f), it can be
ton solution. The 3D wave profile for the real and imaginaryseen that the soliton profiles along the x-axis are changed for
parts and modulus of the optical solutian; (z,y = 0,¢)  all values of dispersios = 0.1, 0.3, 0.5, 0.7, and 0.9.
are depicted in Figs. 4a)-c) respectively. The optical solution ) L
a1 (z,y = 0, 1) represents the periodic wave solution for the The ampIm_Jde of'the wave profiles is increased when the
real and imaginary parts, as portrayed in Figs. 4a) and b). O\ﬁalue of the dispersion parameterd_ecreases. Agaln, tht_a
the other hand, the modulus of the above solution represen?@ and 2D shap_es of t_he wave proflle of the opt|cal_soll_Jt|on
the kink solution, which is depicted in Fig. 4c). The above 425(%,y = 0,1)|is depicted in Figs. 6a)-f). As seen in Figs.
mentioned can be confirmed from their 2D cross-sectionap®)-€), the 3D wave structure represents the periodic wave
views att — 0, as shown in Figs. 4d)-f). solution for the dls_persmq values= 0.06, 0.09, 0.12, 0.15,
and 0.18, respectively, with the free parameters as 1.2,
4.2. Impacts of wave dispersion and nonlinearity pa- ¢ =1/ =1p=1¢=1 M =0.07, P = 0.3, 7=1.5,
rameters on soliton pulses mgo = 4.6, andY = 1.5. Figure 6f) represents the 2D com-
bined graphs of the solutign,5(z,y = 0,t = 1)| for select-
The unified method is applied to the integrable KMN equa-ing the distinct dispersion values= 0.06, 0.09, 0.12, 0.15,
tion to obtain the optical soliton solutions. The obtained so-and 0.18. In this case, it can be observed from Fig. 6f) that the
lutions involve wave dispersion and nonlinearity terms. Theamplitude of the soliton increases as the values ioicrease.
impacts of wave dispersion and nonlinearity parameters otit is also seen from Fig. 6f) that the signal of the wave profile
soliton pulses are explained graphically for showing the efsolution is moved to upward positive values. However, the
fectiveness of the unified method. periods of the solitons are almost the same. Furthermore, the
The impacts of wave dispersion on the attained opticaBD and 2D wave profiles of the solutidn,7(z,y = 0,1)]
solution |u; (z,y = 0,t)| is shown in Fig. 5 by selecting are presented in Figs. 7a)-f). The 3D wave structures of the

Rev. Mex. Fis68061301



12 S. M. RAYHANUL ISLAM, D. KUMAR, E. FENDZI-DONFACK, AND M. INC

solutionu,7(x,y = 0,t) is presented in Figs. 7a)-e) for dis- dark, bright, periodic, bell, kink, and singular solitons. We
tinct dispersion values = 0.01, 0.05, 0.10, 0.15, and 0.2, have displayed some 2D and 3D graphs of some received
respectively, to select the free parameter values as0.15, representative solutions including bright, dark, singular, and
b=01l,k=1p=1,¢9q=-1,M=11,P=0.1,n=0.1, periodic wave solutions by selecting appropriate values of the
mo = 1.5, Y = 0.03. The solution ofluy;(z,y = 0,t)]  free parameters to understand the impacts of wave dispersion
represents the bell-shaped profiles. To confirm such shapesd nonlinearity parameters of the KMN equation. For the
and characteristics of Figs. 7a)-e), the line variation of thebright, dark, and periodic wave solitons, it is seen that the
profiles att = 1 is shown in Fig. 7f). It is seen from the wave amplitude increases when the wave dispersigpnnt

Fig. 7f) that the amplitude of the wave profiles of the solu-creases. On the other hand, the wave amplitudes of the bright
tion |us7(x,y = 0,t = 1)| increases with the increase of soliton and periodic wave decrease due to the increase in the
the valuess. On the other hand, the impact of the nonlin- nonlinearity parameterj. Thus, the amplitude of the soli-
earity parameter of solutions,5(x, y,t)| and|us7(x,y,t)|  ton profile remains unchanged due to the balance of the wave
are shown in Figs. 8 and 9, respectively. It is palpable frondispersion and nonlinearity impacts of the model. The valid-
Figs. 8a)-e) that the intensities of the periodic wave profilety for the resulting outcomes was performed by substituting
decrease due to the increase of the nonlinearity parametetise attained solutions back into the equation of our choice
k =1,1.2, 1.4, 1.6, and 1.8, respectively. To justify suchthrough the use of Maple 17. Thus, the complete study ap-
shapes and characteristics of Figs. 8a)-e), the line variatioproves that the executed method is a powerful tool for pro-
of that profiles at = 1 is presented in Fig. 8f). The same ducing a variety of optical soliton solutions to NLEEs arising
behaviors are also found and displayed for the bright shapim optical fibers, and optical engineering. The outcomes ob-
soliton profiles, which are presented in Figs. 9a)-f). Fromtained in this study may illuminate the researchers for further
the above mentioned discussion, it is reasonable to mentiostudies to understand the unseen behaviors of soliton profiles
from the graphical outputs that the wave dispersighgnd  in the field of fiber optics and optical communications.
nonlinearity ¢) parameters of the model can play a notable

role in increasing and decreasing the wave profile intensity

for displaying the new wave characteristics. Therefore, it iACKnowledgments
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