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The dissipative motion and the rise of a heavy symmetrical top with a hemispherical peg are studied. A model taking the fixed point of the
top as the center of the peg is considered when the top completely slips and the rolling motion is ignored. This is different from existing

models like Jellet's one. Jellett's model and pure slipping are compared for different tops for the rise of the top, and an experimental method
to determine the better model is proposed.
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1. Introduction thing unintuitive: It rises the top. According to Gray, the first

statement that the rise occurs as a result of slipping is given
The motion of a heavy symmetric top with one point fixed by Smith [7]. Jellett explicitly gave equations for the rise of
is one of the interesting topics of classical mechanics. Irthe top without explicitly defining reaction force [5]. And,
some cases, one can consider the fixed point as the tip df that work, the center of mass is considered as fixed, and
the top [1]. And, for such considerations, the tip should beby using limit, it is shown that slipping causes an increase
taken as a point. On the other hand, in general, the top’s tifn the precession angular velocity which results in the rise.
is not completely fixed since the tip is not a point, and thePerry considered different observations related to the top and
top rolls and slips on the surface. The rolling motion occursgave verbal explanations to the rise by considering Jellett’s
due to rotations of the top, and the touchpoint can make somiodel [8].

circle-like paths on the surface [2, 3]. Later various scientists have studied the rise of the top.
One can consider two limiting cases for the motion of theFokker observed that the rise time is shorter for greater radii
top by accepting there is not any initial translational motion.which is consistent with Jellett's model [2]. Hugenholtz
In one case, there is not any slipping, and the top completelgave an explanation to the rise of the top by “rolling fric-
rolls on the plane. Rolling motion takes place when the spirtion” without writing equations explicitly [9]. Braams con-
angular velocity is not high and friction is not too low. This sidered “sliding friction” and its effect on the rise, and he
rolling motion can take place together with a periodic slip-stated that “sliding friction” contributes to the rise of the top
ping [3]. And, in general, there is not any fixed point whenin the fast precession, and he also stated that the “rolling fric-
the rolling motion is present. In the other limiting case, thetion” contributes to the rise without giving explicit equations
top completely slips on the surface, and it always touches gtL0]. Parkyn has considered the change of reaction force and
the same point on the surface. Contrary to rolling motion,change of the center of mass with respect to ground and given
slipping takes place if the friction is low enough and the spinrelated equations for the motion of the top including the rise
angular velocity is high enough. For the completely slippingterm [3]. Yogi has defined new angular velocities to avoid
case, the fixed point of the top can be taken as the center @fngularities and considered the change in the reaction force,
the peg when the bottom of the peg is hemispherical. Wend he has solved numerically resulting equations giving the
should note that the radius of the peg also affects rolling angise of the top [6]. Moffatiet al. have considered a new ref-
slipping conditions since it changes the velocity of the touch-erence frame which is a mixed one of stationary and body
point. Studying the motion of the top with a hemisphericalreference frames to study the motion of symmetric rigid bod-
peg is a previously used method [3—6]. ies without considering the change of reaction force [11]. We
Dissipative effects are important to explain the motion ofshould note that works of Jellett, Parkyn, Yogi and Mofétt
the top in daily life. In previous work, we considered air al. consider the top’s center of mass as fixed, and the rising
dissipation and friction at the touchpoint [1], and that modelterm is a function of the distance between the radius of the
does not give the rise of the top. At that work, one can find &2eg and the center of mass [3, 5,6, 11].
short summary of various works related to dissipative effects. Hugenholtz and Braams stated that “rolling friction” con-
In most of the situations that we encounter in daily life, tributes to the rise of a heavy symmetric top, however, their
friction results in the ceasing of motion. On the contrary,statement is vague since they did not give any explicit equa-
for the motion of a heavy symmetric top, friction does some-tions. All existing explicit models related to the rise of a
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heavy symmetric top are based on the friction at the touch-Z
point occurring as a result of slipping. Some authors have
used “sliding friction” to mention this, and Parkyn used slip-
ping to describe it. We will use slipping friction like Parkyn
since some people can understand “sliding friction” as ordi-
nary sliding, which is not the cause of the rise.

In general, there is not any fixed point of a heavy sym-
metric top. There is a drawing in Perry’s work showing the
center of mass of the top is fixed while rolling motion takes
place,i.e. figure 32 [8]. On the other hand, one can see from
a video for a rising top, available as supplementary material a) *' 6
in Cross’ experimental work [12], that as a result of rolling Figure 1. Heavy symmetric top, stationary reference frame
motion, the center of mass of the top is not fixed like Perry’S(m” y',2'), center of peg-body reference frame, ¢, z), line of
drawing. From that video, one can also see that the top alsaodesN, Euler anglesd, ¢, ), angular velocitiesé, ¢, 1)) and
nutates and precesses. And, the position of the center of masg touchpoint T. a) General view. b) Peg of the top.
changes due to these besides rolling motion. However, we
should note that there are some cases in which motion takdaken as the fixed point by considering pure slipping and ig-
place similar to Perry’s drawing, and in some of these casedioring rolling motion. In some other models, a body refer-
the position of the center of mass may not change. But, thi§nce frame whose origin is at the center of mass can be used.
does not describe the motion properly for all cases. ThenWVe will use the name the center of peg-body reference frame
it is possible to say that considering the center of mass a& emphasize the difference from that type of model. The
the fixed point is not true in general. On the other hand, thdi€mispherical peg touches the surface at p@irghown in
radial center of the peg does not change during the nutatiohig- 1b). As the top rotates, the position of the peg’s center
and precession, and one can accept it as the fixed point if ti@nd the point” on the surface do not change. However, the
rolling motion is ignored. And, in this work, we will consider Point on the peg touching the surface changes.
the fixed point of the top as the radial center of the peg and Rotations of the symmetric top/( = I,) can be de-
rotations around it, assuming rolling motion is not present. Scribed by Euler equations which can be written as

Another difference with previous works is that they take
the reaction force as torque affecting the motion of the top
which is not in this work. This is related to the choice of the Ty = Ipy + wew, (I, — I,), 1)
fixed point. We already mentioned that in some of the pre-
vious works, the reaction force is different from mass times

graVitational acce|erati0n [3, 6] On the Othel’ hal’ld, Quinr\NhereTi, Il andwi Correspond ta’th Component of torque,
and Picard measured the mass change of a gyroscope durigghments of inertia and angular velocity in the body coordi-

the rotation and find “no dependence on speed or sense of rizte system, respectively. In terms of Euler angles, angular
tation” in their experiment [13]. We should note that Quinn ye|qcities can be written as

and Picard used a gyroscope with casings which is different ) )
from the symmetric top. Nevertheless, in this work, we will wy = O costp + ¢sinfsin,
assume that the reaction of the surface is equal to mass times - -
gravitational acceleration. q wy = —0siny + ¢sinb cos 1), (2)

In Sec. 2, we will derive equations defining the motion of w, = ¢ + ngcos 9,
the top with a hemispherical peg when the rolling motion is o )
not present and the fixed point is the center of the hemisphewheret, ¢ and+ are nutation, precession and spin angular
ical peg. We will include air dissipation and slipping friction velocities, respectively. These can be seen in Fig. 1.
at the touchpoint. In Sec. 3, we will review Jellett's model. By considering pure slipping, one can obtain the slipping
In Sec. 4, we will numerically solve obtained equations for avelocity of the touchpoint of the top by using= @ x 7 =
dissipative experimental situation and two hypothetical topst x (—R,2’) as
to study the rise, and then we will conclude in Sec. 5.

Ty = Iy + wyw, (I, — 1),

Ty = Isz7

7 = Ry[(f cosfsinyp + ¢ sin  cos 1) &

2. Pure slipping model + (BcosBcosty —sinfsiny)g + (—0sinh)Z], (3)
whereR,, is the radius of the hemispherical peg. From this
In Fig. 1a), one can see a symmetric top, body referencequation, it can be seen that, as expected, the slipping ve-
frame(x,y, z) and stationary reference franie’,y’, z’) to-  locity is independent of the precession angular velogity
gether with line of node#V. Origins of the reference frames which takes place on the vertical axis passing through the
are placed to the center of the hemispherical peg since it is center of the peg and the touchpoint. The friction should be
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in the reverse direction of the touch point’s velocity and can

be written asf = —kNu/|5|, wherek is the positive fric-
tion constant, and the reaction force is takemM\as= Mg. . LOcosf . - 20 cos? 0
Then, the torque due to this friction can be obtained by using Y= T sing (¥ + pcosb) + “ang

T=R,x fas

—|—9'q.bsin9+c¢'50059 (1 — 1)

B k;NRZ%[( G conp + sin B casBsin)é I I,
T = g —U COS S1n ¢ COS U S1n x . . .
|0 N d1tp + dotp? B kM gR24) (sin2 0 N c0529> ©)
+ (9sin¢+¢sin0cot900sw)g+ (ﬂj;Sin2 0)z], 4) I, |71 I, Iy ’
. L g2 where moments of inertia should be calculated by consider-
where[d] = R,/ 6% 4 ¢?sin” 0. ing that rotations take place around the peg’s center. These

Air dissipation is another factor in the motion of the top, equations describe rotations of the heavy symmetric top when
and characteristics of this dissipation for the spin angular vethe center of the peg is fixed, air dissipation is included ac-
locity and nutation & precession angular velocities are dif-cording to mentioned models, the touchpoint of the peg slips
ferent. Skin friction drag is mainly responsible for air dis- on the ground and the rolling motion is not present. When
sipation of streamlined bodies, and pressure drag is mainlgissipative terms are set to zero, these equations become the
responsible for air dissipation of blunt bodies [14]. Thesesame as the ones obtained from Lagrangian [15].
can depend on various factoesg the density of the fluid, The termkMgR]%vj; cos0/(I,|7]) is the rise term of this

the cross-section of the body, relative velocity. However, in,,qe| There are two roots for regular precession in general,
this work, we will not go into details and use simple mod- 5, thege roots can be obtained from the equation giing
els. Skin friction drag is mainly responsible from air dis- , |atting § — 0 in the dissipation-free case. The mentioned
sipation for the spin angular velocity, an_(12 this dissipativegq ation is quadratic iy which can be seen from the first
torqug can.be mOde”e‘?‘ ay = (dlw,"r d2yp”) 2. Pr?SS“fe equation of Eq.l6) by ignoring dissipative terms. For ordi-
drag is mainly responsible for nutation & precession anguy,ry tops i is negative between these two roots, and one can

lar velocities, and corresponding dissipative torque can bg,jerstand the effect of the rise term by considering that if

. L= . A ~ - A L. .
written as: 7, - Cl?(COS Ve - &Hwy)Aa”dT_aﬁ = @0 = jisequal to the smaller root of regular precession, then any
C2¢(sin@sin i + sinf cos g + coshz). Since the origin  increase inj can result in negativé and the rise of the top.
of dissipations due to nutation & precession angular velociThen, one can say that the rise term can nfakegative by

ties are the same and the cross-sections are the same for bg{reasing¢ which is the situation in the cases considered
rotations, air dissipation coefficients for nutation & preces-pe|ow.

sion angular velocities can be considered as the same,

¢ = ¢1 = 2. Signs ofc andd, should be negative, and the ;..o touchpoint due to motion thsince|d| << |1}
sign ofds should be negative of the sign of and obtain

In the body coordinate system, the gravitational torque
can be written as

One can simplify this model by ignoring air friction and

_IZ(;.SSmH

6= 7 () 4 ¢ cosb)
7y = —Mglsin §(— cos 4 + sin1j), (5) ¥ R
. Mgl
-, ) + ¢?sinf cos 0 + g sin 6,
wherel is the distance from the peg’s center to the center of P
mass. - Le . . 206 cos 0
If one includes all of the mentioned torques in Euler equa- ¢ = I, sinf (¢ + ¢ cosl) — “sing
tions, one can get the following equations )
kMgRZ%w cos 6
I.¢sind L |v] ’ )
9:—217(1/1+¢C089)+¢281n96059 .x o
x - I,0cosf,. . 20¢ cos* 0
- . . =2 s9) 4+ 2 7
Mgl . ct kMng;@ v I;sinf (¥ + ¢oosf) + sin
+ sinf + — — —=—, .
I, I, L.|7| S kMgR2) (sin?6  cos®0
1.4 906 cos 0 + 0¢psinf — 7 7 + 7 .
. > . . CcoS v z T
9= 1, sinﬁ(dj + ¢ cosf) - sin 6
M oR2 cos One can see that all dissipative effects are related to motion
¢ w’ in ¢ in these equations, and they originate from the friction
Iy 1| ] at the touchpoint.
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which linearly depends oh It can be seen that this is differ-
ent from the rise term obtained by considering pure slipping.

In this part, we will write Jellet's model in terms of the pa- we should note that signs of dissipative terms should be de-
rameters of this work. We should note that Jellett used agermined by considering the sign of

upside-down center of mass-body reference frame, and for
simplicity ignored air dissipation and frictions with respect
to # and¢. We will write Jellett's parameters inside square

parentheses to eliminate confusion.
Jellett aave equations for the rise of the ton in Eds. (4) a In this section, we will numerically solve different cases with
9 9 P gs. (4) an stud|ed models. Firstly, we will numerically solve a pre-

(S)tltn his \;vork [S]f Jellett stparamgters atr)lld va??r?les cakn be viously experimentally studied case with the pure slipping
written in terms of parameters and variables of this wor asmodel which is Fig. 5 in Cross’ work [12]. This case is

(01 =0, [¥] = ¢, [9] i ﬂh[ﬁ cose] =N, [¢] = Ry sinf, also studied with a different model, previously [1]. To get
] ~ L+ Rycost, [] = lsin0, [2] = R, +_lcos0 and consistent results with the figures given in the experimental
[Rsing] = —f. Due to the usage of the upside-down cen- work, we will take ¢ andy as negative similar to previous
ter of mass-body reference frame, the spin angle and frICtIOQIOI_k Then, we will study the rise of the top with the dissi-
force get a.r.nmus sign. In Jellett's work, the reaction forCepatlon related parameters which are obtained by considering
IS nqt specm_ed, and we will takey _,Mg' Th_en, onecan e experimental case. We will also consider the simplified
obtain equations .Of motion fqr Jellett's mode_l n t_erms of pa'pure slipping model to get a better comparison with Jellett’s
rameters and variables of this work by considerfng: Nk model since air dissipation and friction at the touchpoint due

as to motion inf are ignored in these two models.

3. Jellett’s model for the rise of the top

4. Numerical solutions

z¢51n9
I,

6 = ———=— (¢ + dcos0) 4.1. Dissipative motion

By using given values in the experimental work for Fig. 5,

. Mol
+ ¢?sinf cos 6 + gt

x

sin 6,

parameters of the top becom&s = 105 gr, I = 20.9 mm,

Ry

0.l mm, I, = 844 x 107° Kg m?> and I, =

§= Lo LYt deoso) — 20 cos 0 7.23 x 105 Kg m? where moments of inertia are calculated
I, sinf sin 0 according to the peg’s center. The initial values are taken as
0y = 0.117 rad,fy = 2.23rad s!, ¢o = —17.1 rad !
+ Mgk({pr cos 9)7 (8) and ¢0 = —126 rad s ! which are the same with previ-
Iy sin6 ous model. To get consistent results with experimental re-
. I 0 cos 0 éd')COSQo o sults, dissipative constants are taken &as:= 0.03, ¢ =
L e (0 + deost) + — —— + 0psin0 —6.3 x 1070 kgn? 7!, d; = —1.1 x 107 kgn? s,
sin dy = —sgnm(1)1.1 x 10~8 kgm?. These constants are not
M gk cos 0(1 + R,cosf) MgkR,sin6 the same as the previous model since models are different.
B I,sin6 B I ‘ The gravitational acceleration is takengs 9.81 ms~2.

Results of numerical solutions férand angular veloc-

We have used; to emphasize that moments of inertia shouldities can be seen in Fig. 8 in the appendix. Projections of
be calculated in the center of mass-body reference frame. Ishapes for the locus can be seen in Fig. 2. One can see that
Jellett's model the rise term &/ gk(l + R, cos6) /(I sin 6)

these are very similar to the experimental results.

1 o1} 01 | | 0.1-'ﬁ'r\'-
1 0p€ (N 10} :
{ 01t w 101} 1 01F :
| | | ] ] ] | | |
01 0 01 01 0 01 01 0 01
X X X X

FIGURE 2 . Projections of shapes for the locus of the figure axis. Time intervals (in seconds) for figures as follg&$3,8.45], b)

[18.00,19.48] c) [23 60,24.87] d) [27.80, 28.86).

o =

—126 rads!

Initial values arefy = 0.117 ,rad,fy = —2.23 rads

1 $o = —17.1 rads* and
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We should note that there are some differences betweeh2. Rise of the top
the results of the previous model and this model. Fluctuations o _ . .
in # and angular velocities are larger in the previous model!n this part, we will first consider the rise of the top with a
however, they are damped by the dissipative factors at the erypothetical top that is slightly different from the top consid-
of 31 seconds. On the other hand, they are not damped in th@fed in the previous example. We will add this hypothetical
model. The main reason for this should be related to the cof®P @ hemispherical peg with radiug, = 6.0 mm. The
stant friction term in the previous model, which is consideredn@ss of the top will be taked/ = 110 gr, and the dis-
for the friction at the touchpoint. In this model, this friction tance between the center of mass and center of the peg will
shows itself as functions &f/|5] and ) sin 6/|4] in torque, D€ taken ag; = 20 mm. We need moments of inertia in
andé /|| is small andy sin 6/|7] is close to one. Then, the WO reference frames which will be taken as follows =
fluctuations ind are damped more slowly in this model. We 8-52x 107° kg m? andZ, = 7.25 x 10~° kg m* in the center
should also mention that there is a slight rise in the averag8f Peg-body reference frame, aiid = 4.08 x 10~ kg m’
value of¢ which can be seen in Fig. 8) in the appendix. Suctfnd [: = 7.25 x 107° kg n¥ in the center of mass-body
a rise is not observed in the previous model. However, it ijeference frame. o
hard to determine this slight rise without taking average be- We will numerically solve a case by the pure slipping and
cause of the high fluctuations. On the contrary, an increase ofe!lett’s models for this top. Then, we will consider another
0 is observed in the experiment, which is not observed in thiglyPothetical top and compare the pure slipping, the simpli-
and previous models. Nevertheless, these show themselvfgd pure slipping and Jellett's models. We will cut numerical
with some small differences in the shapes for the locus. AngSolutions when the top .re'a.ches nearly uprlght positien,
the results of both models for the shapes for locus are simildf = 0.02 rad, due to infinities at = 0. We will consider

to the experiment. configurations giving regular precession initially to reduce
the fluctuations with two exceptions which will be explained
later.
-\.\HI\ | T I T T I O
0.4 | &
g | @
= ® -0.02
02 1 =
0 L | L ] L | L ] __004
0 i 10 15 20 b)
a)
t(s)
= : ; — ,
Q) 0
k E
- .5
. | s L . |
0 5 10 15 20
c) t(s) d)
FIGURE 3. Results of the numerical solution féra), § b), ¢ c) and+) d). Initial values:fp = 0.5rad,fo = 0, do = —1.49 rads ' and

o = —200 rad s *. The parameters of the top are given in Sec. 4.2.
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209

T 0.5 0 0.5
a) X ___0‘505 b)

FIGURE 4. Shapes for the locus a) and its projection orcteplane b) for the rise of the top. Initial values are given in Fig. 3, and the
solution is obtained by considering the pure slipping model.

4.2.1. Pure slipping the average value éfdoes not change much, and it is around
—1.6 rad s'!. Fluctuations of) also increase, and its aver-

In this part, we will study the rise of the mentioned hypo- 3ge changes from1.48 rad s to —1.6 rad s°! which is

thetical top by using Eqs6f. We will take initial values |ess than previous modai: also fluctuates toward the end of

as follows# = 0.5 rad, 0 = 0, ¢p = —1.49 rad s' and  the rise and its average becomes94 rad s'* whose mag-

Yo =—200rad s o . nitudes are much more than the one in the pure slipping as
Results of the numerical solution fér 6, ¢ and+) can 3 result of ignoring air dissipation. The growth of fluctua-

be seen in Fig. 3. One can see from Fig. 3a) that the tofions occurs due to ignoring air dissipation and fluctuations

rises, and it comes nearly vertical position2h8 seconds. in relative small values df.

It can be seen from Fig. 3b) that there is a negligible nuta-  |n Fig. 6a), one can see the shapes for the locus for numer-

tion, which does not affect the motion much. It can be seefcal results. It can be seen that the top rises again by making

from Fig. 3d) that the magnitude of decreases which is an g spiral shape with fewer windings.

expected result of dissipation. Its decrease is slightly faster

in the beginning, and the main reason for this is the air dis4.2.3.  Comparison

sipation. It changes from200 rad s™! to —77 rad s™* dur-

ing the rise. It can be seen from Fig. 3c) that the magnitudén this part, we will study and compare the pure slipping

of ¢ increases which is the result of the rise term originat-model, the simplified pure slipping modéke. Eq. [7), and

ing from the dissipative torque at the touchpoint. Its averagdellett’s model. We will consider the simplified pure slipping

value changes from1.49rad s ' to —3.9rad s™!, and there  to get a better comparison due to the absence of air dissi-

are some fluctuations as a result of nutation. pation and frictional effect arising from similar to Jellett's
In Fig. 4, one can see the shapes for the locus during therodel.
rise and its projection ont@y-plane. A spiral structure is Since the most obvious difference in the pure slipping and

observed during the rise. We should note that this motion idellett’s models is the dependence of the rise terrhiodel-
different from “spiraling motion” which can be seen when lett's model, we will consider a second top whose distance
conserved angular momenta are equal to each other [4, 16].between the center of the peg and the center of mass is dou-
ble of the previously considered top. This can be done by
4.2.2. Jellett's model changing the position of the top’s disc, see Fig. 1. For such a
change, the moment of inertia of the symmetry aiisloes
In this part, we will consider the rise of the top with Jellett's not change but moment of inertia of the transverse #@xis
model,i.e. Egs. 8). Moments of inertia obtained by consid- does.
ering the center of mass-body reference frame will be used, We have already given parameters of the previously con-
and initial values will be the same as the previous solutiorsidered top, which we will name as top 1 from now on, and
exceptpy which should be changed slightly in order to get athe one with doubled as top 2. For the top 2, the mass, the
regular precession at the beginning, ¢y = 1.48 rad s*. radius of the peg and.. (andI,) will be the same as the top
The results of the numerical solution can be seenin Fig. 51, and the distance between the center of mass and the cen-
There are some changes from the previous results. It can tier of the ped:» will be equal to40 mm. The moment of
seen that the top rises #118 seconds which is much faster inertia about tranverse axis of top/ . in the center of peg-
than the previous model, and it is the result afependent body reference frame will be taken 88.3 x 10~ kg nm?,
rise term. Fluctuations of increase as time passes, which andftm = 4.64 x 10~° kg m? in the center of mass-body
are nearly ten times more than the pure slipping model. Butieference frame.
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. I = -200
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. | , 210 . L P B |
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c) d) t (s)
FIGURE 5. Results of the numerical solution by considering Jellett's modebfa}, § b), ) c) and¢ d). Continuous (blue) lines show
results of numerical solutions, and dashed (black) lines show averages. Initial véjues0.5rad, 6y = 0, g0 = —1.48 rads* and
1o = —200 rads .
1 —D 0.5 .
e i
Z 0.9 >~ ot ( 72 )
T R ‘\\ \\.\ ) 5 A d v
/ 05 L
-0. > 05 i .
7y 05 0 05
a) - 05-05 b) X

FIGURE 6. Shapes for the locus a) and its projection on:geplane b). Initial values are given in Fig. 5.

We will use the weak top condition to get clear dis- minimum of the effective potential is betweérandr [16].
crimination between the pure slipping and Jellett’s modelsin general, the conserved angular momenta can be different
The weak top condition is obtained from regular precessiorand the situation is not this much clear, but there are similar-
and gives a relation between = Ig(’t/.} — ¢ cos 0)/I; and ities and the weak tops are not stable and they do not rise in

/4Mgi/11. If |a| is smaller tha 4Mgl~/11, then the top gengral. One can use the Wgaktop condition to make discrim-
is considered as weak top [17]. If the top is weak then thdnation between the pure slipping _mod_el and Jellet's model:
minimum of the effective potential occurs at greater angled" these two models, moments of inertia related to the trans-
and these tops are not stable. This can be seen from the cadySe axis are differente. I, # I, which results in the
that both conserved angular momenta are equal to each oth&fak top condition for one model and the strong top con-
for ordinary tops: If the top is strong, then the minimum of dition for the other model for the same precession angular

the effective potential is a@ = 0; if the top is weak, then the velocity ¢, and since the weak top does not rise, one can use
this situation to make a discrimination between models.
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FIGURE 7. Results of the numerical solution férfor top 1 (upper three graphs) and 2 (lower three graphs) with different inigiand
$o values. Continuous (black) lines show resultsfgr= —50 rads™!, dotted (green) lines show results 6§ = —100rads*, dashed-
dotted (blue) lines show results fof, = —150rads™*, dashed (red) lines show results fps = —200rads ', dashed-double dotted

(violet) lines show results fofy = —250rads™*. 6y = 0.5 rad andd, = 0 for all casesz, values are chosen very close to smaller root of

br2 = (—Iztp — \/(131/})2 + 4Mgl cos0)/[2(Is — I1) cos 0] except the situationy = —50rads ™ for the pure slipping and simplified
pure slipping models, in whict, = —35rads™*

We should note that this discrimination works approxi- plains the difference in rise times between the pure slipping
mately when conserved angular momenta are not equal t@and simplified slipping models since air dissipation helps the

each other. For top 14/4Mglyi/I;1, = 31.8 rad s@  decrease of} in the pure slipping. The dependence of the

—— rise term onl in Jellett’s model causes a faster rise of tops in
and \/ 4Mglt1/It1,:L' = 46.0 rad S_l. For tOp 2: all cases.

\/4Mglys/Iia, = 27.8 rad s' and /4Mglia/Irn, = In previously mentioned exceptional two situations, top
61.0rad s !. 2 does not rise and fall. On the other hand, top 2 rises in

We will consider five different), values for both tops, the corresponding situation when the solution is obtained by
and we will numerically solve these 10 cases with mentioned!sing Jellett's method. For mentioned two situation$,=
models. For all casesy = 0.5 rad andd, = 0. ¢y changes 26 2rads™! which is smaller thar27.8rads™! in the pure
from —50 rad s! to —250 rad s°! with 50 rad s ! decre- Slipping and simplified pure slipping models; but in Jellett's
ments, and correspondinig values are taken as very close Model,|a| = 93.3rads ! which is greater thafl.0rads .
to the ones giving regular precession with two exceptionall Nen, this case gives weak top for the pure slipping and sim-
situations. We should note that for the pure slipping and simPlified pure slipping models, which results in fall. On the
plified pure slipping modelsp, are taken as the same since other hand, this situation is not weak in the center of mass-
I, are the same for these models, ands slightly different ~ body reference frame, and top 2 rises in the corresponding
for Jellett's model sincd, is different. In exceptional situa- Situation in Jellett's model.
tions,¢» = —50 rad s ! for the pure slipping and simplified Another remarkable thing is seen when top 2 is not weak
pure slipping models for top 2, the top is weak and regularand not strong enough for the whole rise in the pure slip-
precession is not possible, and for these two situatigps, ping model. It can be seen from Fig. 7d) that top 2 does
is taken as-35.0 rad s”!. One can see results of numerical not completely rise in the pure slipping model whegn =
solutions ford for mentioned 30 situations in Fig. 7. —100rads ! andyy = —150rads . The top rises at the
The upper three graphs of the Fig. 7 show results for top beginning, and during this process, its spin angular velocity
with the order the pure slipping, the simplified pure slippingdecreases mainly due to air dissipation, and it starts to fall
and Jellett's models, and the lower three graphs show correroundt = 4.9s andt = 13.9s, respectively, and numeri-
sponding ones for top 2. It can be seen that as the magnitudml results show that in these cases, top 2 becomes weak at
of 1 increases the rise time increases which arises from the = 4.7s andt = 13.7s, respectively. On the other hand, it
need for greatep values for the rise. The same thing also ex-rises entirely in Jellett’s model and simplified pure slipping.
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The reason for the rise in simplified pure slipping is the ab-slipping model are bigger, and any change in the dissipative
sence of air dissipation. constants does not substantially affect the following com-
When top 2 is strong enough for the whole rise in thements.

pure slipping model, it is possible to compare rise times of One can use strong tops and compare changes in rise
different models. The percentage differences in the rise timémes and decide the better model. By looking at the dif-
are 15% are 11% for the last two cases in the pure slippingerence between the simplified pure slipping and pure slip-
model, they are 7% and 4% in the simplified pure slippingping models, one can say that if one includes air dissipation
model, and they are 43% in Jellett's model. and friction due td at the touchpoint in Jellett’s model, the
rise time should decrease. However, this decrease should
be smaller than the difference between the simplified pure
slipping and pure slipping models, since rise time in Jellett's

We have studied dissipative motion and the rise of the heav{nodel is smaller. By considering the results of numerical so-
symmetrical top with a hemispherical peg. Differently from utions, one can say that after doubling the distance between
previous works, we studied motion by considering the radiafhe center of mass and the center of the peg, the rise time
center of the hemispherical peg as the fixed point of the topshould decrease. For strong tops, if the rise time changes
From the derivation, we obtained the rise term as a functiof@round 15% then the pure slipping model is better; on the
of the radius of the ped,, which is consistent with the ex- other hand, if the rise time changes around 40% then Jellett's
periments [2]. On the other hand, in Jellett's model [5], and inmodel is better. We should note that the friction coefficient
other similar ones [3, 6, 11], the center of mass is considere@nd the radius of the peg should be convenient to get a longer
as the fixed point and the rise term is a functiord tfgether rise time which may provide better data for discrimination.
with R,,. Obviously, one can use the weak top condition to decide

The difference between the rise terms provides the possthe better model. If one makes an experiment with a case that
bility of determination of the better model with simple exper- iS weak in center of peg-reference frame and strong in center
iments. By using a top with a changeable disc position, it isof mass-reference frame, then one can easily decide the bet-
possible to change the position of the center of mass whicker model: If the top rises, then Jellett’s model is better; and
can provide necessary experimental data. if it falls, then the pure slipping model is better.

We should note that we have determined dissipative con-
stants according to the pure slipping model by consideringAppendix A
an experimentally studied case. There should be some dif-
ferences in these constants if one had used any other modé&ligure A.1 shows results of numerical solution for dissipative
However, the differences between Jellet’'s model and the pummotion forf and angular velocities.

5. Conclusion

0.14 3
,
0.12 1
S v
< 0.1 g0
@ : T 3
0.08 2
-3
a) b)
w )
- s

c) d)

FIGURE A.1. Results of the numerical solution for the dissipative motiorgfai, § b), ¢ c) and d). Continuous (blue) lines show results
of numerical solution and dots (black) show nutation average. Initial values are the same as Fig. 2.
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