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The dissipative motion and the rise of a heavy symmetrical top with a hemispherical peg are studied. A model taking the fixed point of the
top as the center of the peg is considered when the top completely slips and the rolling motion is ignored. This is different from existing
models like Jellet’s one. Jellett’s model and pure slipping are compared for different tops for the rise of the top, and an experimental method
to determine the better model is proposed.
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1. Introduction

The motion of a heavy symmetric top with one point fixed
is one of the interesting topics of classical mechanics. In
some cases, one can consider the fixed point as the tip of
the top [1]. And, for such considerations, the tip should be
taken as a point. On the other hand, in general, the top’s tip
is not completely fixed since the tip is not a point, and the
top rolls and slips on the surface. The rolling motion occurs
due to rotations of the top, and the touchpoint can make some
circle-like paths on the surface [2,3].

One can consider two limiting cases for the motion of the
top by accepting there is not any initial translational motion.
In one case, there is not any slipping, and the top completely
rolls on the plane. Rolling motion takes place when the spin
angular velocity is not high and friction is not too low. This
rolling motion can take place together with a periodic slip-
ping [3]. And, in general, there is not any fixed point when
the rolling motion is present. In the other limiting case, the
top completely slips on the surface, and it always touches at
the same point on the surface. Contrary to rolling motion,
slipping takes place if the friction is low enough and the spin
angular velocity is high enough. For the completely slipping
case, the fixed point of the top can be taken as the center of
the peg when the bottom of the peg is hemispherical. We
should note that the radius of the peg also affects rolling and
slipping conditions since it changes the velocity of the touch-
point. Studying the motion of the top with a hemispherical
peg is a previously used method [3–6].

Dissipative effects are important to explain the motion of
the top in daily life. In previous work, we considered air
dissipation and friction at the touchpoint [1], and that model
does not give the rise of the top. At that work, one can find a
short summary of various works related to dissipative effects.

In most of the situations that we encounter in daily life,
friction results in the ceasing of motion. On the contrary,
for the motion of a heavy symmetric top, friction does some-

thing unintuitive: It rises the top. According to Gray, the first
statement that the rise occurs as a result of slipping is given
by Smith [7]. Jellett explicitly gave equations for the rise of
the top without explicitly defining reaction force [5]. And,
in that work, the center of mass is considered as fixed, and
by using limit, it is shown that slipping causes an increase
in the precession angular velocity which results in the rise.
Perry considered different observations related to the top and
gave verbal explanations to the rise by considering Jellett’s
model [8].

Later various scientists have studied the rise of the top.
Fokker observed that the rise time is shorter for greater radii
which is consistent with Jellett’s model [2]. Hugenholtz
gave an explanation to the rise of the top by “rolling fric-
tion” without writing equations explicitly [9]. Braams con-
sidered “sliding friction” and its effect on the rise, and he
stated that “sliding friction” contributes to the rise of the top
in the fast precession, and he also stated that the “rolling fric-
tion” contributes to the rise without giving explicit equations
[10]. Parkyn has considered the change of reaction force and
change of the center of mass with respect to ground and given
related equations for the motion of the top including the rise
term [3]. Yogi has defined new angular velocities to avoid
singularities and considered the change in the reaction force,
and he has solved numerically resulting equations giving the
rise of the top [6]. Moffattet al. have considered a new ref-
erence frame which is a mixed one of stationary and body
reference frames to study the motion of symmetric rigid bod-
ies without considering the change of reaction force [11]. We
should note that works of Jellett, Parkyn, Yogi and Moffattet
al. consider the top’s center of mass as fixed, and the rising
term is a function of the distance between the radius of the
peg and the center of mass [3,5,6,11].

Hugenholtz and Braams stated that “rolling friction” con-
tributes to the rise of a heavy symmetric top, however, their
statement is vague since they did not give any explicit equa-
tions. All existing explicit models related to the rise of a
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heavy symmetric top are based on the friction at the touch-
point occurring as a result of slipping. Some authors have
used “sliding friction” to mention this, and Parkyn used slip-
ping to describe it. We will use slipping friction like Parkyn
since some people can understand “sliding friction” as ordi-
nary sliding, which is not the cause of the rise.

In general, there is not any fixed point of a heavy sym-
metric top. There is a drawing in Perry’s work showing the
center of mass of the top is fixed while rolling motion takes
place,i.e. figure 32 [8]. On the other hand, one can see from
a video for a rising top, available as supplementary material
in Cross’ experimental work [12], that as a result of rolling
motion, the center of mass of the top is not fixed like Perry’s
drawing. From that video, one can also see that the top also
nutates and precesses. And, the position of the center of mass
changes due to these besides rolling motion. However, we
should note that there are some cases in which motion takes
place similar to Perry’s drawing, and in some of these cases,
the position of the center of mass may not change. But, this
does not describe the motion properly for all cases. Then,
it is possible to say that considering the center of mass as
the fixed point is not true in general. On the other hand, the
radial center of the peg does not change during the nutation
and precession, and one can accept it as the fixed point if the
rolling motion is ignored. And, in this work, we will consider
the fixed point of the top as the radial center of the peg and
rotations around it, assuming rolling motion is not present.

Another difference with previous works is that they take
the reaction force as torque affecting the motion of the top
which is not in this work. This is related to the choice of the
fixed point. We already mentioned that in some of the pre-
vious works, the reaction force is different from mass times
gravitational acceleration [3, 6]. On the other hand, Quinn
and Picard measured the mass change of a gyroscope during
the rotation and find “no dependence on speed or sense of ro-
tation” in their experiment [13]. We should note that Quinn
and Picard used a gyroscope with casings which is different
from the symmetric top. Nevertheless, in this work, we will
assume that the reaction of the surface is equal to mass times
gravitational acceleration.

In Sec. 2, we will derive equations defining the motion of
the top with a hemispherical peg when the rolling motion is
not present and the fixed point is the center of the hemispher-
ical peg. We will include air dissipation and slipping friction
at the touchpoint. In Sec. 3, we will review Jellett’s model.
In Sec. 4, we will numerically solve obtained equations for a
dissipative experimental situation and two hypothetical tops
to study the rise, and then we will conclude in Sec. 5.

2. Pure slipping model

In Fig. 1a), one can see a symmetric top, body reference
frame(x, y, z) and stationary reference frame(x′, y′, z′) to-
gether with line of nodesN . Origins of the reference frames
are placed to the center of the hemispherical peg since it is

FIGURE 1. Heavy symmetric top, stationary reference frame
(x′, y′, z′), center of peg-body reference frame (x, y, z), line of
nodesN , Euler angles (θ, φ, ψ), angular velocities (̇θ, φ̇, ψ̇) and
the touchpoint T. a) General view. b) Peg of the top.

taken as the fixed point by considering pure slipping and ig-
noring rolling motion. In some other models, a body refer-
ence frame whose origin is at the center of mass can be used.
We will use the name the center of peg-body reference frame
to emphasize the difference from that type of model. The
hemispherical peg touches the surface at pointT shown in
Fig. 1b). As the top rotates, the position of the peg’s center
and the pointT on the surface do not change. However, the
point on the peg touching the surface changes.

Rotations of the symmetric top (Iy = Ix) can be de-
scribed by Euler equations which can be written as

τx = Ixẇx + wywz(Iz − Ix),

τy = Ixẇy + wxwz(Ix − Iz), (1)

τz = Izẇz,

whereτi, Ii andwi correspond toith component of torque,
moments of inertia and angular velocity in the body coordi-
nate system, respectively. In terms of Euler angles, angular
velocities can be written as

wx = θ̇ cos ψ + φ̇ sin θ sin ψ,

wy = −θ̇ sin ψ + φ̇ sin θ cos ψ, (2)

wz = ψ̇ + φ̇ cos θ,

whereθ̇, φ̇ and ψ̇ are nutation, precession and spin angular
velocities, respectively. These can be seen in Fig. 1.

By considering pure slipping, one can obtain the slipping
velocity of the touchpoint of the top by using~v = ~w × ~r =
~w × (−Rpẑ

′) as

~v = Rp[(θ̇ cos θ sin ψ + ψ̇ sin θ cos ψ)x̂

+ (θ̇ cos θ cosψ − ψ̇ sin θ sin ψ)ŷ + (−θ̇ sin θ)ẑ], (3)

whereRp is the radius of the hemispherical peg. From this
equation, it can be seen that, as expected, the slipping ve-
locity is independent of the precession angular velocityφ̇
which takes place on the vertical axis passing through the
center of the peg and the touchpoint. The friction should be
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in the reverse direction of the touch point’s velocity and can
be written as~f = −kN~v/|~v|, wherek is the positive fric-
tion constant, and the reaction force is taken asN = Mg.
Then, the torque due to this friction can be obtained by using
~τ = ~Rp × ~f as

~τ =
kNR2

p

|~v| [(−θ̇ cos ψ + ψ̇ sin θ cos θ sin ψ)x̂

+ (θ̇ sin ψ + ψ̇ sin θ cot θ cos ψ)ŷ + (−ψ̇ sin2 θ)ẑ], (4)

where|~v| = Rp

√
θ̇2 + ψ̇2 sin2 θ.

Air dissipation is another factor in the motion of the top,
and characteristics of this dissipation for the spin angular ve-
locity and nutation & precession angular velocities are dif-
ferent. Skin friction drag is mainly responsible for air dis-
sipation of streamlined bodies, and pressure drag is mainly
responsible for air dissipation of blunt bodies [14]. These
can depend on various factors,e.g. the density of the fluid,
the cross-section of the body, relative velocity. However, in
this work, we will not go into details and use simple mod-
els. Skin friction drag is mainly responsible from air dis-
sipation for the spin angular velocity, and this dissipative
torque can be modelled as~τψ̇ = (d1ψ̇ + d2ψ̇

2)ẑ. Pressure
drag is mainly responsible for nutation & precession angu-
lar velocities, and corresponding dissipative torque can be
written as:~τθ̇ = c1θ̇(cos ψx̂ − sin ψŷ) and~τφ̇ = c2φ̇ẑ′ =
c2φ̇(sin θ sin ψx̂ + sin θ cosψŷ + cos θẑ). Since the origin
of dissipations due to nutation & precession angular veloci-
ties are the same and the cross-sections are the same for both
rotations, air dissipation coefficients for nutation & preces-
sion angular velocities can be considered as the same,i.e.
c = c1 = c2. Signs ofc andd1 should be negative, and the
sign ofd2 should be negative of the sign ofψ̇.

In the body coordinate system, the gravitational torque
can be written as

~τg = −Mgl̃ sin θ(− cos ψx̂ + sin ψŷ), (5)

wherel̃ is the distance from the peg’s center to the center of
mass.

If one includes all of the mentioned torques in Euler equa-
tions, one can get the following equations

θ̈ = −Izφ̇ sin θ

Ix
(ψ̇ + φ̇ cos θ) + φ̇2 sin θ cos θ

+
Mgl̃

Ix
sin θ +

cθ̇

Ix
− kMgR2

pθ̇

Ix|~v| ,

φ̈ =
Iz θ̇

Ix sin θ
(ψ̇ + φ̇ cos θ)− 2θ̇φ̇ cos θ

sin θ

+
cφ̇

Ix
+

kMgR2
pψ̇ cos θ

Ix|~v| ,

ψ̈ = −Iz θ̇ cos θ

Ix sin θ
(ψ̇ + φ̇ cos θ) +

2θ̇φ̇ cos2 θ

sin θ

+ θ̇φ̇ sin θ + cφ̇ cos θ

(
1
Iz
− 1

Ix

)

+
d1ψ̇ + d2ψ̇

2

Iz
− kMgR2

pψ̇

|~v|
(

sin2 θ

Iz
+

cos2 θ

Ix

)
, (6)

where moments of inertia should be calculated by consider-
ing that rotations take place around the peg’s center. These
equations describe rotations of the heavy symmetric top when
the center of the peg is fixed, air dissipation is included ac-
cording to mentioned models, the touchpoint of the peg slips
on the ground and the rolling motion is not present. When
dissipative terms are set to zero, these equations become the
same as the ones obtained from Lagrangian [15].

The termkMgR2
pψ̇ cos θ/(Ix|~v|) is the rise term of this

model. There are two roots for regular precession in general,
and these roots can be obtained from the equation givingθ̈
by letting θ̈ = 0 in the dissipation-free case. The mentioned
equation is quadratic iṅφ which can be seen from the first
equation of Eq. (6) by ignoring dissipative terms. For ordi-
nary tops,̈θ is negative between these two roots, and one can
understand the effect of the rise term by considering that if
φ̇ is equal to the smaller root of regular precession, then any
increase inφ̇ can result in negativëθ and the rise of the top.
Then, one can say that the rise term can makeθ̈ negative by
increasingφ̇ which is the situation in the cases considered
below.

One can simplify this model by ignoring air friction and
friction at the touchpoint due to motion inθ since|θ̇| << |ψ̇|
and obtain

θ̈ = −Izφ̇ sin θ

Ix
(ψ̇ + φ̇ cos θ)

+ φ̇2 sin θ cos θ +
Mgl̃

Ix
sin θ,

φ̈ =
Iz θ̇

Ix sin θ
(ψ̇ + φ̇ cos θ)− 2θ̇φ̇ cos θ

sin θ

+
kMgR2

pψ̇ cos θ

Ix|~v| , (7)

ψ̈ = −Iz θ̇ cos θ

Ix sin θ
(ψ̇ + φ̇ cos θ) +

2θ̇φ̇ cos2 θ

sin θ

+ θ̇φ̇ sin θ − kMgR2
pψ̇

|~v|
(

sin2 θ

Iz
+

cos2 θ

Ix

)
.

One can see that all dissipative effects are related to motion
in ψ̇ in these equations, and they originate from the friction
at the touchpoint.
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3. Jellett’s model for the rise of the top

In this part, we will write Jellett’s model in terms of the pa-
rameters of this work. We should note that Jellett used an
upside-down center of mass-body reference frame, and for
simplicity ignored air dissipation and frictions with respect
to θ̇ and φ̇. We will write Jellett’s parameters inside square
parentheses to eliminate confusion.

Jellett gave equations for the rise of the top in Eqs. (4) and
(5) in his work [5]. Jellett’s parameters and variables can be
written in terms of parameters and variables of this work as:
[θ] = θ, [ψ] = φ, [φ] = −ψ, [R cos ε] = N , [ξ] = Rp sin θ,
[η] = l̃ + Rp cos θ, [z′] = l̃ sin θ, [z] = Rp + l̃ cos θ and
[R sin ε] = −f . Due to the usage of the upside-down cen-
ter of mass-body reference frame, the spin angle and friction
force get a minus sign. In Jellett’s work, the reaction force
is not specified, and we will takeN = Mg. Then, one can
obtain equations of motion for Jellett’s model in terms of pa-
rameters and variables of this work by consideringf = Nk
as

θ̈ = − Ĩzφ̇ sin θ

Ĩx

(ψ̇ + φ̇ cos θ)

+ φ̇2 sin θ cos θ +
Mgl̃

Ix
sin θ,

φ̈ =
Ĩz θ̇

Ĩx sin θ
(ψ̇ + φ̇ cos θ)− 2θ̇φ̇ cos θ

sin θ

+
Mgk(l̃ + Rp cos θ)

Ĩx sin θ
, (8)

ψ̈ = − Ĩz θ̇ cos θ

Ĩx sin θ
(ψ̇ + φ̇ cos θ) +

2θ̇φ̇ cos2 θ

sin θ
+ θ̇φ̇ sin θ

− Mgk cos θ(l̃ + Rp cos θ)
Ĩx sin θ

− MgkRp sin θ

Ĩz

.

We have used̃Ii to emphasize that moments of inertia should
be calculated in the center of mass-body reference frame. In
Jellett’s model the rise term isMgk(l̃ + Rp cos θ)/(Ĩx sin θ)

which linearly depends oñl. It can be seen that this is differ-
ent from the rise term obtained by considering pure slipping.
We should note that signs of dissipative terms should be de-
termined by considering the sign ofψ̇.

4. Numerical solutions

In this section, we will numerically solve different cases with
studied models. Firstly, we will numerically solve a pre-
viously experimentally studied case with the pure slipping
model, which is Fig. 5 in Cross’ work [12]. This case is
also studied with a different model, previously [1]. To get
consistent results with the figures given in the experimental
work, we will takeφ̇ and ψ̇ as negative similar to previous
work. Then, we will study the rise of the top with the dissi-
pation related parameters which are obtained by considering
the experimental case. We will also consider the simplified
pure slipping model to get a better comparison with Jellett’s
model since air dissipation and friction at the touchpoint due
to motion inθ are ignored in these two models.

4.1. Dissipative motion

By using given values in the experimental work for Fig. 5,
parameters of the top becomesM = 105 gr, l̃ = 20.9 mm,
Rp = 0.1 mm, Ix = 8.44 × 10−5 Kg m2 and Iz =
7.23× 10−5 Kg m2 where moments of inertia are calculated
according to the peg’s center. The initial values are taken as
θ0 = 0.117 rad, θ̇0 = 2.23 rad s−1, φ̇0 = −17.1 rad s−1

and ψ̇0 = −126 rad s−1 which are the same with previ-
ous model. To get consistent results with experimental re-
sults, dissipative constants are taken as:k = 0.03, c =
−6.3 × 10−6 kgm2 s−1, d1 = −1.1 × 10−6 kgm2 s−1,
d2 = −sgnm(ψ̇)1.1 × 10−8 kgm2. These constants are not
the same as the previous model since models are different.
The gravitational acceleration is taken asg = 9.81 ms−2.

Results of numerical solutions forθ and angular veloc-
ities can be seen in Fig. 8 in the appendix. Projections of
shapes for the locus can be seen in Fig. 2. One can see that
these are very similar to the experimental results.

FIGURE 2 . Projections of shapes for the locus of the figure axis. Time intervals (in seconds) for figures as follows: a)[0.73, 3.45], b)
[18.00, 19.48] c) [23.60, 24.87] d) [27.80, 28.86]. Initial values areθ0 = 0.117 ,rad, θ̇0 = −2.23 rad s−1, φ̇0 = −17.1 rad s−1 and
ψ̇0 = −126 rad s−1.

Rev. Mex. Fis.69021403



REVISITING DISSIPATIVE MOTION OF A SPINNING HEAVY SYMMETRIC TOP AND THE RISE OF THE TOP BY FRICTION 5

We should note that there are some differences between
the results of the previous model and this model. Fluctuations
in θ and angular velocities are larger in the previous model,
however, they are damped by the dissipative factors at the end
of 31 seconds. On the other hand, they are not damped in this
model. The main reason for this should be related to the con-
stant friction term in the previous model, which is considered
for the friction at the touchpoint. In this model, this friction
shows itself as functions oḟθ/|~v| and ψ̇ sin θ/|~v| in torque,
and θ̇/|~v| is small andψ̇ sin θ/|~v| is close to one. Then, the
fluctuations inθ are damped more slowly in this model. We
should also mention that there is a slight rise in the average
value ofθ which can be seen in Fig. 8a) in the appendix. Such
a rise is not observed in the previous model. However, it is
hard to determine this slight rise without taking average be-
cause of the high fluctuations. On the contrary, an increase of
θ is observed in the experiment, which is not observed in this
and previous models. Nevertheless, these show themselves
with some small differences in the shapes for the locus. And,
the results of both models for the shapes for locus are similar
to the experiment.

4.2. Rise of the top

In this part, we will first consider the rise of the top with a
hypothetical top that is slightly different from the top consid-
ered in the previous example. We will add this hypothetical
top a hemispherical peg with radiusRp = 6.0 mm. The
mass of the top will be takenM = 110 gr, and the dis-
tance between the center of mass and center of the peg will
be taken as̃l1 = 20 mm. We need moments of inertia in
two reference frames which will be taken as followsIx =
8.52×10−5 kg m2 andIz = 7.25×10−5 kg m2 in the center
of peg-body reference frame, and̃Ix = 4.08 × 10−5 kg m2

and Ĩz = 7.25 × 10−5 kg m2 in the center of mass-body
reference frame.

We will numerically solve a case by the pure slipping and
Jellett’s models for this top. Then, we will consider another
hypothetical top and compare the pure slipping, the simpli-
fied pure slipping and Jellett’s models. We will cut numerical
solutions when the top reaches nearly upright position,i.e.
θ = 0.02 rad, due to infinities atθ = 0. We will consider
configurations giving regular precession initially to reduce
the fluctuations with two exceptions which will be explained
later.

FIGURE 3. Results of the numerical solution forθ a), θ̇ b), φ̇ c) andψ̇ d). Initial values:θ0 = 0.5 rad,θ̇0 = 0, φ̇0 = −1.49 rad s−1 and
ψ̇0 = −200 rad s−1. The parameters of the top are given in Sec. 4.2.
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FIGURE 4. Shapes for the locus a) and its projection on toxy-plane b) for the rise of the top. Initial values are given in Fig. 3, and the
solution is obtained by considering the pure slipping model.

4.2.1. Pure slipping

In this part, we will study the rise of the mentioned hypo-
thetical top by using Eqs. (6). We will take initial values
as followsθ = 0.5 rad, θ̇ = 0, φ̇0 = −1.49 rad s−1 and
ψ̇0 = −200 rad s−1.

Results of the numerical solution forθ, θ̇, φ̇ and ψ̇ can
be seen in Fig. 3. One can see from Fig. 3a) that the top
rises, and it comes nearly vertical position in21.8 seconds.
It can be seen from Fig. 3b) that there is a negligible nuta-
tion, which does not affect the motion much. It can be seen
from Fig. 3d) that the magnitude oḟψ decreases which is an
expected result of dissipation. Its decrease is slightly faster
in the beginning, and the main reason for this is the air dis-
sipation. It changes from−200 rad s−1 to−77 rad s−1 dur-
ing the rise. It can be seen from Fig. 3c) that the magnitude
of φ̇ increases which is the result of the rise term originat-
ing from the dissipative torque at the touchpoint. Its average
value changes from−1.49 rad s−1 to−3.9 rad s−1, and there
are some fluctuations as a result of nutation.

In Fig. 4, one can see the shapes for the locus during the
rise and its projection ontoxy-plane. A spiral structure is
observed during the rise. We should note that this motion is
different from “spiraling motion” which can be seen when
conserved angular momenta are equal to each other [4,16].

4.2.2. Jellett’s model

In this part, we will consider the rise of the top with Jellett’s
model,i.e. Eqs. (8). Moments of inertia obtained by consid-
ering the center of mass-body reference frame will be used,
and initial values will be the same as the previous solution
exceptφ̇0 which should be changed slightly in order to get a
regular precession at the beginning,i.e. φ̇0 = 1.48 rad s−1.

The results of the numerical solution can be seen in Fig. 5.
There are some changes from the previous results. It can be
seen that the top rises in8.18 seconds which is much faster
than the previous model, and it is the result ofl̃ dependent
rise term. Fluctuations oḟθ increase as time passes, which
are nearly ten times more than the pure slipping model. But,

the average value oḟθ does not change much, and it is around
−1.6 rad s−1. Fluctuations ofφ̇ also increase, and its aver-
age changes from−1.48 rad s−1 to −1.6 rad s−1 which is
less than previous model.̇ψ also fluctuates toward the end of
the rise and its average becomes−194 rad s−1 whose mag-
nitudes are much more than the one in the pure slipping as
a result of ignoring air dissipation. The growth of fluctua-
tions occurs due to ignoring air dissipation and fluctuations
in relative small values ofθ.

In Fig. 6a), one can see the shapes for the locus for numer-
ical results. It can be seen that the top rises again by making
a spiral shape with fewer windings.

4.2.3. Comparison

In this part, we will study and compare the pure slipping
model, the simplified pure slipping model,i.e. Eq. (7), and
Jellett’s model. We will consider the simplified pure slipping
to get a better comparison due to the absence of air dissi-
pation and frictional effect arising froṁθ similar to Jellett’s
model.

Since the most obvious difference in the pure slipping and
Jellett’s models is the dependence of the rise term onl̃ in Jel-
lett’s model, we will consider a second top whose distance
between the center of the peg and the center of mass is dou-
ble of the previously considered top. This can be done by
changing the position of the top’s disc, see Fig. 1. For such a
change, the moment of inertia of the symmetry axisI3 does
not change but moment of inertia of the transverse axisI1

does.
We have already given parameters of the previously con-

sidered top, which we will name as top 1 from now on, and
the one with doubled̃l as top 2. For the top 2, the mass, the
radius of the peg andIz (andĨz) will be the same as the top
1, and the distance between the center of mass and the cen-
ter of the peg̃lt2 will be equal to40 mm. The moment of
inertia about tranverse axis of top 2It2,x in the center of peg-
body reference frame will be taken as22.3 × 10−5 kg m2,
and Ĩt2,x = 4.64 × 10−5 kg m2 in the center of mass-body
reference frame.

Rev. Mex. Fis.69021403
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FIGURE 5. Results of the numerical solution by considering Jellett’s model forθ a), θ̇ b), ψ̇ c) andφ̇ d). Continuous (blue) lines show
results of numerical solutions, and dashed (black) lines show averages. Initial values:θ0 = 0.5 rad, θ̇0 = 0, φ̇0 = −1.48 rad s−1 and
ψ̇0 = −200 rad s−1.

FIGURE 6. Shapes for the locus a) and its projection on toxy-plane b). Initial values are given in Fig. 5.

We will use the weak top condition to get clear dis-
crimination between the pure slipping and Jellett’s models.
The weak top condition is obtained from regular precession
and gives a relation betweena = I3(ψ̇ − φ̇ cos θ)/I1 and√

4Mgl̃/I1. If |a| is smaller than
√

4Mgl̃/I1, then the top
is considered as weak top [17]. If the top is weak then the
minimum of the effective potential occurs at greater angles
and these tops are not stable. This can be seen from the case
that both conserved angular momenta are equal to each other
for ordinary tops: If the top is strong, then the minimum of
the effective potential is atθ = 0; if the top is weak, then the

minimum of the effective potential is between0 andπ [16].
In general, the conserved angular momenta can be different
and the situation is not this much clear, but there are similar-
ities and the weak tops are not stable and they do not rise in
general. One can use the weak top condition to make discrim-
ination between the pure slipping model and Jellet’s model:
In these two models, moments of inertia related to the trans-
verse axis are different,i.e. Ix 6= Ĩx, which results in the
weak top condition for one model and the strong top con-
dition for the other model for the same precession angular
velocity φ̇, and since the weak top does not rise, one can use
this situation to make a discrimination between models.
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FIGURE 7. Results of the numerical solution forθ for top 1 (upper three graphs) and 2 (lower three graphs) with different initialψ̇0 and
φ̇0 values. Continuous (black) lines show results forψ̇0 = −50 rad s−1, dotted (green) lines show results forψ̇0 = −100 rad s−1, dashed-
dotted (blue) lines show results foṙψ0 = −150 rad s−1, dashed (red) lines show results forψ̇0 = −200 rad s−1, dashed-double dotted
(violet) lines show results foṙψ0 = −250 rad s−1. θ0 = 0.5 rad andθ̇0 = 0 for all cases.φ̇0 values are chosen very close to smaller root of

φ̇1,2 = (−I3ψ̇ −
√

(I3ψ̇)2 + 4Mgl̃ cos θ)/[2(I3 − I1) cos θ] except the situatioṅψ0 = −50 rad s−1 for the pure slipping and simplified

pure slipping models, in whicḣφ0 = −35 rad s−1.

We should note that this discrimination works approxi-
mately when conserved angular momenta are not equal to

each other. For top 1:
√

4Mgl̃t1/It1,x = 31.8 rad s−1

and
√

4Mgl̃t1/Ĩt1,x = 46.0 rad s−1. For top 2:√
4Mgl̃t2/It2,x = 27.8 rad s−1 and

√
4Mgl̃t2/Ĩt2,x =

61.0 rad s−1.
We will consider five differentψ̇0 values for both tops,

and we will numerically solve these 10 cases with mentioned
models. For all cases,θ0 = 0.5 rad andθ̇0 = 0. ψ̇0 changes
from −50 rad s−1 to −250 rad s−1 with 50 rad s−1 decre-
ments, and correspondinġφ0 values are taken as very close
to the ones giving regular precession with two exceptional
situations. We should note that for the pure slipping and sim-
plified pure slipping models,̇φ0 are taken as the same since
Ix are the same for these models, andφ̇0 is slightly different
for Jellett’s model sincẽIx is different. In exceptional situa-
tions, ψ̇ = −50 rad s−1 for the pure slipping and simplified
pure slipping models for top 2, the top is weak and regular
precession is not possible, and for these two situations,φ̇0

is taken as−35.0 rad s−1. One can see results of numerical
solutions forθ for mentioned 30 situations in Fig. 7.

The upper three graphs of the Fig. 7 show results for top 1
with the order the pure slipping, the simplified pure slipping
and Jellett’s models, and the lower three graphs show corre-
sponding ones for top 2. It can be seen that as the magnitude
of ψ̇0 increases the rise time increases which arises from the
need for greateṙφ values for the rise. The same thing also ex-

plains the difference in rise times between the pure slipping
and simplified slipping models since air dissipation helps the
decrease ofψ̇ in the pure slipping. The dependence of the
rise term oñl in Jellett’s model causes a faster rise of tops in
all cases.

In previously mentioned exceptional two situations, top
2 does not rise and fall. On the other hand, top 2 rises in
the corresponding situation when the solution is obtained by
using Jellett’s method. For mentioned two situations,|a| =
26.2 rad s−1 which is smaller than27.8 rad s−1 in the pure
slipping and simplified pure slipping models; but in Jellett’s
model,|a| = 93.3 rad s−1 which is greater than61.0 rad s−1.
Then, this case gives weak top for the pure slipping and sim-
plified pure slipping models, which results in fall. On the
other hand, this situation is not weak in the center of mass-
body reference frame, and top 2 rises in the corresponding
situation in Jellett’s model.

Another remarkable thing is seen when top 2 is not weak
and not strong enough for the whole rise in the pure slip-
ping model. It can be seen from Fig. 7d) that top 2 does
not completely rise in the pure slipping model whenψ̇0 =
−100 rad s−1 and ψ̇0 = −150 rad s−1. The top rises at the
beginning, and during this process, its spin angular velocity
decreases mainly due to air dissipation, and it starts to fall
aroundt = 4.9 s andt = 13.9 s, respectively, and numeri-
cal results show that in these cases, top 2 becomes weak at
t = 4.7 s andt = 13.7 s, respectively. On the other hand, it
rises entirely in Jellett’s model and simplified pure slipping.
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The reason for the rise in simplified pure slipping is the ab-
sence of air dissipation.

When top 2 is strong enough for the whole rise in the
pure slipping model, it is possible to compare rise times of
different models. The percentage differences in the rise time
are 15% are 11% for the last two cases in the pure slipping
model, they are 7% and 4% in the simplified pure slipping
model, and they are 43% in Jellett’s model.

5. Conclusion

We have studied dissipative motion and the rise of the heavy
symmetrical top with a hemispherical peg. Differently from
previous works, we studied motion by considering the radial
center of the hemispherical peg as the fixed point of the top.
From the derivation, we obtained the rise term as a function
of the radius of the pegRp, which is consistent with the ex-
periments [2]. On the other hand, in Jellett’s model [5], and in
other similar ones [3, 6, 11], the center of mass is considered
as the fixed point and the rise term is a function ofl̃ together
with Rp.

The difference between the rise terms provides the possi-
bility of determination of the better model with simple exper-
iments. By using a top with a changeable disc position, it is
possible to change the position of the center of mass which
can provide necessary experimental data.

We should note that we have determined dissipative con-
stants according to the pure slipping model by considering
an experimentally studied case. There should be some dif-
ferences in these constants if one had used any other model.
However, the differences between Jellet’s model and the pure

slipping model are bigger, and any change in the dissipative
constants does not substantially affect the following com-
ments.

One can use strong tops and compare changes in rise
times and decide the better model. By looking at the dif-
ference between the simplified pure slipping and pure slip-
ping models, one can say that if one includes air dissipation
and friction due toθ̇ at the touchpoint in Jellett’s model, the
rise time should decrease. However, this decrease should
be smaller than the difference between the simplified pure
slipping and pure slipping models, since rise time in Jellett’s
model is smaller. By considering the results of numerical so-
lutions, one can say that after doubling the distance between
the center of mass and the center of the peg, the rise time
should decrease. For strong tops, if the rise time changes
around 15% then the pure slipping model is better; on the
other hand, if the rise time changes around 40% then Jellett’s
model is better. We should note that the friction coefficient
and the radius of the peg should be convenient to get a longer
rise time which may provide better data for discrimination.

Obviously, one can use the weak top condition to decide
the better model. If one makes an experiment with a case that
is weak in center of peg-reference frame and strong in center
of mass-reference frame, then one can easily decide the bet-
ter model: If the top rises, then Jellett’s model is better; and
if it falls, then the pure slipping model is better.

Appendix A

Figure A.1 shows results of numerical solution for dissipative
motion forθ and angular velocities.

FIGURE A.1. Results of the numerical solution for the dissipative motion forθ a), θ̇ b), φ̇ c) andψ̇ d). Continuous (blue) lines show results
of numerical solution and dots (black) show nutation average. Initial values are the same as Fig. 2.
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