
Optics Revista Mexicana de Fı́sica70031306 1–8 MAY-JUNE 2024

Some novel different solutions for Boussinesq-type models
including bright, singular, and dark soliton ones

M.T. Darvishia,b, M. Najafia, H. Rezazadehc, S. Rezapourd,e,∗, and M. Incf,∗

aDepartment of Mathematics, Razi University, Kermanshah 67149, Iran.
bDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA.

cFaculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran.
dDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
eDepartment of Medical Research, China Medical University, Taichung, Taiwan.

f Department of Mathematics, Firat University, 23119 Elazig, Turkiye.
∗e-mails: rezapourshahram@yahoo.ca; minc@firat.edu.tr

Received 13 March 2022; accepted 29 May 2022

Some new different kinds of one-soliton solutions for various forms of Boussinesq-type equations are presented in this paper to describe the
nonlinear wave phenomena in coastal and ocean areas such as tsunami waves. These one-soliton solutions include bright, dark, and singular
ones. The property of each solution in coastal and ocean engineering is explained.

Keywords: Boussinesq-type equation; singular-solution; dark-soliton solution; bright-soliton solution.

DOI: https://doi.org/10.31349/RevMexFis.70.031306

1. Introduction

Among various mathematical models, nonlinear evolution
equations (NLEEs) are very useful. NLEEs can model differ-
ent kinds of scientific phenomena in different fields including
physics, chemistry, marine, coastal and ocean engineering,
fluid dynamics, and plasma physics. NLEEs can be seen in
“the system of equations for the ion sound wave under the
action of the ponderomotive force due to high-frequencies
field”. Also, the “Langmuir wave” is considered as an im-
portant type of NLEEs. As a result, the study of NLEEs has
attracted lots of researchers’ interests. Finding exact solu-
tions of NLEEs is very important in nonlinear phenomena.
There are different categories for solutions of NLEEs such as
periodic-, traveling-wave-, cross-kink-wave, and soliton- so-
lutions. Among these solutions, solitons have received much
more attention in applied sciences than others, and this is be-
cause of their special properties. As a matter of fact, soli-
tons have been appeared in different systems in nature such as
shallow water waves, plasma, optical waves, matter-waves in
Bose-Einstein condensates, marine, ocean and coastal waves,
and ultra-short pulses in nonlinear optics. Solitons are known
for keeping their shape and width unaltered even after colli-
sion with other similar solitons. There are different kinds of
solitons, but we can categorize them into three original types,
namely bright, dark, and singular solitons. A bright-soliton
is a pulse on a zero intensity background while a dark-soliton
appears as an intensity dip in an infinitely extended constant
background. Further any explode-decay mode soliton is a
singular soliton.

One of the attractive nonlinear evolution equations which
is described the movement of water by small-amplitude and
long-wave is the Boussinesq equation. Besides, Boussinesq

type equations predict wave transformations in coastal fields
for time dependent waves as well. For the first time in 1967,
a set of equations for variable water depth is presented by
Peregrine [1]. These are effective equations for shallow wa-
ter. As a matter of fact, they are the standard Boussinesq
equations that are used in ocean and coastal sciences. These
are effective equations to investigate shallow waters. As a
matter of fact, they are the standard Boussinesq equations
which are used in ocean and coastal engineering. Mathemat-
ical modelling of tsunami and tidal oscillations can be done
by these equations. Further, these equations are very applica-
ble in study of another subjects in different areas such as: the
dynamics of thin slimy layers which have free surfaces, non-
linear strings, shape memory in making metal compositions,
paired electrical circuits, continuum limit of lattice dynamics,
and wave-propagation in elastic rods (see [2–4]).

Consider the following standard nonlinear Boussinesq
equation [5,6]:

−uxx−
(
u2

)
xx
−uxxxx+utt= 0.

It’s well recognized that the investigation of propagation of
waves on the surface of water is a dynamic research field in
the nonlinear science. The nonlinear Boussinesq equation de-
scribes the physical phenomena in study of the dynamics for
thin layers that have viscosity and free surface [5, 6]. This
equation and its related type equations are also important to
describe some another physical phenomena like the nonlinear
lattice-waves, acoustic-waves, ion sound-waves in a plasma,
the shape memory in metal compositions, the propagation of
waves in elastic rods, the paired electrical circuits, and vi-
brations in a nonlinear string [7–9]. Moreover, it is useful
for the realistic applications in the percolation of water in
porous media of a horizontal layer of material, large scale
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atmospheric and jet stream [?, 10–13]. One may encounter
with shallow water waves’ dynamics in different fields, for
example in sea and seashore, in rivers and lakes or the other
similar regions [11].

The Boussinesq equation which makes the surface gravity
waves is a useful model for simulating wave propagation in
the long waves in ocean and seashore regions. The numerical
computation is also accomplished by the Boussinesq mod-
els in the areas of wave propagation in long waves in shal-
low water. In ocean and coastal engineering, oceanographers
and seashore engineers used the models for simulating of sur-
face water waves in shallow seas and seaports, dune mod-
elling, ocean basin-scale tsunami propagation, wave overtop-
ping and inundation, and near shore wave processes [15-19].

In the last two decades, different kinds of Boussinesq
equations were expanded and studied in scientific researches.
In the present manuscript, we employ the ansätz method for
obtaining closed form soliton solutions of the following four
variants of Boussinesq equation:

−uxx − (6u2ux + uxxx)x+utt = 0, (1)

−uxx−(6u2ux + uxtt)x+utt = 0, (2)

−uxt−(6u2ux + uxxt)x+utt = 0, (3)

−(6u2ux + uxxx)x+utt = 0. (4)

Indeed, we derive some new families of analytical solutions
for the Boussinesq-type models Eqs. (1)–(4). It must be
noted that these equations are presented in Ref. [20] for the
first time. In addition, Eqs. (1)-(4) are non-integrable ones.
Further Eqs. (1) and (4) contain spatial dispersion. In com-
parison, Eqs. (2) and (3) have spatial and temporal disper-
sion whereas the second and the third ones contain spatial-
temporal dispersion. Besides, in Eq. (1) there are the sec-
ond order dissipative termuxx and the fourth order spatial
term uxxxx. We can have similar descriptions for terms of
other equations, for example, the fourth order derivative term
uxxxx in Eq. (1) has changed to the fourth order derivative
termuxxtt in Eq. (2).

These equations were studied to find their singular- and
soliton-solutions, the Hirota’s direct method obtained some
solutions of these kinds as well, and other methods found
more solutions for Eqs. (1)–(4) with different physical bases
(see [20-22]).

The structure of this study is organized as follows: The
analytical solutions with graphical representations of all so-
lutions are presented in Sec. 2. In Sec. 3, we addressed the
physical explanation for the behavior of all reported soliton
solutions. The conclusion is given in the end.

2. Analytical solutions

In this present work, different kinds of solitary wave solutions
are obtained for Eqs. (1)–(4). To do this, we consider three
types of solutions with the general hyperbolic trigonometric

forms given by

u(ν) = A sechp(ν), u(ν) = A tanhp(ν), or

u(ν) = A cschp(ν), (5)

whereν = kx− ct. By these, we obtain three different fam-
ilies of one-soliton solutions for Eqs. (1)-(4). These families
are bright, dark, and singular soliton solutions.

2.1. The 1st model

Consider

−uxx−( 6 u2 ux + uxxx)x+utt = 0. (6)

If we apply the soliton wave ansätz u(x, t) = u(ν), ν =
k x− c t in Eq. (6), the following relation is obtained

(k2 − c2) u′′ + k2 ( 6 u2 u′ + k2 u(3))′ = 0. (7)

After that, if we integrate Eq. (7) two times and set the inte-
gration constants as zero, we have

(c2 − k2) u− k2 (2u3 + k2 u′′) = 0. (8)

In Eq. (8) k andc are some constants. It is worthy mention
that, our integrations are done with respect to variableν.

2.1.1. Solutions for the 1st model, bright-soliton ones

To obtain solitary-wave ansätz for the bright-soliton solu-
tions, we use the following assumption:

u(ν) = A sechp(ν). (9)

The unknown parameterp can find in the process of finding
of solutions of Eq. (8). Thus by setting the ansätz Eq. (9) into
Eq. (8) we get

(k2 − c2)A sechp(ν) + k2 (2 A3sech3p(ν)

+ k2 p(Ap sechp(ν)−A(p + 1) sechp+2(ν))) = 0. (10)

Now, value of one is obtained forp after equating exponents
3 p andp + 2 in Eq. (10). Further, equating coefficients of
functionssech(ν) yields the following nonlinear system

2 k2(A2 − k2) = 0,

−c2 + k2 + k4 = 0,

which has the following solution

A = k, A = −k, c = k
√

k2 + 1,

c = −k
√

k2 + 1. (11)

Using Eq. (11) yields bright-soliton solutions for Eq. (6) as:

u11(x, t) = ± k sech(k(x∓
√

k2 + 1 t)). (12)
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2.1.2. Solutions for the 1st model, dark-soliton ones

To obtain dark-soliton solutions we set

u(ν) = A tanhp(ν). (13)

Similar to previous part, we obtainp = 1. So by putting the
ans̈atz Eq. (13) in Eq. (8) for p = 1, we have:

− 2Ak2(A2 + k2) tanh3(ν)

+ A(c2 − k2 + 2k4) tanh(ν) = 0.

Equating the coefficients of each pair of functionstanh(ν)
gives:

2k2(A2 + k2) = 0,

−c2 + k2 − 2k4 = 0,

which has the following solutions

A = ±Ik, c = ±k
√

1− 2k2. (14)

Therefore, the following dark-soliton solutions are obtained
for Eq. (6) using the values of Eq. (14):

u12(x, t) = ±ik tanh(k(x∓
√

1− 2k2t)). (15)

2.1.3. Solutions for the 1st model, singular-soliton ones

In order to obtain singular-soliton solutions, we assume that

u(ν) = A cschp(ν). (16)

As we did before we obtainp = 1, by this value ofp and
setting ans̈atz Eq. (16) in Eq. (8) gives

A(−c2 + k2 + k4) cosh2(ν) + A(k2(2A2 + k2 − 1) + c2) = 0.

Similarly by equating the coefficients of each pair of func-
tionscosh(ν), the following system is obtained:

−c2 + k2 + k4 = 0,

2 k2A2 + c2 − k2 + k4 = 0,

that has the following solutions:

A = ± k i, c = ±k
√

k2 + 1. (17)

The values of Eq. (17) give the following solutions for
Eq. (6):

u13(x, t) = ±ik csch(k x∓ k
√

k2 + 1 t), (18)

which are singular-soliton ones.

2.2. The 2nd model

Next, we investigate the following equation to find its soliton
solutions:

−uxx − ( 6 u2 ux + uxtt)x + utt = 0. (19)

Here we use the wave ansätzu(x, t) = u(ν), ν = k x − c t
in Eq. (19) that yields

(c2 − k2)u′′ − k ( 6 k u2 u′ + k c2 u(iii))′ = 0. (20)

Besides, with respect toν we integrate Eq. (20) two times
and set zero for integrating constants. All of these yield

(c2 − k2) u− 2 k2 u3 − k2 c2 u′′ = 0. (21)

In Eq. (21), k andc are some constants.

2.2.1. Solutions for the 2nd model, bright-soliton ones

By the assumption

u(ν) = A sechp(ν). (22)

One may obtain the bright-soliton solutions. Obtaining of
the value of parameterp is as same the process which is de-
scribed in the previous section. Then we substitute the ansätz
Eq. (22) in Eq. (21), this yields

(c2 − k2)A sechp(ν)− 2k2 A3 sech3p(ν)

− k2 c2 p(Ap sechp(ν)−A(p + 1) sechp+2(ν) = 0. (23)

To find parameterp, we equate the exponents3p andp+2 in
Eq. (23). Moreover, we equate the coefficients of each pair
of functionssech(ν). These result inp = 1 and the following
system:

2k2(A2 − c2) = 0,

−c2 + k2 + k2c2 = 0,

which its solutions are

A = ± k√
1− k2

, c = ± k√
1− k2

. (24)

By the values of Eq. (24), we obtain the following solutions
for Eq. (19):

u21(x, t) = ± k√
1− k2

sech

(
kx∓ k√

1− k2
t

)
. (25)

Solutions (25) are bright-soliton ones.
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2.2.2. Solutions for the 2nd model, dark-soliton ones

The dark-soliton solutions express as:

u(ν) = A tanhp(ν).

Similar to previous cases, we obtainp = 1. Now, setting the
ans̈atz Eq. (13) in Eq. (21) with p = 1 gives

A(2k2(A2 + c2)) tanh3(ν)

+ A(k2(1− 2c2)− c2) tanh(ν) = 0.

Equating the coefficients of each pair of functionstanh(ν)
gives:

2k2A2 + 2k2c2 = 0,

−c2 + k2 − 2k2c2 = 0.
(26)

The solutions of system (26) are

A = ± k√−1− 2k2
, c = ± k√

1 + 2k2
. (27)

The results (27) give the following solutions for Eq. (19)
which are dark-soliton ones:

u22(x, t) = ± k√−1− 2 k2

× tanh
(

k x∓ k√
1 + 2k2

t

)
. (28)

2.2.3. Solutions for the 2nd model, singular-soliton ones

To obtain singular-soliton solutions, we set our hypothesis as:

u(ν) = A cschp(ν). (29)

Similar to the previous part the value ofp is obtained as
p = 1. Thus by inserting the ansätz Eq. (29) into Eq. (21)
and forp = 1, we obtain:

A(−c2 + k2 + k2c2) cosh2(ν)

+ A(2k2A2 + c2 − k2 + k2c2) = 0.

Equating the coefficients of each pair of functionscosh(ν)
gives system:

−c2 + k2 + k2c2 = 0,

2k2A2 + c2 − k2 + k2c2 = 0.
(30)

After solving system (30) we have:

A = ± k√
k2 − 1

, c = ± k√
1− k2

. (31)

By the results of Eq. (31) the following solutions are obtained
for Eq. (19):

u23(x, t) = ± k√
k2 − 1

csch

(
k x∓ k√

1− k2
t

)
, (32)

which are singular-soliton ones.

2.3. The 3rd model

The following model is considered in this part

utt − uxt − (6u2 ux + uxxt)x = 0, (33)

to obtain its soliton solutions. Applying traveling-wave
ans̈atzu(x, t) = u(ν), ν = k x− c t in Eq. (33) gives:

c (c + k) u′′ − k ( 6 k u2 u′ − k2 c u(3))′ = 0. (34)

Now, with respect toν we integrate Eq. (34) two times and
set zero for integrating constants. After doing these, we have

c (c + k)u + k2 (k c u′′ − 2 u3) = 0, (35)

for constantsk andc.

2.3.1. Solutions for the 3rd model, bright-soliton ones

To obtain the solitary-wave ansätz for the bright-soliton solu-
tion we use the following hypothesis:

u(ν) = A sechp(ν). (36)

Setting the ans̈atz Eq. (36) to Eq. (35) gives:

c(c + k)A sechp(ν)− 2k2A3 sech3p(ν)

+ k3cp(Ap sechp(ν)−A(p + 1) sechp+2(ν) = 0. (37)

Here, also we obtainp = 1 from Eq. (37). In addition equat-
ing the exponents3p andp + 2, and coefficients of each pair
of functionssech(ν) yield:

2k2(A2 + kc) = 0,

−c2 − ck − k3c = 0.
(38)

One may obtain the following solutions for Eq. (38)

A = ±k
√

1 + k2, c = −(1 + k2) k. (39)

By the values in Eq. (39), the following bright-soliton solu-
tions are obtained for Eq. (33):

u31(x, t) = ±k
√

1 + k2 sech
(
kx + (k + k3) t

)
. (40)

2.3.2. Solutions for the 3rd model, dark-soliton ones

To obtain the dark-soliton solutions we assume that:

u(ν) = A tanhp(ν). (41)

Here also we obtainp = 1. Therefore, setting the ansätz
Eq. (41) into Eq. (35) and puttingp = 1 yields:

2k2A(A2 − kc) tanh3(ν) + Ac(2k3 − k − c) tanh(ν) = 0.

Equating the coefficients of each pair of functionstanh(ν)
gives:

2k2A2 − 2k3c = 0,

−c2 − ck + 2k3c = 0,

Rev. Mex. Fis.70031306
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that has the following solutions

A = ±
√

2k2 − 1k, c = 2 k3 − k. (42)

Using Eq. (42), we obtain the following solutions for Eq. (33)
as:

u32(x, t) = ±
√

2k2 − 1k tanh(kx + (2k3 − k)t), (43)

that are dark-soliton ones.

2.3.3. Solutions for the 3rd model, singular-soliton ones

We consider the following hypothesis to obtain singular soli-
ton solutions:

u(ν) = A cschp(ν). (44)

During our computations, we obtainp = 1. Besides, by sub-
stituting the ans̈atz Eq. (44) into Eq. (35) and forp = 1, one
can obtain:

−Ac(c + k + k3) cosh2(ν)

+ A(k2(2A2 − kc) + c(c + k)) = 0.

As usual by equating the coefficients of each pair of functions
cosh(ν) gives:

−c2 − ck − k3c = 0,

2k2A2 + c2 + ck − k3c = 0,

which has the following solutions:

A = ±
√
−1− k2 k, c = −k − k3. (45)

The following singular-soliton solutions are obtained for (33)
using the results Eq. (45) as:

u33(x, t) = ±
√
−1− k2k csch(kx + (k + k3) t). (46)

2.4. The 4th Boussinesq-type model

In this final part, we find solutions for the following model:

−(6u2ux + uxxx)x + utt = 0. (47)

Implementing the traveling-wave ansätzu(x, t) = u(ν), ν =
k x− c t in Eq. (47) yields:

c2 u′′ − k ( 6 k u2 u′ + k3 u(3))′ = 0. (48)

We integrate Eq. (48) two times with respect toν and set zero
for the integration constants. All of these works give

c2 u− 2 k2 u3 − k4 u′′ = 0, (49)

whereink andc are some constants.

2.4.1. Solutions for the 4th model, bright-soliton ones

In order to find the bright-soliton solutions, the following as-
sumption is considered:

u(ν) = A sechp(ν), (50)

where the unknown parameterp is found during the process
of obtaining for the solutions of Eq. (49). Then setting the
ans̈atz Eq. (50) in Eq. (49) gives:

c2A sechp(ν)− 2k2A3 sech3p(ν)− k4Ap(p sechp(ν)

− (p + 1) sechp+2(ν) = 0.

In a similar process which is mentioned in the previous parts,
we obtain the value one forp. Besides, we equate the coeffi-
cients of each pair of functionssech(ν) which gives

k2A2 − k4 = 0,

−c2 + k4 = 0,

with the following solutions:

A = ±k c = ± k2. (51)

Solutions (51) give the following bright-soliton solutions for
Eq. (49):

u41(x, t) = ± k sech(kx± k2t). (52)

2.4.2. Solutions for the 4th model, dark-soliton ones

To obtain dark-soliton solutions for Eq. (49) we take

u(ν) = A tanhp(ν). (53)

We obtainp = 1. For this value ofp and by substituting the
ans̈atz Eq. (53) in Eq. (49) yields:

−A(2k2A2 + 2k4) tanh3(ν)−A(−c2 − 2k4) tanh(ν) = 0.

Here, also we equate coefficients of each pair of functions
tanh(ν) which gives

2k2A2 + 2k4 = 0,

−c2 − 2k4 = 0.
(54)

The solutions of system (54) are

A = ±ik, c = ±
√

2ik2,

which in turn give the following dark-soliton solutions for
Eq. (49):

u42(x, t) = ±ik tanh(kx∓
√

2ik2t). (55)
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2.4.3. Solutions for the 4th model, singular-soliton ones

Let us now find singular soliton solutions for Eq. (49) where
the starting hypothesis is

u(ν) = A cschp(ν). (56)

The value of its unknown is obtained asp = 1. Hence, by
substituting the ansätz Eq. (56) into Eq. (49) and forp = 1
we obtain:

A(k4 − c2) cosh2(ν) + A(c2 + k2(k2 + 2A2)) = 0.

Equating the coefficients of each pair of functionscosh(ν)
results in

−c2 + k4 = 0,

2 k2A2 + c2 + k4 = 0. (57)

After solving system (57) we have:

A = ±ik, c = ± k2. (58)

We can obtain the following solutions for Eq. (49) using re-
sults (58)

u43(x, t) = ±ik csch(k(x∓ kt)), (59)

which are bright-soliton solutions.

3. Physical discussion

It is worthy to have a physical explanation for the presented
solutions of all types of Boussinesq equations. The Boussi-
nesq equation is valid for water waves for weakly nonlinear
and relatively long waves in fluid dynamics. In computer
models the Boussinesq-type equations are applied for simu-
lating of water waves in shallow seashores and seas in coastal
sciences. But the Boussinesq equation is applicable to fairy
long waves, which means that when the wave length in com-
parison with its depth of water is not short. In this work,
we have obtained some different families for the Boussinesq-
type equations. All obtained solutions can be categorized into
three types, namely, bright-, dark-, and singular-soliton ones.
We encounter a bright-soliton when the energy of the soli-
ton reaches to its maximum value at the center of the wave
and then this energy at infinity goes to0. In this case, soliton
group velocityu exceeds some thresholds. Solutions (12),
(25), (40), and (52) are bright-soliton ones which are plotted
in Figs. 1, 4, 7 and 10.

FIGURE 1. a) The bright-soliton solutionu11 in (12) for k = 1, b) the corresponding2D plot for t = 0, c) graphical representation with
−7 ≤ x ≤ 10, andt = 1, 2, 3.

FIGURE 2. a) The dark-soliton solutionu12 in (15) for k = 0.5, b) the corresponding2D plot for t = 0, c) graphical representation with
−7 ≤ x ≤ 8, andt = 1, 2, 3.

Rev. Mex. Fis.70031306
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FIGURE 3. a) The singular-soliton solutionu13 in (18) fork = 0.1, b) the corresponding2D plot for t = 0, c) Graphical representation with
−7 ≤ x ≤ 10, andt = 1, 2, 3.

FIGURE 4. a) The bright-soliton solutionu21 in (25) fork = 0.5, b) The corresponding2D plot for t = 0, c) graphical representation with
−10 ≤ x ≤ 12, andt = 1, 2, 3.

FIGURE 5. a) The dark-soliton solutionu22 in (25) for k = 0.5, b) the corresponding2D plot for t = 0, c) graphical representation with
−7 ≤ x ≤ 10, andt = 1, 2, 3.

FIGURE 6. a) The singular-soliton solutionu23 in (32) fork = 0.5, b) the corresponding2D plot for t = 0, c) graphical representation with
−15 ≤ x ≤ 10, andt = 1, 2, 3.

Rev. Mex. Fis.70031306
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FIGURE 7. a) The bright-soliton solutionu31 in (32) for k = 0.5, b) the corresponding2D plot for t = 0, c) graphical representation with
−10 ≤ x ≤ 12, andt = 1, 2, 3.

FIGURE 8. a) The dark-soliton solutionu32 in (43) for k = 1, b) the corresponding2D plot for t = 0, c) graphical representation with
−5 ≤ x ≤ 10, andt = 1, 2, 3.

FIGURE 9. a) The singular-soliton solutionu33 in (46) for k = 1, b) the corresponding2D plot for t = 0, c) graphical representation with
−15 ≤ x ≤ 10, andt = 1, 2, 3.

FIGURE 10. a) The bright-soliton solutionu41 in (52) for k = 1, b) the corresponding2D plot for t = 0, c) graphical representation with
−7 ≤ x ≤ 10, andt = 1, 2, 3.

Rev. Mex. Fis.70031306
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FIGURE 11. a) The dark-soliton solutionu42 in (55) for k = 1, b) the corresponding2D plot for t = 0, c) graphical representation with
−10 ≤ x ≤ 5, andt = 1, 2, 3.

FIGURE 12. a) The singular-soliton solutionu43 in (59) for k = 1.2, b) the corresponding2D plot for t = 0, c) graphical representation
with −5 ≤ x ≤ 10, andt = 1, 2, 3.

A dark soliton is a solitary wave that is generated by cut-
ting a portion of a continuous wave. As a matter of fact,
a dark soliton is an amplitude dip in the continuous wave.
It is generally known that dark soliton is a localized surface
which is an amplitude dip, that causes a temporary decrease
in wave amplitude, and can usually be seen in normal dis-
persion areas. Furthermore, because of its unique properties
in homogeneous optical fibers, a dark-soliton is widely stud-
ied. In a homogeneous background, the intensity profile of
the dark soliton shows a dip or hole-soliton. Dark-solitons
have been found to be both stable and robust to losses. Soli-
ton energy is greatest at infinity in dark-solitons, and there is
a gap in the center. All solutions (15), (28), (43), and (55) are
dark-soliton ones which are plotted in Figs. 2, 5, 8 and 11.

Nakamura [23] has shown that a certain nonlinear evo-
lution equation except soliton solutions, may also have ex-
plode decay mode solutions. This kind of soliton solutions is
called a singular-soliton one that can be written by an analyt-
ical relation. All solutions Eqs. (18), (32), (46), and (59) are
singular-soliton ones that are plotted in Figs. 3, 6, 9 and 12.
Furthermore, parts(c) of all Figures demonstrate three plots
of our solutions in2D case for a special spatial domain and
some values of time which aret = 1, 2, 3. As one can see
from these figures all of them have soliton properties.

4. A concluding remark

In the present manuscript, the ansätz method is used for con-
structing singular-, dark-, and bright-soliton solutions for the
distinct forms of Boussinesq-type equations. The graphs of
soliton solutions with different selections of their parameters
were plotted to demonstrate the localizations of the solutions
that describe the nonlinear waves in coastal and ocean engi-
neering, like tsunami waves. According to the best of our
knowledge, these closed forms of solutions were not pre-
sented previously and all of them are new ones and novel.
All presented solutions in this paper were tested for satisfy
in their relevant equations. Also the obtained results have
shown that an excellent performance of the ansätz scheme
in using Boussinesq-type equations. Our results can be fur-
ther extended in future research works by working on various
classes of the investigated equation.
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