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ABSTRACT

The measureability of the gravitational field is discuss-
ed from both the classical and gquantum Points of view. It is
shown that classically such a measurement can be performed <+ f
one uses test bodies with vanishing small mass. On the other
hand, due to the Heisenberg uncertainty principle, 1t 1s found
that one must use test bodies of extremely large mass tn order

to obtain accurate results. Thus it appears that an accurate

*This work was supportéd- by the U.S. Office of Naval Research,
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determination of the gravitational field is not possible if

one takes into account the quantum restrictions. Conseguences

of this result will be discussed.

I.~ INTRODUCTION.

In any attempt to combine the disciplines of gquantum
mechanics and general relativity, one must discuss what, 1if
any, resirictions the quantum conditions place on the measur-
ability of the gravitational field. Such a study is neces-
sary if one tries to quantize the gravitational field directly,
for it is in this manner that we give physical meaning to
postuiated commutation relations between the field variables.
Even if ope is not interested in quantizing the gravitational
field, quantum restrictions such as the uncertainty relations
will 3til)l be operative as far as the measuring apparatus is
concernsd.

In this paper we will analyze the procedures available to
us for measuring the gravitational field and discuss the limit-
ations placed on these measurements by the uncertainty relations.
We shall treat the gravitational field as a purely classical
non~linsar field, neglecting any effects which might arise
from quantum fluctuations. In treating the effect of imposing
ouantum conditione on our measuring apparatus, we shall follow
closely the methods used by Bohr and Rosenfeld' in treating
the analagous case in linear electromagnetic theoYry. OQur
principal conclusion will be that it is in general impossible
to measure the gravitational field within a region of space-
time, with arbitrarily high precision.
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Il.~ CLASSICAL NEASUREMENT OF THE GRAVITATIONAL FIBLD.

Before we consider quantum effects, we must first discuss
how one can measure the gravitational field classically. In
electromagnetic theory, it is the sxistence of the Lorentg
foce law which enables us to measure the field. In effect,
we perform the measurement by actually measuring the change
in momentum of a test body occasioned by the force of the
field. In gravitational theory, however, there is no Lorents-
type force law. The statement that a material body moves
along a geodesic is in general not true, as we shall see,

This lack of a force law in the gravitational theory of
general relativitiy is not a defect in the theory but rather
& consecuence of it, In order that a force law such as the
Lorentz force have mesning, it 1is necsﬁsgry that one be able
to split the field into two parts, one belonging to the
charged body and the other belongirg to the remaining field.
It is this latter field which appears in the force law, 1In
the case of the electromaynetic field it is possible to
perform this splitting (though rot in a complstely unambiguous
manner), since the field equations are inberently linear.

Actually, a Lorentz-—-type force law is not necessgary to
the gravitational theory. As Einstein, Infeld and Hoffmann®
have shown, 1If one represents mass points by singularities,
then the interactions bstween iwo such mass pointis are really
determined by the field equations. Lajer, Infeld and Schild®
were able to prove that a particle of infinitesimal mass in
8 given gravitational field will move along a geodesic of
the epace thus bearirg out the old Einstein bypothesis thet

massive particles move along geodesics. Note, however, that
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Infeld’s result holds orly when the gravitational field of the mass
particle is vanishingly smell compared to the gravitational field in
which it finds itself. Because of the non-linearity of the gravitational
field equations, one c¢an separate ou% the field of the particle only
approximately, so that the smaller the mass of the particle, the better
the approximation. 1t is for +this resson that it is possible,
within the framework of the general theory of relativity, to
treat the motion of a planet in the fieid of the sun satis-
factorily by assuming that it moves along a geodesic of the
sun's field., I1f one attempts to apply this same procedure io
a genuine two-body problem, like that of a double star, one
is led to contradictory results®.

With the above facts in mind we see that classically the
way to measure the gravitational field is to observe the -
motion of a test particléjwhose mass is extremely small,
compared to the masses producing the gravitationel field”

The important thing for our work then is to realize that the
equations of motion for the test body (see note 1) whereby

we hope to measure the gravitational field, are only ap-
proximate and are rigorously tru only in the 1limit that the
mass of the test body vanishes. The situation In gravitation-
al theory is thus radieally different from that of electiro-
magnetic theory where the Lorentz force equation is assumed

to be valid for any value of the charge whatisoever.

III.~- QUANTUM MEASUREMENT OF THE GRAVITATIONAL FIELD.

1f, now, we attempt to impose quantum restriotions on
*See Note | at the end of this peaper.
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our messurements, following Bohr and Rosenfeld we immediately
run into difficultiss. Consider for example a measurement
made to determine {'}. We would employ & test particle
which initially had no velocity so that U’ = (0,0,0,1).
Then the change in time of the momentum mU' of the test

particle would be given by

d mU') — dp - !
3t Ty m {44} . (1)

Thus, to measure {‘L}, we would let the test particle be

accelerated by the gravitational field during a time interval
T. At the end of this interval, the test body would have ac-

guired a certain amount of momentunm pi given by
p' v m.{4u} T . (2)

Thus a measurement of pl is equivalent to a measurement of
[
(.}, |
The uncertainty in the value of { ,} is given by

m T4 (4z} > A pI (3)

The final momentum pI can be measured by letting the test
body interact with some other object during a time 4&t. Dur-
ing this measurement, thare will arise an uncontrolable un-
certainty in ths position of the test body Ax ' given by the

uncertainty relation

! s _ A
ﬁp Ax 3 "2" (4)
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Thus, the uncertainty in the measurement of {‘1} is given
by

o
n TAx (°)

A {‘L} >

This result is in itself eonough to {lluminate the nature of
our difficulty.

In order to increase the acouracy in our measurement of
{‘u} we have, according to (5), to increase m accordingly.
But then the results of Infeld and S.child are no larger valid

and we cannot use (1) to determine {4}

IV.~ CONCLUSIONS.

It would be inappropriate at this point to conclude, on
the basis of the above analysis, that quantum mechanics and
general relativity are incompatible. Yet one must be surpris-
ed to find that the most obvoius way of measuring the gravit-
ational field classically, is inconsistent with the requirements
of gquantum mechanics . We fsel justified, therefore, in making
the following comments.

Firstly, it is difficult to see how one can proceed with
an attempt to quantize the gravitational field in analogy with
the electroragnetic field. In order to do so, one must postul-
ate commutation relations between the field variables which in
turn must be given physical content through the results of
experiments. Bohr and Rosenfeld have shown how to do this for
the electromagnetic field. It is obvoius that we cannotl do

*See Note 2 at the end of this paper.
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likewise in the gravitational case, sirce we cannot define
vhat we mean by the gravitational field quantum mechanically.
Phile it is possible, at least formally, to apply the methods
of quantum mechanics to the gravitational field it is no long
er clear that such a procedure corresponds to anything
physical.

Secondly, we are faced with the question of whetiher the
gravitational field, even treated as a classical concept, is
compatible with the requirements of quantum mechanics or vice
versse. One might even be tempted to use the above results to
argue against one or the other disciplines. However, we know
that each theory possess a certain area of aplicability.
Omentum mechanics has had unparalled success in explaining
stomic phenomena. General relativity, on the other hand, -
wiile not as rich in experimental prediction, has & certein
logical consistency and simplicity which we would be reluctant

to discard.
Actually, there is at least one possible way out of our

di“"ficulties which, in closing, we would briefly like to -
describe. As we have mentioned previously, in a non-linear
theory such as general relativiiy, the interaction beiween
sources of the fisld is implicitly contained in the field
equations. And as we also mentioned, nowhere does the con-
cept of the gravitational field enter into the final equsiions
of motions of these sources, One might, therefore, adopt the
attitude that the gravitational field is really only a -
mathematical cons:truct. The physical reality in the theory
wauld then be the sources of the field, the material particles.
The thsory tells as how these varticles move under their -
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rutual interaction. One could then apply the quantum condi-
tions to these particles, i.e., we would quantize their

motions.
While such a procedure would be extremely difficult to

execute (the equations of moticn are obtainable from the
general theory of relativity only in approximate form) it
does have the following point to its credit. Nowhare in the
firal equations of ﬁﬁtion does the concept of point inter-
action appear, 1t is just this concept which many feel to
be the Lasis of our present field theoretic difficulties, It

is not completely unreasonable to expect, therefore, that a
further examination of the situation in gravitational theory

might lead to greater understanding in other field theories.
The author would like to thank Dr. Willem V.R. Malkus

for several interesting discussions on the material presented

here,

NOTE l.- Strictly speaking the motion of our test part-

icle is governed by the equations for a geodesic

dU
dr

- | UN

= ={,} U

where {11} is the Christoffel symbol of the second kind
defined by

s af
{1K} = % g (giﬁ,K + gKﬂ,i = giﬁ,ﬁ) ’

and where U? 4{is the relativistic four-velocity of the test
particle. Thus actually the most that we can measure from
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observing the motion of our test body are the values of the
Christoffel symbols, The ¢g,, are analogous to the poten-
tials of electromagnetic theory while the {1;} are analogous
to the actual E and H fields. When we speak of measuring
t.e gravitational field we really mesan a measurement of one
of the Christoffel symbols. This change of emphasis from the
g, to the {:K} as the measurables of the theory should oc-
casion no more difficulty in our present analysis than does

the similar shift in electromagnetic theory.

NOTE 2.- One might be tempted to argue that, while for
large masses Eq. (!) is invalid, one might be able to obtain
from the general theory a more universal force law, valid for
masses of all size. This is not too likely however for, as
was pointed out previously our equalions are non-linear and
any such separation of the field into the part to be measured
and that of the test body would be to a large exient arbitrary
and srtificial. This contention is further strengthened by '
the fact that in the final results of €instein, Infel. and

Hoffmann the gravitational field nowhere appears.
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