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Classical and quantum dynamics of over-damped non linear systems
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e-mail: gabriel.gonzalez@uaslp.mx

Received 26 March 2022; accepted 28 June 2022

Overdamping is a regime in which friction is sufficiently large that the motion either decays to its equilibrium position or it crosses the
equilibrium position exactly once before returning monotonically towards the equilibrium position. The phenomena of overdamping has
been studied classically and quantum mechanically only for the case of the linear damped harmonic oscillator. Here we study the classical
and quantum dynamics of a family of over-damped non linear systems. The main objective of this paper is to find a Lagrangian and
Hamiltonian framework to study over-damped non linear systems and to show that a quantum mechanical description can be developed in
the momentum representation. Our results reduce to the well known solution of the linear damped harmonic oscillator when the non linear
part is set to zero.
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1. Introduction

It is very well known that the linear damped harmonic oscil-
lator can be characterized from the physical point of view in
three different cases: underdamped, over-damped and crit-
ically damped [1]. The important equation that describes
these type of motions is given by

ẍ + 2γẋ + ω2x = 0, (1)

whereγ andω are the damping and angular frequency con-
stant coefficients, respectively. When the damping coefficient
is zero the motion is purely oscillatory with frequencyω. The
oscillations can be suppressed by adding a small damping to
the system in such a way that the oscillations have a very slow
decay to its equilibrium position and can cross zero infinitely
often before settling to zero ast → ∞, this type of motion
is known as underdamped. For the case when the damping is
sufficiently large the motion either decays to its equilibrium
position or it crosses the equilibrium position exactly once
before returning monotonically towards the equilibrium posi-
tion ast →∞, this type of motion is known as over-damped.
Critically damped motion represents the boundary between
oscillatory and non-oscillatory behavior of the system [2].

In a remarkable paper Chandrasekaret al. developed
a time-independent Lagrangian that yield the correct equa-
tions of motion for a linear damped harmonic oscillator hav-
ing one degree of freedom [3]. This result was obtained
by using a modified Prelle-Singer method by obtaining first
time-independent integrals of motion for the three different
cases of the linear damped harmonic oscillator [4,5]. Using
these constants of motion, different forms of the Lagrangian
and Hamiltonian were given depending on whether the sys-
tem was overdamped, underdamped, or critically damped and
the resultant canonical equations are shown to lead to the

standard dynamical description. In particular, for the over-
damped case the Hamiltonian which describes the equation
of motion (1) takes the following peculiar form [6]

H(x, p) =
ω1

ω1 − ω2
p1−ω2/ω1 − iω1xp, (2)

whereω1,2 are the eigenfrequencies which are obtained by
substitutingx(t) = e−iω1,2t into Eq. (1) in order to get

ω1,2 = −iγ ±
√

ω2 − γ2. (3)

In order to have overdamping and a real valued Hamiltonian
we need to have purely imaginary values forω1,2, therefore
we must chooseγ2 > ω2. Using the Legendre transformation
one con obtain the Lagrangian associated with the Hamilto-
nian given in Eq. (2), therefore we have

L(x, ẋ) =
ω2

ω2 − ω1
(ẋ + iω1x)1−ω1/ω2 . (4)

Note that if γ = 0 then ω = ω1 = −ω2 which gives us
in return the standard Lagrangian for the simple harmonic
oscillator plus a gauge factor which do not affects the equa-
tion of motion. With a given Lagrangian we can then obtain
the equations of motion of the system by using the Euler-
Lagrange equations [7]

d

dt

(
∂L
∂ẋ

)
− ∂L

∂x
= 0. (5)

Substituting the Lagrangian given in Eq. (4) into the Euler-
Lagrange equations we get the following equation of motion

ẍ + i(ω1 + ω2)ẋ− ω1ω2x = 0, (6)

and using the fact that

ω1 + ω2 = −2iγ, and ω1ω2 = −ω2, (7)
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then the equation of motion given by the Euler-Lagrange
equation reduces to the Eq. (1).

In this paper we show in Sec. 2 that the phenomena of
overdamping can be studied classically for the following fam-
ily of non linear systems

ẍ+i(ω1+ω2)ẋ−ω1ω2x+iΓω2(ẋ+iω1x)1+ω1/ω2 = 0, (8)

whereΓ is a real constant introduced to ensure dimensional
consistency. In particular we analytically solved Hamilton’s
equations in order to obtain the solution of the non linear sys-
tem given in Eq. (8) and show that the solutions are asymptot-
ically stable to the origin and which are zero at most once for
0 < t < ∞. In Sec. 3 we approach the problem of quan-
tization of the over-damped non linear system in a rigged
Hilbert space by finding a solution to the time-independent
Schr̈odinger equation in the momentum representation for
Eq. (8). The conclusions are summarized in the last section.

2. Hamiltonian for an over-damped non linear
system

Many dynamical systems in physics in general are described
by non linear second order differential equations [8]. In this
section we are going to study the effect of an additional non
linear term to the linear damped harmonic oscillator. Let us
now consider the following non linear autonomous system
given by

ẍ+i(ω1+ω2)ẋ−ω1ω2x+iΓω2(ẋ+iω1x)1+ω1/ω2 = 0. (9)

It is easy to convince oneself, by using the Euler-Lagrange
equations, that a Lagrangian for Eq. (9) is given by

L(x, ẋ)=
ω2

ω2 − ω1
(ẋ+ iω1x)1−ω1/ω2+Γ (ẋ + iω1x) . (10)

Using the Lagrangian given in Eq. (10) we can obtain the
canonical momentum which is given by

p = (ẋ + iω1x)−ω1/ω2 + Γ, (11)

and by using the Legendre transformation one can then obtain
the Hamiltonian which is given by

H(x, p) =
ω1

ω1 − ω2
(p− Γ)1−ω2/ω1 − iω1xp. (12)

Interestingly, the Hamiltonian obtained for the non linear sys-
tem given by Eq. (9) has almost the same form as the one
obtained for the linear system given by Eq. (1).

For the Hamiltonian given in Eq. (12) we can write down
Hamilton’s equations which are given by

ẋ =
∂H

∂p
= (p− Γ)−ω2/ω1 − iω1x, (13)

ṗ = −∂H

∂x
= iω1p. (14)

FIGURE 1. The graph shows the position as a function of time for
the non linear over-damped equation given in Eq. (9). We have set
the damping coefficientγ = 3, the angular frequencyω = 2 and
Γ = −1. The plot shows the solution given in Eq. (15) for several
values of the initial parametersx0 andp0, respectively.

By solving forp(t) in Eq. (14) and substituting into Eq. (13)
we obtain a non homogeneous linear differential equation
with the following solution

x(t) = x0e
−iω1t +

ie−iω1t

p0(ω2 − ω1)

× (
p0e

iω1t − Γ
)1−ω2/ω1

. (15)

In Fig. 1 we plot the solution given in Eq. (15) for a given
value of the damping and frequency constants and several
values of the initial conditionsx0 andp0. Note how all solu-
tions approach asymptotically to the origin ast →∞.

3. Quantization in a rigged Hilbert space

Having obtained the Hamiltonian of the non linear au-
tonomous system, we now proceed to see if it is possible to
solve the Schr̈odinger equation [9,10]. For this purpose, we
first rewrite the classical Hamiltonian given in Eq. (12) in a
symmetrized form so as to ensure hermiticity,i.e. [11]

H(x, p) =
ω1

ω1 − ω2
(p− Γ)1−ω2/ω1

− iω1

2
(xp + px) . (16)

Using the momentum representation, wherex = i~∂p is an
operator andp is a c number, and looking for stationary so-
lutions of the following formΨ(p, t) = ψ(p)e−iEt/~ in the
time dependent Schrödinger equation [12]

i~
∂Ψ(p, t)

∂t
= HΨ(p, t), (17)

we obtain the time independent Schrödinger equation

Eψ(p) = Hψ(p). (18)
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Using the commutation relation[x, p] = i~ we can write
down the time independent Schrödinger equation in the fol-
lowing form

[
ω1

ω1 − ω2
(p− Γ)1−ω2/ω1

+
~ω1

2

(
1 + 2p

d

dp

) ]
ψ(p) = Eψ(p). (19)

By using the following transformation

ψ(p) = ψ̃(p) exp

[
1

~(ω2 − ω1)

×
∫

1
p

(p− Γ)1−ω2/ω1 dp

]
, (20)

into the Schr̈odigner equation given in (19) we get the fol-
lowing differential equation

p
dψ̃

dp
=

(
E

~ω1
− 1

2

)
ψ̃, −∞ < E < ∞. (21)

The above eigenvalue equation has the same form as that
of the eigenvalue equation in the coordinate space for the
toy model for quantum damping studied by Chruscinski in
a rigged Hilbert space [13]. Consequently the generalized
eigenfunctions can be given as

ψ̃(p) =

√
1

2π~|ω1|p
(

E
~ω1

− 1
2

)

± , (22)

where following Ref. [13] the tempered-distributions are de-
fined as

pλ
+ =

{
pλ, if p ≥ 0
0, if p < 0

, (23)

pλ
− =

{
0, if p ≥ 0
|p|λ, if p < 0

. (24)

Substituting Eq. (22) into Eq. (20) we have the general solu-
tion for our problem which is given by

ψ(p) =

√
1

2π~|ω1|p
(

E
~ω1

− 1
2

)

±

× exp
[

1
~(ω2 − ω1)

∫
1
p

(p− Γ)1−ω2/ω1 dp

]
. (25)

Note that Eq. (25) reduces to the solution given by Chan-
drasekaret al. for the linearly over-damped harmonic oscil-
lator case whenΓ → 0 [3].

Chruscinski has shown that the complex eigenvalues as-
sociated to the momentum wave function given in Eq. (25)
correspond to the poles of energy eigenvectors when contin-
ued to the complex eigenvalue plane and that the wave func-
tion may be interpreted as resonant states which are responsi-
ble for the irreversible quantum dynamics. Detailed descrip-
tion may be found in Ref. [13].

4. Conclusions

In this article we have shown a Lagrangian and Hamiltonian
framework valid for the study of the classical and quantum
regime of an over-damped autonomous non linear system.
Furthermore, our analytical solutions reduce to the ones ob-
tained by Chandrasekaret al. for the linear damped harmonic
oscillator when the non linear part is set to zero. We expect
that further investigation at the classical and quantum level
of over-damped non linear systems can reveal important fea-
tures of these systems.
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43 (2004) 1885. https://doi.org/10.1023/B:
IJTP.0000048998.57747.99 .

8. I. S. Murty, B. L. Deekshatulu, and G. Krishna, On an asymp-
totic method of krylov-bogoliubov for overdamped nonlinear
systems.J. the Franklin Institute, 288 (1969) 49.https:
//doi.org/10.1016/0016-0032(69)00203-1 .

9. M. Razavy, Classical and quantum dissipative systems, (World
Scientific, 2005).
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