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Bright optical spatial solitons in a photovoltaic photorefractive
waveguide exhibiting the two photon photorefractive effect
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We investigate for the first time, photorefractive solitons in a two photon photorefractive waveguide which also exhibits the bulk photovoltaic
effect. The dynamical evolution equation of such solitons has been obtained under the paraxial ray approximation. The existence curve for
the solitons is derived and four distinct regions of power have been identified in the absence of waveguiding depending upon the threshold
power for self trapping. Bistable states have been observed to be present. We have studied the effect of the planar waveguide and found th:
it enhances the self trapping nonlinearity and hence results in a reduction of the threshold power required for formation of the soliton. The
propagation of the light beam is studied for various different strengths of the waveguide. A beam which would not have normally been self
trapped can now become a soliton by virtue of the planar waveguide structure. Finally, we investigate the linear stability of these solitons by
both, the Lyapunov method and numerical simulations.
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1. Introduction mechanism incorporating the drift and diffusion of charge
carriers subsequently resulting in the formation of the space
The photorefractive effect can be simply defined to be refraccharge field. Screening solitons [1,32], photovoltaic solitons
tive index change as a function of incident intensity. An in-[33-35], screening photovoltaic solitons [21,36], pyroelec-
homogeneous light distribution excites charge carriers froniric solitons [20], screening photovoltaic pyroelectric solitons
donors and creates a charge concentration gradient. Charf@/], centrosymmetric solitons [23], solitons in photorefrac-
transport through diffusion and/or drift and subsequent retives having both linear and quadratic nonlinearity [38], pho-
combination at acceptor levels leads to a space charge fieltRrefractive polymeric solitons [39,40] are some of the types
The space charge electric field induces a refractive indeRf spatial solitons investigated in photorefractive materials.

change through the electro-optic effect. Self trapping or for-  The mechanism of the above mentioned solitons is the
mation of spatial solitons can be realized in such photorefracsingle photon photorefractive effect. Optical spatial solitons
tives due to this index waveguide which leads to counteracecan be supported by the two-photon photorefractive effect
tion of diffraction. Hence, it is actually a robust balance be-also. The well-known model of Castro-Camessal. [41]
tween the nonlinearity and diffraction which leads to solitoncan be used to understand the two-photon photorefractive ef-
formation in such materials. fect lucidly. According to this model, an intermediate level
Optical spatial solitons in photorefractive materials, (IL) must be considered in addition to the valence band (VB)
which were theoretically predicted to exist in steady stateand conduction band (CB). A gating beam is assumed to pro-
[1,2] and demonstrated experimentally [3,4] have been an awide a constant supply of excited electrons from the valence
tractive topic for research ever since spanning a diverse rand&nd subsequently excited to the conduction band by the sig-
of investigations of the soliton characteristics [5-26]. Thenal beam. The signal beam induces a charge redistribution
photorefractive effect can be said to correspond to a saturablghich then creates a space charge field. The space charge
nonlinearity and hence avoids the catastrophic collapse assfield results in an index waveguide through the electro-optic
ciated with the Kerr nonlinearity for 2+1 D solitons [27]. In effect as before. Spatial soliton formation in such two-photon
addition, solitons are realizable in photorefractive media aphotorefractive media has been investigated in detail in pre-
relatively low laser powers(a few mwW) and hence very con-vious researches [22,42-44].
venient to observe experimentally. Potential practical appli-  An interesting mechanism which supports the self trap-
Ca.tions Of phOtorefI‘aCtive Solitons I|e in the fleldS Of Optica| p|ng process in photorefractives iS the Creation of a Chan_
switching, optical navigation, waveguiding, beam steeringne| waveguide. The self defocusing of an optical beam in-
optical computing, optical interconnects etc. [28-31]. duced by diffraction can be countered by the waveguiding
There is a rich diversity of photorefractive solitons de- effect and hence the waveguide supports the formation of
pending upon the type of nonlinearity in the photorefractivesolitons [12,19,45]. This results in lowering of the thresh-
crystal (linear or quadratic or both) and the charge transpomld power required to self trap a light beam as compared to
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the threshold power required in bulk photorefractive media.

Photorefractive waveguides have attracted much interest re- B B s2la(I2 + 1g +71Na/S2) (5)
cently with investigations of formation and propagation char- s PGS+ ) + 1)
acteristics of solitons in waveguides embedded in different . -
types of photorefractive crystals [12,19,45]. To the best oﬁ';' htf]reeg g rk_ . rfr; ?jjz ?u/: g‘: .'SS :Eg ngttzvglltg.z flcilgictla;.t\g/ s.;
our knowledge, no one has investigated the self trapping it e acceptolr or 'Erap delnsity ispthe r\écorr:bination fac?olr of
a photovoltaic photorefractive wavegide having two-photoqhe conduction to valence band transitign,is the recombi-

hotorefractive effect as yet and that will be our objective” . . .
P Y ) nation factor for intermediate allowed level to valence band

in this paper. We formulate the theory governing the exis- . . oo -
pap Y9 9 '([j)ansmon,ﬁl is the thermo ionization probability constant

tence and study the dynamical characteristics of the soliton ¢ transition from valence band to intermediate level,
in Secs. 2 and 3. In Sec. 4, we have investigate the Stabi"t's the thermo ionization probability constant for transition
of the solitons in the photorefractive waveguide by Lyapunovf m intermediate level tp nd t)i/ n band: and ;
theory and numerical methods. Section 5 contains a brief © ermediate Jevel 1o conduction bane, ands; are
the photo ionization cross sections. is the intensity of the
summary of our results. . o d )
gating beam which is constart, refers to the beam intensity
] . profile I, is the intensity at distances far from the centre, at
2. Theoretical foundation r — +o0. I, is the contribution of thermal effects and hence
called as dark irradiance whilg, refers to the value of the

Consider a light beam propagating in the z direction in 8gytema electric field. In addition, the following dimension-
waveguide embedded in a photovoltaic photorefractive cryspasq coordinates shall be adopted

tal. The optical c-axis of the photorefractive waveguide is co-

incident with thez-direction. The optical beam is polarized €= E e )z
along thez-direction while we shall consider the diffraction kx3’ 0
to be alonge-axis only. The electric field of the incident opti-
cal beam satisfies the following modified Helmholtz equation I, = &|¢|2 P — 2TloIdU
[12,19,45], 210 ’ Ne
V2E + (kon;)QE — g2®E =0, (1)  wherex, is an arbitrary spatial width which is used for scal-

ing the transverse co-ordinate. Alsp,= +/uo/0, Using

wherek, is the free space wave number amdis the per-  these dimensionless coordinates, the evolution equation be-
turbed extraordinary index of refraction. can be found out;omes,

from the expression cf\n in photorefractive materials [1],
oU  19%U

W2 =i = ey B @ Tog T3 ger TomeU Ul
wherer. ¢y is the linear electro-optic coefficient agds the _anoU 552U — 0 ©)
waveguide parameter, usually taken as positive. This waveg- a+ U2 -
uide parameter represents in essence the strength of the index
waveguide as can be seen clearly from (1). The electric fielavhere
of the light beam is expressed as, 3,

_, . o = (kozo)?(nirss/2)Ep, n=———-rH-»,
E(z,2) = 2®(x, 2)e**, (3) (hozo)(mersa/2) Ep = s + 5

~ mNa  7Na
o = =

where ®(z, z) denotes the slowly varying envelope of the § = gkoxgne.

wave andk = kgn. Wherek, is the propagation constant s21a P
in free space . We shall apply the paraxial approximation ¢ s interesting to compare our dynamical evolution
which |mplles that the_z derlvat.lve of the am.pllt_ude function Eq. (6) with the corresponding equation for photovoltaic
®(z, z) is aslowly varying function of. Substituting Eq. (2)  gqjitons in two-photon photorefractive crystals as derived in
and Eg. (3) in Eq. (1) and making the paraxial approximationges [24]. The authors in Ref. [24] investigate the photo-
we obtain, voltaic solitons in photorefractive crystals without any em-
0P 1 9% 1, ) bedded planar waveguide and hence the refractive index
"ozt Skong 022 FhoneressEse® —g2"® =0, (4)  change is purely due to the electro-optic effect in the pho-
torefractive crystal. We can see that the Eq. (13) of Ref. [24]
E,, = 2E,. is the space charge field setup in the photoreds similar to our Eq. (6) but it does not contain the last term
fractive waveguide. which signifies the strength of the waveguide. The effect of
The expression for the space charge field in two photorthe embedded waveguide on the self trapping is the main as-
photorefractive photovoltaic media neglecting the effect ofpect studied in this paper and hence the last term in Eq. (6)
diffusion can be stated [24], assumes significance.
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Also, in Eqg. (6), the non-linear variation of the refrac-

tive index results due to the fourth and fifth terms. By ex- JP P

amining Eq. (6), we get to know that an exact analytical A(s, &) = e 2%a%(©)

solution cannot be obtained. But there are several methods a(§)

to approximately solve this equation. Segev’'s method [32], 1

Akhmanov's paraxial method [46], Anderson’s variational Q(,5) = 582@(5) +9(§), 9)

method [47] and Vlasov’'s moment method [48] can be used d

to solve Eq. (6). In our current analysis, we shall make use O() = ——Ina(§).

of the paraxial approximation and use a variational solution dg

to obtain physically acceptable soliton states. Assume the Here,P represents the normalized peak power of the soli-

slowly varying beam envelope to be of the form, ton, r is a constantu(¢) represents the normalized beam

width parameter and the produet(¢) gives us the spatial

U(E,s) = A(E, s)e ¥HEs) (7)  width of the soliton. The solution in Eq. (9) is taken to

be a variational solution having(¢), ©(£) andy () as the

hereA . | | titv ard N variational parameters which we need to obtain for physi-
whereA(¢, s) is a purely real quantity and(¢, s) represents cally acceptable soliton solutionsQ(¢, s) is basically the

the phasg. Su'bstituting this ansatz in Eq. (6) and equating ﬂ}?hase of the propagating soliton beam giverfds, s) —

real and imaginary parts to zero, 15%0(&) +1(€). The first term on the RHS, 520 () + 4(€)
signifies the phase in the transverse direction while the sec-
ond termy(€) signifies the longitudinal phase.

0A  9AQ 1 9PA 0 In general, we can assume,= 1 até = 0 Also, it is
o6 0s 0s 20 0s2 quite logical to assume further that the soliton beam is not di-
00 1 90\2 10924 vergent at the entrance face of the photorefractive crystal and
A— ——-A <> f—2+a770A+0477(|A|2)A henceda/dy = 0 at§ = 0.
9 2 s 20s Now, we know that-a(¢) is the spatial width of the beam.
—ancA(1+|A]P)" = 6524 = 0. (8) Ifwehavea(£) = 1always, then we know that a stable prop-

agating soliton forms of constant width r, hence we can also
refer tor as equilibrium spatial width. After some algebraic

In Eq. (8), the first two terms represent the convergencgimplification and retaining only first order terms, we obtain,
or divergence of the beam and the third term represents the

diffraction properties of the beam. The fourth, fifth and d?a 1 9 P 5
sixth terms elucidate the photovoltaic properties of the crys- de2  rig3 " <r2a2) —eane
tal. The fifth and sixth term in particular, represent the non-
linear terms contributing to the refractive index change. Th
last term in Eq. (8) is due to the planar waveguide structure™

in the photorefractive material. The last three terms controlrpe apove Eq. (10) illustrates the dynamical evolution of the
the diffraction effects and hence lead to a self trapped solitogeam width parameter and hence tells us about the variation
propagation. The solution of Eq. (8) can be taken to be Gausss the spatial width itself. A self trapped beam results if the

sian. If we see Ref. [47], Anderson set a trend by suggestinge s m width remains constant. So we equate LHS of Eq. (10)
the use of Gaussian profile in variational methods. Subs&y, ;er0 and obtain

quently, this was implemented by many researchers in non-
linear optics [12,19,49-58]. Gaussian ansatz is most widely

_2_
m — 26a. (10)

Existence of solitons

used for approximating solutions for non integrable Syst(_ems % _ % {2a77P0t + 2a775P0t2] 2, (11)
and most widely used by the nonlinear optics and soliton 7 (14 Py)
community.

—-1/2

Firstly, Gaussian ansatz enables the calculations to be- 7= {QCLUPOt [1 + (l—fP)Q} + 257“2} - (12
come remarkably easier. Secondly, numerically computed 0
exact profiles do not differ widely from the Gaussian one  Equations (11) and (12) can be denoted to be an existence
in most of the cases and thirdly, Gaussian profile is quali-equation for bright solitons propagating stably through the
tatively very close to sech profile as it has almost the samehotorefractive waveguide since it shows a relationship be-
half width and also the integral of the two profiles are compatween the equilibrium spatial width (r), the threshold power
rable [47]. Finally, analytical simplification is not expected (P;) and the waveguide strength The plot in Fig. 1
by using sech ansatz in most cases [58]. Since we use amows how this existence curve changes when we increase
approximate solution, we can term these solutions as quastihe strength of the waveguide Equation (12) can be recast
solitons and henceforth the term soliton will refer to suchinto a polynomial equation in terms of the threshold power
guasi-solitons. We shall use the Gaussian ansatz of the forn#;. The value of the threshold power may then be found out
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FIGURE 1. Existence curve in the presence of waveguiding show- £y re 2. Soliton evolution shown by the variation in the beam

ing the threshold poweFy, as a function of equilibrium spatial  \idth parameter.(&) with normalized distance for different peak
width  whend = 0, 5000, 10000, 20000. powers.

by solving the ensuing equation. This has been attempte
and since the solution is a bit lengthy, it is shown in the Ap
pendix. The parametersn are positive and hence, we can
see that bright solitons will be supported only in a material
with a positive value ofv. In the present analysis, we shall

consider the following material parameters for illustration of " “ "
owers” denoted b andPy;2. The two “threshold” pow-
our results [21,22,41,59, — 2.2, re = 30 x 10-22 m\, P Yoi 0r2 b

1= 55 = 3% 10~ MPW-1s1, B = By = 0.0551, 7y = ers are simply denoting the two bistable states of the system.
33x 1017 m3s ! N, = 102’2 m=3, Ep = 4 x 106’ v/im. We shall now try to understand the propagation behaviour
Other parameters will be chosen ds, = 5 x 107 W/m?2, of the s_oli_tons at differen_t peak powers. We first consider the
Ao = 0.5 x 1076 m, 2o = 10 um. Based on these parame- SC€Naro in which there is no W§v§QU|d|ng effec_t and hence
ters, we getp = 22.19, 7 = 3.33 x 105, o = 6.6 x 10~. 0 = 0. Figure 2 shows the variation of the variable beam

Looking at the Fig. 1, we can infer the parameters of thewidth parameter with distance of propagation. We have taken

solitons which can travel stably through the photorefractivefour distinct powers as follows?; (= 0.01) < Pou, P, (=
waveguide. For stable soliton propagation, we can infer thd-242) =Fot1, Porr < P3(= 2.5) < Py, Pu(= 25) >
threshold powerP,, required for a particular soliton width £ 0:2(= 4.1). For clarity, we can také = Fo.o(= 4.1).
very easily by seeing the existence curve shown in Fig. 1 When the peak power is equal 8, the beam width
considering the respective waveguide strength. We can sébverges to a large value because the light beam’s power is
that the equilibrium spatial widthincreases as the threshold much less than the threshold pow&y;, required to self trap
power Py, tends towards zero. This implies that the spatialthe beam. Hence, a stable soliton cannot form in such a case.
width of the soliton so formed increases with a decrease iftgain, if the light beam’s power is exactly equal to the thresh-
the threshold power in the low power regime whp tends ~ 0ld powerFPy;; or Py, We can see that the spatial width re-
towards zero. The increase in the equilibrium spatial widthmains constant and hence results in stable self trapping. If
of the soliton asP,; tends towards zero becomes more pro-the beam’s peak power lies betwekg; or P2, we can see
nounced as the Waveguiding Strength becomes lesser. T[‘ﬁga.t the Spatial width of the I|ght beam oscillates but with
is expected since the waveguide supports the self trapping @ amplitude of oscillation less than unity. This can also be
the soliton and a lesser value of the waveguide parameter wilermed to be stable self trapping and the beam interpreted as
result in a weaker nonlinearity for self trapping and in turn a@ soliton. But when the peak power is greater titan , we
larger spatial width for the soliton. can see that the spatial width of the light beam oscillates with
Equation (12) has got four solutions or roots for the equi-&n amplitude of oscillation greater than 1 and hence self trap-
librium spatial width parameter. Inspection of the roots Ping cannot be said to take place in such a case. Figures 3to 6
reveals that two roots are Comp|ex and hence they can be réhOW the dynamical evolution of the soliton for these above
jected as unphysical. Again, the third root is real but negativénentioned cases respectively and reinforce the existence of
which can again be rejected as the soliton width cannot béour separate power regions.
negative. Hence, only one of the roots, which is positive and In Fig. 3, we can see a stable soliton does not form and
real can be identified to be the soliton width. From Fig. 1,diverges because the power is less than the threshold power
we can infer that there are two values of the threshold poweF,;; needed to form the soliton. In Fig. 4, we see the for-
which are possible for a particular value of the equilibrium mation of a perfect soliton since the power now equals the
spatial width of the soliton. We can see that one of the valuethreshold power, eitheP,;; or Pys. In Fig. 5, since the
of the power lies in the low power regime and the other liespower of the light beam lies between the two threshold pow-

ﬁln the high power regime. This is the hallmark of bistable
“states. We shall identify the two threshold power®as and
Pyio. Bistability means the system has two stable equilibrium
states and it can take either of the two values. Now, we de-
fine the two powers for which the soliton exists as “threshold

Rev. Mex. Fis69021301
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F;GURE 3. _Igynamfa:)evo_ltuhtlon of thle sollttt:) : bﬁ?mf_ln :hti absherllcci:e FIGURE 6. Dynamical evolution of the soliton beam in the absence
0 WavlejguL '8%61 N 13 with power fess than the first threshold waveguiding § = 0) with power greater than the second thresh-
power, P1 (= 0.01) < Po1. old power,Py(= 25) > Powa(= 4.1).

o [ 7 ~ ;3 -y
i & ='10000 = ztﬁg
FIGURE 4. Dynamical evolution of the soliton beam in the absence ol b o - e =
of waveguiding§ = 0) with power equal to the threshold power, = o ' £ - '

P2(= 0242) = Pys1 OF P5(= 41)
FIGURE 7. Soliton evolution shown by the variation in the beam

width parametes (&) with normalized distance for different waveg-
uide strengthsP = 0.08, » = 0.0808.

ted the soliton’s evolution while propagating. We have cho-
sen the value of poweP andr such thatP is less than
the threshold powepP,;; for that particular value or. We
taker = 0.0808 and we have chosen the beam’s peak power
P = 0.08. From the existence curve in Fig. 1, we infer that
the powerP = 0.08 is less than the threshold power needed
to form a soliton for the particular = 0.0808. Since the
peak power is less than the threshold power, we expect no
FIGURE 5. Dynamical evolution of the soliton beam in the absence self ’Frapplng or self.fo'cu'ssmg "_1 absgnce of any other inter-
of waveguiding § = 0) with power P = 2.5, i.e., power lying  vention and hence it is interesting wish to see the influence
between the two threshold powels;; and Po:» of the waveguide on the propagation characteristics of such a
light beam.
ers Py, and Py2, we can see a sort of self trapping hap-  Figure 7 graphically shows how the beam width changes
pening. As mentioned before, even though the spatial widthvith propagation distance. For the unguided casg = 0,
and amplitude are oscillating, the oscillation amplitude is lessve can see that the light beam’s spatial profile diverges
than unity and this can be termed as a soliton. But in Fig. 6sharply and hence self trapping does not take place. As we in-
when the light beam’s power is increased to greater fyan crease the strength of the waveguide (by increa®inge can
we can clearly infer that the travelling light beam is not aclearly see some sort of self trapping effect. At a particular
soliton since its spatial width and amplitude oscillate with anvalue of the waveguide strength £ 6500), the beam width
amplitude greater than unity. equals one and remains constant with propagation. Hence,
Next, we shall investigate the effect of the waveguide ona perfectly self trapped beare., soliton can be clearly in-
the propagation of the light beam within the photorefractiveferred to exist here. The waveguide enhances the nonlinearity
crystal. Solving (11) for different values 6f we have plot- induced self focussing and is just enough to enable the forma-
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FIGURE 10. Dynamical evolution of the soliton beam in the pres-
FIGURE 8. Dynamical evolution of the soliton beand (= 0), ence of waveguiding(= 6500), P = 0.08, r = 0.0808.
P =0.08, r = 0.0808.

U

FIGURE 11. Dynamical evolution of the soliton beam in the pres-
ence of waveguidingd(= 10000), P = 0.08, » = 0.0808.

FIGURE 9. Dynamical evolution of the soliton beam in the pres-
ence of waveguidingd(= 1000), P = 0.08, » = 0.0808.

tion of a perfectly self trapped beam or soliton of width
ra(£) = 0.0808. As we keep on increasing the waveguide pa-
rameter to above this particular value, the beam width starts
to oscillate with propagation but the amplitude of oscillation

is less than unity. Such beams can also be said to be seljup
trapped and hence referred to as solitons. The important ob-
servation here is that a soliton could be realized even at peak
power less than the threshold power in such two photon pho-
tovoltaic photorefractive material due to the self focussing
provided by the planar waveguide. The higher we choose
the waveguide parameter, the lower will be our required peak -
power to realize a soliton within the crystal. Figure 8-12 FIGURE 12. Dynamical evolution of the soliton beam in the pres-
show the aforementioned cases by plotting the soliton’s dyence of waveguidingi(= 20000), P = 0.08, r = 0.0808.

namical evolution with distance explicitly. In Fig. 8, we can ) ] o

see that the soliton diverges as the waveguide strength is zeYgth pPropagation but the amplitude of oscillation is less than
and the power of the soliton is less than the threshold powefNIty-

required for self trapping. As we increase the waveguide

strength by increasing the waveguide parameter, we can seg Linear stability analysis

some sort of self trapping in Fig. 9, but it cannot be called as

a soliton beam since the beam width oscillates with propagaAt this point, it is important that we investigate the stability
tion and the amplitude of oscillation is greater than unity. Asof the solitons propagating inside the photorefractive waveg-
we increase the waveguide parameter furthergfer 6500,  uide since only stable solitons have potential practical appli-
we can see the propagation of a perfect soliton in Fig. 10cations. It will be in order to revisit the Eq. (11) and define
For further increases in the waveguide parameter, in Figs. 1n1ew quantitieg, F, X such that,

and 12, we can see some sort of self trapping and hence these da

can also be called solitons since the beam width oscillates dé = F(a,() = ¢, 13)

Rev. Mex. Fis69021301
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and

do 1,
¢ ra3 "

2
242

—2ano—12%

P
r2g2

26

= X(av C) (14)

Since both the roots come out to be imaginary, we can con-
clude that the solitons are stable. This can be verified nu-
merically also by investigating the behaviour of solitons in

the phase plane under small perturbations. The variation in
spatial width a is plotted in Figs. 13-15 under small perturba-
tions. The perturbation ranges from 5% to 15%. The stability

£ 2
[1 (a )] of solitons is inferred by the closed trajectories.

In Eq. (13), as a general casé;/d¢ has been defined
to be a new functior'(a, ) and in particulai’'(a, () = (.
Fis a function while( is a variable. Similar arguments can
be used to understand the function in Eq. (14). Equation (14)
has been obtained by using Egs. (11) and (13). Equations (13)
and (14) now serve as the point for starting our investiga- 42
tion into the stability of solitons using Lyapunov’s exponent =
[60]. Since we consider the linear stability, we shall write the
variables to consist of a steady state value and a very small
perturbation term. Sa; = as 4+ @ and¢ = ¢, + ¢ where
the subscript s represents the steady state valueé and

10F

¢ represent the small perturbationsdrand ¢ respectively. ot
Substituting in (13) and (14) and linearizing the ensuing ex-FIGURE 13. Phase trajectory of the spatial soliton resulting from
pression, we get, the perturbation in its value at steady state. The perturbation ranges
dR — IR (15) from 5% to 15% and a low power regime has been considered.
a0 (P < 1) (perturbed power less thafy,1).
where, _
a
Rl
¢, i
and
5 5 da
F F e = :
(%)as (87@) F, FC dé 0.8 08
J=1 . G| = . (16) a
(2X) (LX) Xo X¢
Oa /ayg ¢ Cs L
Constructing a Jacobian determinant and equating to zero for
a non trivial solution, L

Fo—X\ F

FIGURE 14. Phase trajectory of the spatial soliton resulting from

det(J — M) = { X, X; — )J =0. 17 the perturbation in its value at steady state. The perturbation ranges
from 5% to 15% and a high power regime has been considered.
Solving (17), we get, (P > 1) (perturbed power greater thdf;1).

M —-YA-—2=0, (18)

M= 87F+87X
\Oa  OC a;,@v

where,

da

and 45

0X OF OF 9X

[1]

(19)

Following Lyapunov, we can conclude that steady state solu-
tions of (13)-(14) will be stable i is not positive. The two

- (aa ac +8aag>a5£5’

FIGURE 15. Phase trajectory of the spatial soliton resulting from

eigenvalues of the above equation (19) come out to be the perturbation in its value at steady state. The perturbation ranges
= from 5% to 15% aboveé™;: and hence the perturbed power lies
_ /32 =
N = M (20) betweenPy:1 and Po;2.

2
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5. Conclusion
ically and also by numerical simulations which reveal that

We have investigated the existence, propagation and chaghey are stable against small perturbations.
acteristics of optical spatial solitons in a waveguide embed-

ded in a two photon photovoltaic photorefractive crystal. In .

the absence of waveguiding, we have identified four distincto‘ppend'x A

regimes of power and investigated the dynamical evolutiorwe have, from (12)

of the solitons in all of these. We also observe the presence ’ ’

of bistable states. We then study the effect of the waveg- 1 1 2and Py
uide parameter or the strength of the waveguide on the self ) 2anPo; + (1+ Py)?
trapping. The planar waveguide enhances the self focussing

due to the photorefractive nonlinearity resulting in lessening>implifying, we get

of the threshold power required to support steady state self 9 9 9
trapping. The higher is the considered value of the waveg- (1+ Po)” = 20" Fo, (1 + Por)

uide parameter or the waveguoide strength, the lower is the + 20m67% Pyy + 20r* (1 + Pyy)2. (A.2)
threshold power required to self trap a soliton. Finally, we

have investigated the linear stability of such solitons analyt-  Equation (A.2) is a polynomial equation of order three
| which can be solved to get the threshold powgy,

+26. (A1)

1—-2rt6—4r2an
Por = 67‘270”]77+
(—(1—2r*6—4r2an)?4+12r2 — 45412 2
n)“+12r<an(—142r"6+r an+r and))

/3

—2 412745 — 247862 + 1601263 — 12r2an + 48r5adn—
487100520 — 24r4a®n? + 48r8a26n?—
1675303 + 36rian?c — 72r8a2dn?o — 144r8a3nio+
(=2 + 12716 — 247862 + 1671263 — 12r2an + 48r5adn—
48710062y — 24r*a2n? + 48r8a2on?—
167%an® + 36r*a’n?o — 72r8a?in?c — 144r%an30) %+ . (A.3)
4(—(1 = 2r%6 — 4r2am)?) + 12r2an(—1 + 2r16 + r2ans))®)/?

3(22/3)r2an

—2 4 12745 — 247862 + 1611263 — 12r2am + 48r5adn—
487100520 — 24r4a’n? + 48r8a26n? — 16r°an3
1 +36ria’n’o — 144r%a3n3o + ((—2 + 12115 — 24r852+
~6(2)1/3r%an 1671263 — 12r2am + 48r8adn — 48r'%adn—
24r*a®n? + 48r%a26n? — 1675303 + 36rtan?o—
72r8a26n? o — 14475a3736)? + 4(—(1 — 2r*§ — 4r2an)?+
12r2am(—1 + 2r%6 + r2an + r2ano))3)'/?
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