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DIFFRACTION IN TIME
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(Recibido: Julio lo., 1954)

RESUNEN

Doctor Narcos Hoshinsky. and the author"‘ have bdeen

independently interested in the subject. Recently, Doctor

)10

Noshinsky has shown the eqQuivalenceé between Ris own treat-

ment and the author's.

Owr method in this problem is essentially dased on
Ninkowski's spaca-time geometry and Fresnel'’s intuitive ~
treatment of diffraection. In this way, the fundamentol -
formulae of wave mechanics come out with & complete symmelry
between space and time, and Fcyﬂuan's. interpretation of

negative energy states 1s very clearly illustrated.

20 |



I. INTRODUCTIQN,

Let us consider an incident wave, asociated witih one
relativistic perticle, ard such that one space-like -
component of the fou--eurrent, say Jji, has a definite sign

say:
ji. > a >0 |, a fixed number, (1)

Moreover, the magnitude of the current is supposed to become
negligible outside a world current tube, whose space-like

section is entirely at a finite distance

Xe/1i (time}

-4 x, f(space)

Pig.

Under these assuamptions, and owing to the continuity equation:
a)\ jh = O ’ ()\Jp'lv.lp = |121314) (2)

the wave function is "egu.valenty” normalized by the formula:
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(xe=ict) (3)

"'"‘III _ j4 dx;dxadxa

or by the formula;

JIJ - 31 dxe dxs dt = | (4)
!|=0
Physically, the above assumptions will be met 1f the
particle is emitted on a “practically” plane monocromatic
wave, limited in space and tiee, say by some “collisator”

operated during a finite period.
Suppose that the plane x; = 0 of three dimensional

space is materialized by an impeneirable and perfectly
absorbing screen with a hole in it, which is initially and
finally shut. At any instant, the contour of this hole will

be described by equations of the form:
xy =0, C(x2, x3, t) =0 or €(x2,xs,xs) = 0. (B)

In space-time, the geometriszed image of the evolution of
this diaphragm will be a three dimensional screen parallel
to the x»,xXa and x4 &axes, with a hole ® 1in it, according
to equations (5). The simplest possible type of hole is=

limited, in the x2,x4 ' and the x3,x4 planes by two time-
like semi-contours, intersecting each other in an initjial I
and a final F space-time point; the vector F-I Dbeing

time—1like, the x4 axis may be taken along it.
Thus, it is clear that the time-diffraction of the

incident wave, due to the opening and shutting of the

203



X2.%3,X4 xe/1 = ot

F
—— e e m——m, m - == - = X ) —————— - Xo,X3
' L
{
|
|
Y
!
Fig.2. Scheme of the Fig.3. Scheme of the
3-dimensional screen. 3~dimensional hole.

diaphragm, is equivalent to its space-diffraction, due to
the limited dimensions of the hole, The 2nd., 3rd. and 4th.
uncertainty relations will come out in a perfectly symmetrical
way. Of course, the variation of momentum and energy of the
particle caused by this space and time diffraction must be
given or taken by the heavy macroscopic screen and its power-
ful disphragm-mechanism.

If we select the cases where the iancident particle
effectively falls in the open hole D, the normalization

condition (4) becomes:;
fffg ji dxpodxadt = | . (8)

Once the effect of the absorbing screen is tasken into account,
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the equation of the diffracted wave ir the plane xy = 0
reads:

0 outside of 9,

l,(l(I] = le2lx31x4) = (7-)
Yo(x1 = 0,%2,%Xa3,¥4) inside of 9;

Yo Trepresents the primitive incident wave.

It becomes already clear that, in our problem, the
natural evolution parameter is not t or x,, but x,.
Along the increasing values of this parameter, we will speak
of "before” and "after” the screen, for instance, always

using then quotation marks.

II. COVARIANT THEORY OF
FOURIER TRANSFORMS.

The corresponding formulae have been derived by the
author® following an initial hint by Marcel Riesz"; a complete

deduction has been given recently" and is here summarized.

A.- Formulae associated with the second order

Gordon equation,

$ meaning the two sheet hyperboloid in momentum

4--space:
A 2 _
k kh ¥ kO o » (8)

isvy, the volume element on it (which is colinear to k,)
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and &v (>0) the lenght of idvy according to the defini-

tion -
KobVy = ky dv . (9)

The direct covariant Fourier transform of the wave function

reads

4

(2m) ¥ 2 y(x) = iy et TV (k) sv . (10)
The inverse covariant Fourier transform of ¢y reads

(2m) %2 L) = 5 FfTgel) o™ WPt i (1)

§ meaning any space-like surface in space-iime, e{k} the

well-known s8ign commutator

/1 (12)

e (K] |kea/ 11 '

i5uy, the volume element on €. One verifies that, accord-

ing to Gordonts equation
(h-k?) ¢(x) =0 or (Kyek?) {(k) =0 . (13)

X
(k) 1is defined by (}!) independently of € *.

*With A S 45*one recognizes the well-known relativist in-
veriant 1d°k/ks«.

*¥wrvite the difference of two expreasions ([!} with two dif-
ferent G's, and convert in a 4-fold integral.
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The presence of the normal derivative 3*¢8uh in (V1)

was o0f course expected.

Carrying (!1) in (10) gives the formal solution of
Cauchy’s problem:

W(x') = [ffg SN (xix) y(x) sup(x) (14)

where:

sM(x) = D(x) (1k" + ?") , (15)

and D(x) is the propagation function, first defined by
Stuckelbergsz

i

°(®) ez ?

S ) Rl (18)

this D, equal to D__ -D_ a4y, is nil outside the light cone.

The above formulae (l!4) to (18) are substantially the same

as those given by SchringerB for the photon.

("] = 3* - g* meaning the well-kmown operator appear-
ing in Schrodinger’'s 3-current and Gordon'’s 4—-current, and

7 or [ the complex conjugate of the scalar ¢ or L,

Parseval's covariant equality reads:

L [[fg $1 13 Waduy = ISge0)Tata by (17)

0f course, according to the continuity equation, the left-

hand side in (17) is independent of G.
Putting (i = {2 = { , the right-hand side of (17) is
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the so-called distribution function of 4-momentum, and put-
ting:

1kv,'p

&y =0, {2 = [ & , (18)

one obtains the so-called characteristic function of 4—momag

tum:

7 106 P @y (xey) sy = [ITg «(0)T 1e™™ 7" 5v.  (19)

B. Formulae associated with the first order

spinning particle equation.

The Gordon equation (13) is always a consequence of

the spinning particle equation.
(a* 3, + XKo)w(x) =0 or (&M k¥, - t¥e)L(X) = O . (20)

Using (20) and (9), one may transform (10) into:

1x”

(2r) 32 p(x) = -4 Jffga*svx o Ui{x) . (21)

0f much wider interest is the transformation of (Il): replac-

ing in it 3k¢ according to (20), one obtains". with the

Dirac equation:

(B1)Y2 Uy ) = s IS ce ™ ™ (1 kurko) Py (x) b, (22
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and, with the Duffin-Kemmer equation:

2m) %2 1, (k) [Ifg (e ™ ™ (1 vikn(B*B-F") ko lu(x) buy; (23

A
2ko
instead of the normal derivative, one has now a linear com-

bination of the ¢ components. The corresponding expressions
A
for S (x) in (14) are;

S1/2) (0 = (3 ko) P D(x) (24)

St1y (x) = (3" 42, (BBA-pAE*) ko A D(x) ; (25)

(24) 1s the expreasion given by Schwirger  in the electiron

case,
Both sides of the Parseval equality (!7) may be irans-—
formed" ' according to the Gordon decomposition of the

4—current*, and there comes (¢ = ¢*B8):

[If b ad yo Suy = JI5g e(k)T) at Lo Svy . (26)

The corresponding form of the characteristic funtion (19) is

eagsily written; it has also been derived in another way by -

the author’.

S T T " T =oAL S
*The total current ¢ a*¢ and the Gordon current -y [(3"])y/2ke
are integrally equivalent in the sense of equations (17)
aRd (28), for their difference has the form 9x m“#, where
m"* {8 a skew symmetric tensor; when integrated, this
last term may be transformed in a 2-fold vanishing contoup

integral.
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II1. SPACE~TIME FRESNEL TEKOPY.

According to the hypotheses and definitions of Section
I, all the formulae of Section II will still hold with the
space~like surface & replaced by the time-like surface ¥
of Section 1. The momentum amplitude of the diffracted wave

will be given by formulae (7), and (1}), (22) or (23) and
its space~time amplitude by formulae (7), (14) and (Ii5),

(24) or (25)~.

Ags was said above, the natursl evolution parameter in
our problem is the x, coordinate and we shall use quoiation
marks every time we speak of it in terms of time. Given, on
the surface O of the space-time hole, the "initial” dis-

tribution (7), one has the following four classes of dif-

fracted plane waves:

Fig.4 The four types of diffracted waves.,
Formulae (17) or (28) written with © instead of @ (or
equivalently, formula (4)), snow that the Fresnel criterionm
|Wwl2 for the intensity of & wave, is an over-simplification

of the right formulae; this remains true if one uses the
momentum or energy flux per surface and time units, rather

than the particle number flux.
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This symmetry with regard to the k; = 0 plane strongly
suggests that this direct application of the formulae corres-

ponds to the case of a perfectly reflecting screen; in fact
this was demonstrated in a particular case by Dr.Moshinaky'®,
gt least as regards the x, > 0, x;/i >0 region; but the
whole problem deserves some more reflection.

Here, we are interested in the case of a perfectly
absorbing screen. In Fresnel’'s static case of a screen with
& hole in it, the reflected k; < 0 waves are well known to
exist formally, but not really. one musti simply rub them out,
and so will we do here. Thus, in formulae (11), (22) or (23),
we assume that only the k; > 0 plane waves have a not-nil
amplitude.

Now, the above quoted formulae will give, in all space-
time, an expression for the diffracted . This, in the -
x;, >0 region, will represent the proper “transmitted® wave.
In the x; < 0 region, it will represent a fictitious "ingoing”
wave, differing from the real “incident” wave by the suppres-
sion of all the Fourier components that the screen annihilates.

Given the "initial” distribution (7), with the above restiric-
tion to ki >0 plane components, this ¢ will correspond in the x; >0

region to a "prediction” problem, and in the x, <0 region to a ‘retro-

diction” problemn.
Let us consider now the future and past light cones

respectively associated with the space-time poinis I and F
of Fig.3; the region o, outside the two light cones, is
forbidden to any particle going through the hole 0. At my
point of the regions ! and 3 situated far emough (in space
and time) from 9, the influence of one particular possitive

energy plane wave is largely predominating, as is shown by
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distant point of the ‘regions 2 and 4 the influence of =a
rejative energy plane wave is largely predominating.

Now comes the problem of the negative energy states
interpretation. It is obvious that the association of -
negative energy plane waves with the “macroscopic” id=2as
concerning the identificability of particles will entail the
paradox of an advanced causality: the operation of the shut-
ter mechanism will telegrsph into the past, and c¢all from

there negative energy particles.
The solution of the paradox lies essentially in the

use of the Permi-Dirac or the Bose-Einstein statistics. Let

Pio = Po, (27)
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be the probability associated by the formulae of Section II
#ith the transition between an "initial” state | to a "final”
state 2, which is always equal to that of the reciprocal
transition "2 » |7, In the case of a one particle transition,

this probability must be superquantized according to
ny Py2 n2 = n2 P21 n (28)

where n; is the "initisl’ occupation number of the "initial”
state | and n. the "final” occupation number of the "final”
state 2 in the hypothesis of the transition taking place. In
Fermi-Dirac statistiecs, n,,n». = 0,!, and, for instance,
ne =0 1if the "final” state 2 is "initially” occupied. In
the Bose—~Einstein statistics, n,,ne = 0,1,2,...

In other words, it is essentially the new feature of
quantum statistics, i.e. the explicitly symmeiric role of
the occupation numbers of the initial and the final stiate,
which bars out the paradox of advanced causality. The as-
sociation of the concept of negative energy waves with Maxwell-

Boltzmann statistics would be paradoxical. For a relativistic

presentation of quantum théory, quantum statistics are no less unavoidable
than the representation of spin; perhapes this is one mors argument in
favor of the essentisl connexion betwsen spin and quantum statistics.

The above interpretation is, of course, ihe Feynmane
interpretation of negative energy states., One: has 4 sub-
cases: |, ordinary diffraction of an electron; 2, ennihila-
tion of a pair; 3, oreation of a pair; 4, ordinary diffraction
of a positron. In Feynman's papers, the occupation numbers

are not explicitly introduced but in the fsrmion case, there
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is the word if: P2 1is the transition probabllity if an
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evolution
parameter

Fig., 8. Four types of electron diffraction.

initial state is initially occupied or if a final state is
initially empty (initial and final, in theﬁordinary sense or,

as well, in the "x, sense”); the symmetric assertions hold

in a retrodiction problen.

IV, REMARK: TIME GRATING.

Any heavy periodical physical system, for instance an
oscillator or a rotator, may be considered as a time-like
sgrating in Minkowski’s space-tine,

.In an ordinary grating, let ko denote the number of
lines per lenght unit, and k, the incident wave number in
te same direction {(the wave planes, of course, must be
parallel to the grating linmes). The diffracted wave numbsrs

in the same direction are given by:

k, = k, t+ n ko , n=0,1,2... (29)
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This holds also with a time like grating, and is
identical, for instance, with Fermi‘s formula for the dif-

fraction of a wave oy a rotator. A typical physical example

would be that of the Raman effect in molecular rotstion -

spectra, with very hesvy moleculas.

V. CONCLUSION.

As was clearly postulated in De Broglie’'s wave-—mechanics
of 1926' the Miukowski symmetry betwen space and time is
an essential feature of qusntum phenomena; this is no sur-
prise, 1if one notices that the wave theory is included at -
the very basis of Relativity Theory on the one hand and of
the Quantum and Complementarity Thsory on the other hand.

But, to formulate explicitly this essential symmetry bet-
ween space and time some more information than that known in

1925 was requested. Anyhow, & quite elementary approach to
covariant Quantum Theory (which has bsen so brilliantly -

developed by Tomonaga, Schwinger, Feynman, Dyson), is pos-

sible.
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