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Inverted oscillator: pseudo hermiticity and coherent states
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It is known that the standard and the inverted harmonic oscillator are different. Replacing thus ω by±iω in the regular oscillator is necessary
going to give the inverted oscillator Hr . This replacement would lead to anti- PT -symmetric harmonic oscillator Hamiltonian (∓iHos).
The pseudo-hermiticity relation has been used here to relate the anti-PT -symmetric harmonic Hamiltonian to the inverted oscillator. By
using a simple algebra, we introduce the ladder operators describing the inverted harmonic oscillator to reproduce the analytical solutions.We
construct the inverted coherent states which minimize the quantum mechanical uncertainty between the position and the momentum.
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1. Introduction

The inverted oscillator, equipped with a potential exerting a
repulsive force on a particle, has been widely studied [1-18].
Such system can be completely solved as the standard har-
monic oscillator whose properties are well known.

However, the physics of the inverted harmonic oscilla-
tor is different, because its energy spectrum is continuous
and its eigenstates are no longer square integrable.The in-
verted oscillator can be applied to various physical systems
such as [1,19-21], the tunneling effects, the mechanism of
matter-wave bright solitons, the cosmological model, and the
quantum theory of measurement.

In fact, the predominant idea in the literature is that the
inverted oscillator is obtainable from the harmonic oscilla-
tor by the replacement ω → ±iω. Of course, in spite of
many useful analogies, it is important to know that the two
oscillators (harmonic and inverted) reveal different charac-
teristics. In other words, the inverted oscillator generates a
wave packet which are not square integrable and there is no
zero-point energy. In comparison with the harmonic oscilla-
tor, the physical applications of the inverted harmonic oscil-
lators are limited, since their Hamiltonian is parabolic and the
eigenstates are scattering states. The analytic continuation of
angular velocity ω → ±iω performs a transformation of a
non-Hermitian harmonic oscillator (∓iHos) to inverted one
Hr.

In general, non-Hermitian Hamiltonians have been used
to describe several physical dissipative systems. Such Hamil-
tonians do not cause a legitimate probabilistic interpreta-
tion due to the shortage of the unitarity condition in their
corresponding quantum description. In non-Hermitian quan-
tum mechanics it, was found that the criteria for a quantum
Hamiltonian to have a real spectrum is that it possesses an
unbrokenPT symmetry (P is the space-reflectio operator or

parity operator, and T is the time-reversal operator) [22, 23].
The concept of PT -symmetry has found applications in sev-
eral areas of physics. Once the non-Hermitian Hamiltonian
H is invariant under the combined action of PT (i.e. H com-
mutes withPT ) and its eigenvectors are also those of thePT
operator, then the energy eigenvaluesE of the system are real
and in this case the PT -symmetry is unbroken.

An alternative approach to explore the basic structure re-
sponsible for the reality of the spectrum of a non- Hermi-
tian Hamiltonian is by the notion of the pseudo-hermiticity
introduced in Ref. [24]. An operator H is said to be pseudo-
Hermitian if

H† = ηHη−1, (1)

where the metric operator

η = ρ†ρ, η−1 =
(
ρ†ρ

)−1
, (2)

is a linear, invertible and Hermitian operator, we say that the
Hamiltonian is pseudo-Hermitian or quasi-Hermitian if it sat-
isfie the relation (1).

The pseudo-Hermiticity allows to link the pseudo-
Hermitian Hamiltonian H with an equivalent Hermitian
Hamiltonian h

h = ρHρ−1, (3)

where the operator ρ called Dyson operator is linear and
invertible. Due to the energy spectrum of (±iHos) being
completely imaginary, we notice that (∓iHos) is anti-PT -
symmetric i.e.

PT (±iHos)PT = (∓iHos). (4)

We recall that a PT -symmetric system can be trans-
formed to an anti-PT -symmetric one by replacing Hos →
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(±iHos) [25-28], which changes the physical structure of
the system. In other words, a Hamiltonian H is said to be
anti-PT -symmetric if it anticommutes with the PT opera-
tor {PT ,H} = 0. In analogy with the PT -symmetric case,
we call the anti-PT -symmetry of Hamiltonian H unbroken
if all of the eigenfunctions of H are eigenfunctions of PT ,
i.e. when the energy spectrum of H is entirely imaginary E
= iE∗ [29].

In this paper, we generate from the anti-PT -symmetric
Hamiltonian (±iHos) an inverted Hermitian harmonic
oscillator-type Hr and also its solution. In Sec. 2, we re-
call briefl some properties of the standard harmonic and in-
verted oscillators In Sec. 3, introducing an appropriate quan-
tum metric, we link the anti-PT -symmetric Hamiltonian
(±iHos) to the inverted oscillator Hamiltonian Hr.This pro-
cedure allows us to obtain the pseudo-ladder operators, the
set of solutions and also to defin the full orthonormaliza-
tion relation of the eigenstates for inverted harmonic oscil-
lator Hr. In Sec. 4, using the pseudo-ladder operators, we
will address the problem constructing of coherent states as-
sociated to inverted oscillatorHr. We obtain the mean values
of the position and momentum operators in the evolved co-
herent states and furthermore we calculate the corresponding
Heisenberg uncertainty. An outlook over the main results is
given in the conclusion.

2. Summary of standard harmonic and the in-
verted oscillators

Let us recall briefl the ladder operator approach of the usual
harmonic oscillator:

Hos =
1

2m
p2 +

1
2
mω2x2 =

~ω
2

(
a+a + aa+

)
, (5)

where

a =
√

mω

2~
x + i

p√
2m~ω

,

a† =
√

mω

2~
x− i

p√
2m~ω

, (6)

The operators a and a+ satisfying the commutation relation
[
a, a†

]
= 1. (7)

Were introduced to facilitate the solution of the eigen-
value problem. Eigenstates of (5) in Fock space are
the Fock or number states |n〉os with the eigenvalues
ω (n + 1/2)) , where a |n〉os =

√
n |n− 1〉os

, a† |n〉os =√
n + 1 |n + 1〉os and n is a non-negative integer.
We then have a nice mechanism for computing the eigen-

states of the Hamiltonian, but we can also express expectation
values using the raising and lowering operators. This leads to
the useful representation of x and p:

x =

√
~

2ωm

(
a† + a

)
, p = i

√
~ωm

2
(
a† − a

)
, (8)

such that, we can compute any arbitrary expectation values
that depend upon these quantities, merely by knowing the ef-
fects of the raising and lowering operators upon the eigen-
states of the Hamiltonian.

From this, we can evaluate that the energy eigenvalues

Hosψos
n (x) = Enψos

n (x)

= ~ω
(

n +
1
2

)
ψos

n (x); n ∈ N, (9)

and the normalized condition for the eigenfunctions is veri-
fie

〈ψos
m |ψos

n 〉 = δmn. (10)

We see that the energy eigenvaluesE0 = ~ω/2 of the ground
state

ψos
0 (x) =

1√
2nn!

(ωm

π~

) 1
4

exp
[
−ωm

2~
x2

]
, (11)

is a very significan physical result because it tells us that the
energy of a system described by a harmonic oscillator poten-
tial cannot have zero energy.

In contrast with the harmonic oscillator, the inverted os-
cillator has a Hamiltonian with the following form:

Hr =
1

2m
p2 − 1

2
mω2x2 = −~ω

2
(
a†2 + a2

)
. (12)

The Hamiltonian (12) is formally obtainable from (5) by
the replacement

ω → iω, (13)

similarly, the case (−iω) would serve equally well.
On the other hand, for an imaginary frequency, i.e. for

the inverted harmonic oscillator, we get

a → A = ei π
4

(√
mω

2~
x +

p√
2mω~

)
, (14)

a+ → Ā = ei π
4

(√
mω

2~
x− p√

2mω~

)
, (15)

thus, the Hamiltonian (12) can take the following form

Hr =
i~ω
2

(ĀA + AĀ), (16)

where the non-Hermitian pseudo-ladder operators
(
A, Ā

)
are

characterized by
[
A, Ā

]
= 1 in an analogous way to the lad-

der operator
(
a, a†

)
for the harmonic oscillator.

Knowing that the eigenfunctions of the harmonic oscil-
lator are normalized, we ask the question if the inverted os-
cillator eigenfunctions are also normalized? Clearly, they are
not 〈ψr

m |ψr
n〉 6= δmn. This can be seen when calculating the

normalization condition for the pseudo-ground state ψr
0(x) of

the obtained inverted oscillator: from Eq. (11) by changing ω
to iω

ψr
0(x) =

1√
2nn!

(
iωm

π~

) 1
4

exp
[
−i

ωm

2~
x2

]
. (17)
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One can easily verify that the normalization for this state diverges as follows:

〈ψr
0 |ψr

0〉 =

+∞∫

−∞
ψ∗r0 (x)ψr

0(x)dx =
1

2nn!

(ωm

π~

) 1
2

+∞∫

−∞
dx →∞, (18)

the reason for this divergence is that the substitution ω by iω is unsuitable. we will remedy this inconsistency in what follows.

3. Pseudo-ladder operators in the inverted harmonic oscillator

The Hermitian Hamiltonian Hr and the non-Hermitian Hamiltonian (iHos) are related by a formal replacement ω → iω. The
challenge is to establish a consistent relation between the quantummechanical formalism for the Hermitian HamiltonianHrand
the non-Hermitian one (iHos), we propose that instead of considering this formal transformation, we use the relation that it
is valid for any self-adjoint operator, i.e. observable, in the Hermitian system to possess a counterpart in the non-Hermitian
system given by

ρ−1(iHos)ρ = Hr. (19)

In order to connect the non-Hermitian harmonic oscillator Hamiltonian (iHos) to the Hermitian inverted oscillator Hr, we
perform a Dyson type transformation ρ such that [30]

ρ = exp
{
−2

[
ε

2

(
a†a +

1
2

)
+ µ−

a2

2
+ µ+

a†2

2

]}
= exp

[
−ϑ−

a2

2

]
exp

[
− ln ϑ0

2

(
a†a +

1
2

)]
exp

[
−ϑ+

a†2

2

]
, (20)

and

ϑ+ =
2µ+ sinh θ

θ cosh θ − ε sinh θ
, ϑ0 =

(
cosh θ − ε

θ
sinh θ

)−2

= µ+µ− − χ,

ϑ− =
2µ− sinh θ

θ cosh θ − ε sinh θ
, χ = −cosh θ + ε

θ sinh θ

cosh θ − ε
θ sinh θ

, θ =
√

ε2 − 4µ+µ−, (21)

where ε is a real parameter whereas µ+ and µ− are complex ones.
With the help of the following relations




exp
[
ϑ− a2

2

] (
a†a + 1

2

)
exp

[
−ϑ− a2

2

]
=

(
a†a + 1

2

)
+ ϑ−a2

exp
[
ϑ+

a†2
2

] (
a†a + 1

2

)
exp

[
−ϑ+

a†2
2

]
=

(
a†a + 1

2

)− ϑ+a†2
, (22)





exp
[
ln ϑ0

2

(
a†a + 1

2

)]
a2 exp

[− ln ϑ0
2

(
a†a + 1

2

)]
= a2

ϑ0

exp
[
ϑ+

a†2
2

]
a2 exp

[
−ϑ+

a†2
2

]
= a2 − 2ϑ+

(
a†a + 1

2

)
+ ϑ2

+a†2
, (23)





exp
[
ln ϑ0

2

(
a†a + 1

2

)]
a†2 exp

[− ln ϑ0
2

(
a†a + 1

2

)]
= ϑ0a

†2

exp
[
ϑ− a2

2

]
a†2 exp

[
−ϑ− a2

2

]
= a†2 + 2ϑ−

(
a†a + 1

2

)
+ ϑ2

−a2
, (24)

we deduce, under the action of the operator ρ, the transformed Hamiltonian of the harmonic oscillator :

ρ−1Hosρ = ~ωρ−1

(
a†a +

1
2

)
ρ =

~ω
ϑ0

{
[ϑ0 − 2ϑ+ϑ−]

(
a†a +

1
2

)
+

[
ϑ−ϑ2

+ − ϑ0ϑ+

]
a†2 + ϑ−a2

}
. (25)

We notice that Eq. (25) and Eq. (12) have the same structure in their operator content provided that we impose on the
parameters (ϑ+, ϑ−, ϑ0) the following conditions

ϑ+ = −i, ϑ− =
i

2
, ϑ0 = 1, (26)

from these constraints, the Dyson operator Eq. (20) takes now the simplifie formi

ρ = exp
[
− i

4
a2

]
exp

[
i

2
a†2

]
, ρ−1 = exp

[
− i

2
a†2

]
exp

[
i

4
a2

]
, (27)

it follows that the two Hamiltonians Hos and Hr are allied to each other as

ρ−1Hosρ = i
~ω
2

(
a†2 + a2

)
= −iHr. (28)
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One can verify that in the case of the inverted oscillator,
the form of Hamiltonian in the last equation looks like

Hr =
i~ω
2

(ĀA + AĀ), (29)

where the pseudo-ladder operators
(
A, Ā

)
are linked to the

ladder operators (6) through the transformation

A = ρ−1aρ = a + ia†, (30)

Ā = ρ−1a†ρ =
1
2

(
a† + ia

)
, (31)

and satisfy the following commutation relation
[
A, Ā

]
=

1.Then, we can deduce that their Fock eigenstates |nr〉 are
related to |nos〉 by the invertible operator ρ as

|nr〉 = ρ−1 |nos〉 . (32)

For instance, the pseudo-Hermitian quadratures (X, P )
corresponding in the Hermitian system to the coordinate and
momentum operators (x, p) (see Eqs. (8)) respectively, are
now

X = ρ−1xρ =

√
~

2ωm
ρ−1

(
a† + a

)
ρ

=

√
~

2ωm

(
A + Ā

)
, (33)

P = ρ−1pρ = i

√
~ωm

2
ρ−1

(
a† − a

)
ρ

= i

√
~ωm

2
(
Ā−A

)
. (34)

Knowing that any observable o in the Hermitian system
possesses a counterpart O in the pseudo-Hermitian system
given by

O = ρ−1oρ, (35)

one can deduce the useful representation of
(
A, Ā

)
in terms

of (X, P ) as

A =
√

mω

2~
X + i

1√
2m~ω

P, (36)

Ā =
√

mω

2~
X − i

1√
2m~ω

P. (37)

Thereby, the Hamiltonian (29) can be written in terms of
X and P as

Hr =
i

2

(
P 2

m
+ mω2X2

)
. (38)

This leads to the equations of motion of the inverted os-
cillator. Indeed, using the Heisenberg equations of motion
and [X, P ] = i~, we have for X and P :

dX

dt
=

1
i~

[
X,

i

2

(
P 2

m
+ mω2X2

)]
= i

P

m
.

dP

dt
=

1
i~

[
P,

i

2

(
P 2

m
+ mω2X2

)]
= −imω2X. (39)

Taking another time derivative of dX/dt, we get the usual
equation of motion for the inverted oscillator

d2X

dt2
− ω2X = 0, (40)

4. Coherent states for the inverted oscillator

The best way to present the inverted coherent states is by
translating their definition into the language of the coher-
ent states of the harmonic oscillator which are summarized
in what follows. Coherent states, or semi-classic states, are
remarkable quantum states that were originally introduced in
1926 by Schrödinger for the Harmonic oscillator [31] where
the mean values of the position and momentum operators in
these states have properties close to the classical values of the
position xc(t) and the momentum pc(t). In particular, the co-
herent states of the harmonic oscillator|αos〉 [32]- [34] may
be obtained in different but equivalent ways:

(i) as eigenstates of the annihilation operator;

a |α〉os = α |α〉os
, (41)

with eigenvalues α ∈ C.

(ii) as a displacement of the vacuum |0〉os

, where the dis-
placement operator

Dos (α) = exp[α∗a† − αa], (42)

can be used to generate the coherent state

|α〉os = Dos (α) |0〉os
, (43)

(iii) as states that minimize the Heisenberg uncertainty
principle

∆x∆p =
~
2
. (44)

Coherent states form an over-complete set of states. The
identity operator I is written in terms of coherent states as

1
π

∫
|α〉os os 〈α| d2α = I. (45)

The solution for the harmonic oscillator Hamiltonian for an
initial coherent state is given in the following simple form

|α, t〉os = e−i ωt
2

∣∣αe−iωt
〉os

, (46)

i.e., a coherent state that rotates with the harmonic oscillator
frequency.
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In analogy with the usual coherent states, we use the
pseudo-annihilation A = ρ−1aρ and pseudo-creation Ā =
ρ−1a†ρ operators which are very convenient to study the in-
verted coherent states. We emphasize the use of the met-
ric η = ρ†ρ operator such as (iHos)† = η (iHos) η−1,
i.e. (iHos) is η-pseudo-Hermitian with respect to a positive-
definit inner product define by 〈., .〉η = 〈.|η|.〉 :

r 〈n| η |m〉r = os 〈n |m〉os = δmn, (47)

which indicates that the Fock states are linked to each other
as

|n〉r = ρ−1 |n〉os
, (48)

additionally, the vacuum state of the inverted oscillator |0〉r
(A |0〉r = 0) and the vacuum state of the harmonic oscillator
|0〉os are related as |0〉r = ρ−1 |0〉os

.
The coherent states for the inverted harmonic oscilla-

tor are define as eigenstates of the corresponding pseudo-
annihilation operator A

A |α〉r = α |α〉r , α ∈ C. (49)

with

|α〉r = ρ−1 |α〉os
. (50)

Particularly, the normalization condition
os 〈α |α〉os = 1, (51)

leads to
r 〈α| η |α〉r = 1, (52)

and then the integral

1
π

∫

C

ρ |α〉r r 〈α| ρ+dα∗dα = I, (53)

is an identity operator.
These inverted coherent states |α〉r can also be gener-

ated respectively from the vacuum states |0〉r by the action
of pseudo-displacement operator Dr(α),

|α〉r = Dr (α) |0〉r = exp
[
αA− α∗A

] |0〉r , (54)

we note that Dr (α) is related to Dos (α) as

Dr (α) = ρ−1Dos (α) ρ. (55)

Using the Hamiltonian (29), we deduce the evolution of
an initial inverted coherent state in the following simple form

|α, t〉r = e−i/~Hrt |α〉r

= e−|α|
2/2eωt/2eωĀAt

∑
n

(α)n

√
n!
|n〉r . (56)

Introducing eωĀAt into the sum, and using the fact that
the states |n〉r are eigenstates of the number operatorĀA, we
have

|α, t〉r=e−|αeωt|2/2
∑

n

(αeωt)n

√
n!

|n〉r

=eωt/2
∣∣αeωt

〉r
. (57)

Since our aim is to compute the Heisenberg uncertainty relations in the position and the momentum, it is required to
calculate the expectation values of the canonical variables and their squares in the inverted coherent states. Then, by using
the relation (35) in the non-Hermitian system, the expectation value of an arbitrary operator O = X, X2, P and P 2 can be
evaluated from

〈O〉η = r 〈α, t| ηO |α, t〉r = r 〈α, t| ρ+oρ |α, t〉r = e−
|αeωt|2

2

∑
n

∑
m

(α∗eωt)m

√
m!

(αeωt)n

√
n!

os 〈m| o |n〉os
. (58)

Using the above equation, the expectation values of X and P in the state |α, t〉r are easily evaluated:

〈X〉η = e−|αeωt|2 ∑
n

∑
m

(α∗eωt)m

√
m!

(αeωt)n

√
n!

√
~

2ωm
os 〈m| (a† + a

) |n〉os =

√
~

2mω
[α + α∗] eωt, (59)

〈P 〉η = e−|αeωt|2 ∑
n

∑
m

(α∗eωt)m

√
m!

(αeωt)n

√
n!

i

√
~ωm

2
os 〈m| (a† − a

) |n〉os = −i

√
mω~

2
[α− α∗] eωt, (60)

and follow classical physics; i.e.

〈X〉η = xc, 〈P 〉η = pc, (61)

where the subscript c indicate classical. This is why we call these inverted coherent states ”quasi-classical states”.
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Let us now evaluate the uncertainty in the position and the momentum.

〈
X2

〉
η

= 〈α, t| ηX2 |α, t〉r =
~

2mω

[
α2e2ωt + α∗2e2ωt + 2

(
|α|2 e2ωt +

1
2

)]
, (62)

〈
P 2

〉
η

= 〈α, t| ηP 2 |α, t〉r =
−imω~

2

[
α2e2ωt + α∗2e2ωt − 2

(
|α|2 e2ωt +

1
2

)]
. (63)

It is well known that the position uncertainty can be de-
rived from ∆X =

√
〈X2〉η − 〈X〉2η . Then using (59) and

(62), we have

∆X =

√
~

2mω
.

Similarly, from Eqs. (60) and (63), we also have the mo-
mentum uncertainty such that

∆P =

√
mω~

2
.

Thus, the uncertainty product for canonical variables X
and P is given by

∆X∆P =
~
2
.

Therefore, the inverted coherent states are a minimum-
uncertainty states and the time evolution of an initially in-
verted coherent state can be regarded as the quantum analog
of a classical trajectory.

5. Conclusion

We have briefl summarized in Sec. 2, some properties of the
standard harmonic and inverted oscillators.

We have proposed a scheme that permits relating a reg-
ular harmonic oscillator to an inverted oscillator by using
a time-independent Dyson metric which allowed us to in-
troduce the pseudo-annihilation A = ρ−1aρ and pseudo-
creation Ā = ρ−1a†ρ operators associated to the inverted

harmonic oscillator. These operators are the basis of the
definitio of coherent states for inverted oscillator and their
corresponding eigenstates and eigenvalues. Once the Dyson
operator has been introduced, and therefore the metric oper-
ators, it is straightforward to extend these considerations to
the associated eigenstates and inner product structures on the
physical Hilbert space. Some of the finding are treated by
the Gaussian wave packet (in the x-representation) associated
to the generalized coherent state in Ref. [35].

Coherent states of the inverted harmonic oscillator are
constructed in different forms:

(1) as eigenstates of the pseudo-annihilation operator A;

(2) as a pseudo-displacement of the inverted vacuum
exp

[
αA− α∗A

] |0〉r,

(3) as states whose averages follow the classical trajecto-
ries of X , P and Hr.

However, the coherent states for the inverted oscillator
constitute ”minimum uncertainty” wave packets. Therefore,
the time evolution of an initially coherent state can be re-
garded as the quantum analog of a classical trajectory.
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