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Probing the effect of different exchange-correlation functionals on the
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The primary goal of this study is to investigate the effect of different exchange-correlation functionals on the optoelectronic and elastic
properties of the Ag2O chalcogenide compound. For the electronic structures and optical spectra, the Tran-Blaha modified Becke-Johnson
approach combined with GGA and GGA+U (mBJ-GGA-PBEsol and mBJ-GGA-PBEsol+U, respectively) was used. The available theoretical
and experimental data for the bandgap energy were reported to determine whether there is a correlation with our results. The electronic
structure revealed that our compound is a direct semiconductor at the R-symmetry point with a bandgap of 1.22 eV, which agrees well
with the experimental values for the first time. The elastic constants were also evaluated using the IRelast package, which revealed that the
compound was mechanically stable. Finally, the optical response was systematically studied, and it was found that Ag2O exhibited excellent
optical efficiency.
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1. Introduction

Binary silver oxide is an isostructural compound that crystal-
lizes in the Cu2O cuprite structure within thePn3̃m space
group (224) [1,2], which is a semiconductor material. Tjeng
et al., have experimentally explored the electronic structures
of the Ag2O compound and reported a bandgap of 1.3 eV
[3]. Silver oxide has been widely studied owing to its many
important applications, such as in solar energy converters
[4], battery technology [5-8], antibacterial applications [9-
11], and molecular sensor technology [4], for example, as
an enzyme-free glucose sensor with Cu [4,12]. It has also

been reported that Ag2O can be employed in water split-
ting [13], optical memory [14], photography [15], organic
catalysis, such as transmetalation [16], and the oxidation
of aldehydes by molecular oxygen [17]. The remarkable
properties of Ag2O which have important roles in fast-ion-
conducting glasses of AgI-Ag2O-B2O3, AgI-Ag2O-V2O3,
and AgI-Ag2O-P2O5 are the negative thermal expansion be-
havior of the cuprite Ag2O and the structural phase transition
that occurs at 35 K [18-23].

In the literature, many theoretical methods within differ-
ent approximations have been employed to accurately de-
scribe the different properties of this material. F. Peiet al.,
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FIGURE 1. The Ag2O compound with cuprite structure.

[24], used the plane-wave-pseudopotential method as incor-
porated in the CASTEP code to study the structural, elec-
tronic, and optical properties of Ag2O with cubic cuprite
structure. Jeremy P. Allenet al., [25], have described the
electronic structure of Ag2O using various calculation meth-
ods. The structural, electronic, elastic, thermal, and op-
tical properties of Ag2O were also investigated using the
Wien2k code with different approximations (LDA, GGA,
Engel-Vosko-GGA, and modified-Becke-Johnson-GGA) by
Haleem Din and A. H. Reshak [26]. Using the projector-
augmented-wave pseudopotentials as incorporated in the
VASP code within LDA and LDA+U approximations, Naoto
Umezawaet al. [27], have studied the electronic structures
of Ag2O compound. As presented previously, numerous the-
oretical calculations of the electronic structures have been re-
ported for this material but, none of them has exact bandgap
energy compared to the experimental ones. To resolve this
discrepancy, we used a new exchange-correlation functional
for the mBJ potential coupled with Hubbard correction in the
framework of the DFT-theory. The main objective of this
study is to provide a better description of the electronic struc-
ture and optical spectra of the chalcogenide compound Ag2O.

2. Calculation method

In all our calculations, we used the FP-LAPW method
[28,29], based upon the DFT-theory [30,31], and executed in

the Wien2k code [32]. The muffin-tin sphere radii (RMT ) for
Ag and O are 1.96 and 1.69 (a.u), respectively. The input pa-
rameters such asRMT ×Kmax, Gmax, and cut-off energy are
respectively 7, 12Ry1/2, and -7Ry, whereKmax is the max-
imum modulus for the reciprocal lattice vector,RMT is the
smallest atomic sphere radius, cut-off energy is the separation
energy between the valence and core states, andGmax de-
fines the magnitude of the largest vector in the charge density
Fourier expansion. The Monkhorst-Pack method in the first
Brillouin zone (BZ) was performed using 1000k-points. Re-
garding the atomic positions, the Ag2O contains two atoms,
where the Ag and O atoms occupy (0,0,0) and (1/4,1/4,1/4),
respectively, as shown in Fig. 1.

GGA-PBEsol-mBJ and GGA-PBEsol-mBJ+U were used
to determine the optoelectronic properties. The U values
were taken asU1 = 5.8 eV [3], andU2 = 11.2 eV [33] for
Ag-4d. The elastic properties of the Ag2O compound were
studied using the IRelast package [34,35] within the GGA-
PBEsol approach.

3. Results and discussion

3.1. Equilibrium ground-state and electronic structures

The equilibrium lattice constanta0, bulk modulusB0, and
its pressure derivatives, were obtained by fitting the total en-
ergy as a function of the unit-cell volume using Murnaghan’s
equation of state [36]. In this way, the volume optimization
is carried out by minimization of the total energy versus vol-
ume. The obtained results ofa0(Å) andB0(GPa) are given in
Table I with some other available theoretical and experimen-
tal results for comparison. This table shows that thea0 and
B0 for Ag2O are consistent with the available theoretical and
experimental results.

To explore the electronic behavior of the studied com-
pound, we calculated the density of state DOS and elec-
tronic band-structure BS along with the principal symmetry
points in the BZ for the cuprite structure (X-R-M-Γ-R) us-
ing the GGA-PBEsol-mBJ and GGA-PBEsol-mBJ+U for the
exchange-correlation functional (see Fig. 2). The result of
BS reveals the semiconductor nature with a direct bandgap
at the R-symmetry point. The distinct features noticed within
GGA-PBEsol-mBJ compared to GGA-PBEsol-mBJ+U shifts
the conduction band upward and increase the bandgap.

TABLE I. The calculated lattice constanta0(Å) and bulk modulusB0(in GPa) for the Ag2O compound.

Compound a0(Å) B0(GaP)

This work Exp. Theor. This work Exp. Theor.

Ag2O 4.714 4.74 [37] 4.73 [26] 90.81 - 86.73 [26]

4.718 [33] 4.81 [24] 74.0 [24]

4.83 [37]
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FIGURE 2. The calculated band structure of Ag2O compound using: a) mBJ-GGA-PBEsol, b) mBJ-GGA-PBEsol+U1, and c) mBJ-GGA-
PBEsol+U2 approaches.

TABLE II. The Calculated bandgap (in eV) of Ag2O compound.

Compound The bandgap (eV)

This work Exp. Theor.

1.22 1.24 [33] 0.63 (mBJ) [26]

Ag2O 1.30 [3] 0.41 (EV-GGA) [26]

1.40 [38] 0.176 (GGA) [26]

0.155 (LDA) [26]

0.17 (LDA+U) [27]

The overall bandgap result of GGA-PBEsol-mBJ is bet-
ter than that of other theoretically calculated bandgaps (LDA,
GGA, EV-GGA, and LDA+U) [26,27], but significantly un-
derestimated the bandgap from the experimental values as
shown in Table II. Whereas, to resolve this discrepancy of
bandgap and provide a value almost comparable to the exper-
imental data, we used the GGA-PBEsol-mBJ+U. It should
be noted that the obtained value is consistent with the experi-
mental values for the first time. Furthermore, the conduction-
band-minimum CBM shifts towards higher energy compared
to the GGA-PBEsol-mBJ position, but the position of the
valence-band-maximum VBM remained fixed.

Total and partial DOS (TDOS and PDOS, respectively)
calculated using GGA-PBEsol-mBJ+U2 are shown in Fig. 3.
The DOS spectra are divided into four regions. The First
region, situated between (−6.7 and−5.8 eV) is a result of
mixed Ag-4d andO-2pstates. The lower limit of this region
also includes a small amount of Ag-5sstates. The second one
located between (−5.8 eV and−2.7 eV) is dominated prin-
cipally by Ag-4d states, with a minority of O-2p states. The
third region below the Fermi level (EF ) consists of mixed
Ag-4d and O-2p states, with a small contribution from Ag-
5s. The bottom of the conduction band is mainly composed
of Ag-(5s,5p) and O-(2s,2p) states.

FIGURE 3. The calculated total and partial density of states for
Ag2O compound using the mBJ-GGA-PBEsol+U2 approach.

3.2. Elastic properties

The calculation of elastic properties is important to obtain
more information about the compound, such as mechanical
stability, anisotropic binding character, bonding forces, and
brittle or ductile nature. For cubic Ag2O, the number of elas-
tic constants is reduced to only three independent elastic pa-
rameters:C11, C12, andC44 (cubic crystals). The estimated
values of these constants are useful for obtaining information
about mechanical behavior. The calculated elastic constants
are listed in Table III. We can see clearly that the obtained
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TABLE III. The Calculated elastic constantsCij(C11, C12, C44), Bulk modulus (B), shear modulus (G), Young’s modulus (E) (in GPa),
Pugh’s ratio (B/G), Poisson’s ratio(ν) and anisotropy factor (A) of Ag2O compound

Compound C11 C12 C44 B G E B/G A ν

Ag2O This work 106.69 84.54 51.14 90.81 30.04 81.16 3.02 4.61 0.35

Theor. [26] 132.36 70.94 56.18 86.73 44.093 113.11 1.967 1.829 0.282

Cij satisfies the three well-known Born-Huang stability crite-
ria for the cubic system [39], which means our material is me-
chanically stable. It is well-known that the anisotropy factor
(A) is an important mechanical parameter for technological
and engineering applications and for detecting micro-cracks
in materials. If the anisotropy factor is equal to unity, the ma-
terial is isotropic and for any value different from unity the
material is anisotropic.

The anisotropy factor value is found to be 4.61 which
indicates that the compound is an anisotropic material. For
more information about the compound such as stiffness, type
of bounds, hardness, and ductility (brittle), we have estimated
the macroscopic mechanical moduli such as Young’s modu-
lus (E), Shear modulus (G), Pugh’s ratio (B/G) and Pois-
son’s ratio (ν). For that, we have applied the Voigt-Reuss-Hill
approximation [40,41].

The calculatedGV , GR, and G are 35.11, 24.98, and
30.04 GPa, respectively. Young’s modulus (E) provides in-
formation about the stiffness of materials. For the higher
value ofE = 81.16 GPa, the material shows high stiffness.

In addition, Poisson’s ratio (ν) provides information about
the bonding forces [42]. The central forces in the solid are
trapped between 0.25 and 0.5, for the studied compound, we
found ν = 0.35. Due to this value, we can state that this
compound is characterized by a metallic bonding. The two
traditional parameters, Pugh’s ratio of ductility and Poisson’s
ratio [43,44], are responsible for the brittle or ductile of a
material. The calculatedB/G andν are 3.02 and 0.35, re-
spectively. We can classify from these calculated values the
investigated compound as ductile material. Table III displays
our results of elastic constants and elastic moduli with other
reported theoretical results. We can observe a significant de-
viation compared to our results, which is mainly due to the
difference in the employed approximation.

3.3. Optical properties

To obtain more information about the electronic structure, we
calculated the complex dielectric functionε(ω). More de-
scriptions of the optical calculation can be found in Ref. [45].

FIGURE 4. a) Real part of the dielectric functionε1(ω). b) Imaginary part of the dielectric functionε2(ω). c) The refractive indexn(ω). d)
The reflectivityR(ω). e) The optical conductivityσ(ω).
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In this study, we computed the optical spectra ofε(ω) with
50000k-points in the IBZ. The variations in the real and
imaginary parts (ε1(ω), ε2(ω)) of the dielectric function in
the energy range of 0-12 eV are plotted in Fig. 4a) and
Fig. 4b) respectively. At zero frequency, the static dielec-
tric constantε1(0) is 3.20. The real part of theε1(ω) spec-
trum grows with increasing energy until reaching a maximum
value of 5.68 at 3.73 eV. After the peak, theε1(ω) decreases
with an increase in energy, becomes negative at 5.97 eV, and
then increases at higher energy. The negative values of the
ε1(ω) idealize the total reflection of the incident photons [46].

It can be seen in Fig. 4b) that the imaginary part has
threshold energy at 1.22 eV, which represents the optical tran-
sition between VBM and CBM. We can also notice that the
maximum absorption is located in the energy range from 4.19
to 6.47 eV, the highest peak intensity ofε2(ω) is 5.86 at
5.26 eV. After this point, theε2(ω) spectrum increases.

The refractive indexn(ω) of the Ag2O compound versus
photon energy is shown in Fig. 4c), the static refractive index
n(0) is 1.78, which satisfies the relationn(0) = (ε1(0))1/2.
We remark that then(ω) spectra that reach a maximum peak
value of 2.42 at 4.81 eV. Beyond the maximum value,n(ω)
decreases with increasing energy.

The variation in the reflectivityR(ω) is shown in Fig. 4d),
at zero frequency, the reflectivityR(0) is 8.10%, and it is
obvious thatR(ω) takes the maximum value (33.60%) at
6.12 eV.

As shown in Fig. 4e), we calculate the optical conduc-
tivity σ(ω). In the low-energy range, we can see a drastic
decrease owing to the Drude interaction mechanism of light
waves with conduction electrons. The maximum value of
σ(ω) is 4165.58Ω−1cm−1 at 5.27 eV.

4. Conclusion

Herein, we have used the FP-LAPW method based on
the DFT-theory to study the effect of different exchange-
correlation functionals on the optoelectronic properties of
the chalcogenide compound Ag2O. From the calculated elec-
tronic band structure, it was observed that the Ag2O com-
pound exhibited a direct semiconductor nature with an en-
ergy bandgap of 1.22 eV, which agrees with the experimental
values for the first time. The study of mechanical stability
showed that the compound was stable against elastic defor-
mation. From the obtained elastic moduli, we conclude that
our compound is an anisotropic ductile material. Theε1(ω)
andε2(ω) parts of dielectric functions were estimated to iden-
tify optical transitions.n(ω), R(ω), andσ(ω) were also ob-
tained and analyzed up to 12 eV. Finally, Ag2O was found to
be useful for optoelectronic applications.
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