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In this paper the continuity equation for Wigner-Dunkl-Satinger equation is studied. Some properties-agieformed functions related to
Dunkl derivative are also studied. Based on these, the step potential and Ramsauer-Townsend effect are discussed in Wigner-Dunkl quantut
mechanics.
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1. Introduction almost overlaps with the Wigner function of the canonical
non-relativistic bosonic harmonic oscillator. If there is over-
In 1950 Wigner [1] proposed a deformed Heisenberg algebrgyp of the Wigner function of non-canonical ground state with
including reflection operator in the form, the any excited canonical state, then it means that not only
PR Ramsauer-Townsend effect, but also a lot of other physical
[, 9] = i(1+2vP), (1) effects can be obtained theoretically if to replace canonical
where P denotes the reflection operatdtf(z) = f(—z). momentum operator with non-canonical one. Some studies

The realization of this algebra [2,3] was given by related to the Wigner-Dunkl quantum mechanics have been
1 accomplished in Refs. [7-12].
p==-D,, &=uz, (2) In one-dimensional Wigner-Dunkl quantum mechanics,
t the inner product is given by [7,12]
where we seti = 1 and the Dunkl derivative [3] is defined as -
D, =0, +%(1-P). @ (flo) = [ o @f(a)lafda. @

In fact, Wigner was the first who discussed the question on

supreme level of the Heisenberg-Lie equations on the comwhere|z|?” is a weight function. The expectation value of
mutation relation between the momentum and position opa physical operato® with respect to the staté(x, ) is de-
erator. In 1951 Yang simply developed the problem treatedined by
by Wigner and obtained the well-known non-canonical de-
scription of the non-relativistic momentum operator [2]. In . y

1980 N. Mukunda et al investigated Energy position and mo- (0) = W|OY) = / v (@, )Ov(, 1) |2z, (5)
mentum eigenstates of para-Bose oscillator operators. They —o0

found t'hat the two appgrently different solutions obtair?ed.byando is a Hermitian operator if it obeys

Ohnuki and Kamefuchi in this context are actually unitarily

equivalent [3]. Also in next year coherent states and the min- (OP[h) = (Y| O). (6)
imum uncertainty states of para-Bose oscillator operators in-

vestigate by J. K. Sharmet al. [4]. In 1989 Dunkl con- For the weight function (6) the momentum operagor=
structed a commutative set of first-order differential differ-1/iD,, is a Hermitian operator.

ence operators associated to the second-order operator [5]. In this paper we study the continuity Equation for
The canonical approach to the non-relativistic quantum meWigner-Dunkl-Schddinger equation. We discuss some prop-
chanics withv = 0 is a special case of the non-canonical erties of v-deformed functions related to Dunkl derivative.
approach for arbitrary that was proposed by Wigner. Ref- Using these we discuss the step potential and Ramsauer-
erence [6] shows the Wigner function of the ground stateTownsend effect in Wigner-Dunkl quantum mechanics. This
for the para-Bose oscillator (it is an oscillator that was dis-paper is organized as follows: In Sec. 2 we discuss continuity
cussed in Refs. [3,4]) that generalizes Gaussian distributioaquation for Wigner-Dunkl-Scbdinger equation. In Sec. 3
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we discuss the-deformed functions. In Sec. 4 we discuss where the flux is

Step potential. In Sec. 5 we discuss Ramsauer-Townsend ef-

fect.

2. Continuity equation for Wigner-Dunkl-
Schrodinger equation

1 * *

J = 9 |~L\2V(1/13m¢ *77[1 aﬂ/ﬂ), (18)
mai

and the source is

fz) = |2 (Vevbo — etpy)- (19)

v
- mia? |

Now let us consider the time-dependent Wigner-Dunkl-The derivation of Eq.(17) is given in Appendix A. Then we

Schibdinger equation,

Onp(x,t) 1
ot _<_2m

D2t v<w>) bt (@)

Now let us derive the continuity equation for the Wigner-

Dunkl-Schibdinger equation. From Eq.(7) we have

have
G [1evrds =0 (20)
dt ’ ’
where we have
/ f(z)dz =0, (21)

becausef is odd. Thus)z|?”|¢|? can be interpreted as the
bability density function.

ro
The wave function can be split into the even part and odJ) Now let us consider the time-independent Wigner-Dunkl-

GWJ(I,t)‘Q _ 1 2 )k
T 2m<1/}(a:,t)D$1/z (z,t)
) )
part,
Yo= 54 P =2 W@ +u(-2), O
Yo=5(1- P =2 (b(a) —9(~2)).  (10)

Now let us multiply the weight functio (x) = |=|* by
Eq.(8),

PR OF — L ke(o) (vt D500

ot 2mii
~ 0 (@)D ). (1)
Let us set
p= K@)z, 1), (12)
where we set
Y = e + Yo (13)
Then we have
P = pe+ Po, (14)
where
pe = K (@)(|¢e|* + [6]*), (15)
Po = K ()Yt + oty). (16)

Thus we have the continuity equation of the form,

Op = —0,J + f(x), a7

Schibdinger equation,

(-5m D2+ V@) vl = o), (@2
or
D) = 2m(V(@) ~ ). (29

This means thab?2+(z) is not continuous in general because
the potential can be discontinuous.

To find the continuity condition in the Wigner-Dunkl-
Schiddinger equation, we should find the inverse of Dunkl
derivative. The Dunkl derivative can be written as

_ v -1
D, = (1 +2(1-P); ) By (24)
The inverse of Dunkl derivative is

Dl =07t (1 + %(1 - P)@;l)_l

—ot S (Ya-pot). @

n=0
whered, ! denotes the ordinary integration. Thus we have

IN+1

~1, N _
D taN = N (26)
where Dunkl number is
[n], =n+rv(d—(-1)"). (27)

Because the inverse of Dunkl derivative is expressed in terms
of multiple of the ordinary integration, from Eg. (23) we
know that bothD_+) and are continuous.
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3. Thevr-deformed functions and
Now let us find thes-exponential function obeying > 1
oFiGaiz) =) ———a, (43)
Dyey(ax) = aey(ax), €,(0)=1. (28) oy nl(a)y
We consider the-deformed differential equation and
D,y(z) = ay(z), y(0)=1. (29)
Let us set (@o=1, (a)n=ala+1)(a+2)---(a+n—1). (44)
y(@) = ye() + yo(), (30)  One can also express thedeformed hyperbolic functions as
wherey.(x) is the even function obeyin®y.(z) = y.(z)
while y,(z) is the odd function obeyin@y, (z) = —y,(z). laz|\ 72
Inserting Eqg. (30) into Eg. (28) and splitting into the even part cosh, (ax) = (2>
and odd part we get .
e r =), , 4
W) — (o), @) <r (43 toallend 69
dy(;ig(cx) + 2;Vyo(gn) = aye(x). (32) sinh, (ax) = % <|a2m|)
Let us set 1
o0 x T’ <V + > I 11/2(lax]), (46)
Ye(x) = Z anz®™, (33) 2
n=0

- where I,(z) denotes the modified Bessel function. These
(7)) = b, 22"+, 34 deformed hyperbolic functions reduce twsh(ax) and
Yo(@) n;o ’ (34) sinh(ax) in the limit v — 0. The v-deformed hyperbolic

Inserting Egs. (33,34) into Eq. (31,32), we get functions obey

2(n + L)apy1 = aby, (35) P cosh, (ax) = cosh, (azx), (47)
(2n+ 14 2v)b, = aay,. (36) Psinh, (ax) = —sinh, (ax). (48)
From the above equations we have
o2 Action of thev-derivative gives
1 = Q- (37)
2(n+1)(2n+ 1+ 2v) Daey(az) = aey (az), (49)
Thus, we have
1 an 2n a8 D, cosh,(ax) = asinh, (az), (50)
n = —F1 |\ & )
nl(v+3), <2) (38) D, sinh, (azx) = acosh, (az). (51)
1 a 2n+1
b= —F—7— *) : (39)  If we replacer — iz, we have the-deformed Euler relation
n! (V + §)n+1
Thus, we have ey (iax) = cos,(ax) + isin, (az), (52)
y(x) = ey (ax) = cosh, (ax) + sinh, (azx),  (40)
where
where
R 1 azx\2n == (- ax\2n
cosh, (azx) = HZ:O oI e %)n (?) cos, (ax) = ngo T vt l)n (7>
1 a?z? 1 a2a2
—oF (v + = 41 =oF v+ -2
01(7y+27 4>7 ( ) 01<5V+25 4>7 (53)
oo e}
) 1 ax\ 2n+l1 . (=)™ ax\ 2n+1
sinh, (ax) = — sin, (az) = — (=
X, () X, ()
azx 3 a’x? ax 3 a’2?
*2V+10F1 <7V+27 4 )7 (42) 72y—|—10F1 <,V+27_4>' (54)
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FIGURE 1. Plot ofy = cos, (x) forv = 0 (Pink),» = 0.1 (Brown)

and forv = —0.1 (Gray).
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FIGURE 2. Plot ofy = sin, (z) for v = 0 (Pink),~ = 0.1 (Brown)

and forv = —0.1 (Gray).

One can also express thedeformed trigonometric functions

as

cos, (ax) = (

|az|

2

>_U+% b (” * ;) Jy-1/2(lax]),  (55)

sing(ar)= ()70 (45 dagatianh, (66)

2 2

where J, (z) denotes the Bessel function. Thedeformed

trigonometric functions obey the following relations

D, cos,(ax) = —asin, (ax),

D, sin, (ax) = acos,(azx).

(57)
(58)

Figure 1 shows the plot af = cos,(z) for v = 0 (Pink),
v = 0.1 (Brown) and forv = —0.1 (Gray). Figure 2 shows
the plot ofy = sin, (x) for v = 0 (Pink), v = 0.1 (Brown)

and forv = —0.1 (Gray).

4. Step potential

Now let us consider the step potential problem whose poten- '

tial is given by

)0 (z<0)
V(x)_{vo (x> 0)

(59)

Now let us consider the case @k V;, < E. Then, Wigner-
Dunkl-Schibdinger equation reads

<_21n Dg) r(a) = By (2), (60)

for z < 0, while it reads
1
(—Qng + vo) bri(e) = Bon(e),  (61)

for x > 0. The solution is given by

Yr(x) = e, (tkox) + re, (—ikox), (62)
and
Yrr(x) = tey(igr), (63)
where
ko =V2mE,  q=+2m(E—V). (64)

From the continuity of) and D+ we have

1—r=2Ly¢ (65)

1+7r=t,
r ko

Thus we have

- kofq " 2]{}0

_ . t= : 66
ko +q ko +4q (66)

which is the same as the caseiof= 0. In this case the
transmission and reflection flux are

4

. It]%. (67)

R = |T|27 T=
We see that transmission and reflection flux are independent

of the v-deformed parameter. Figure 3 shows the ploRof
andT versuskE with V = 1.

R&T

P T T ey R -
1.2 1.4 1.6 1.8 2.0

FIGURE 3. Plot of R and T versusE withVy, = 1, (R:Pink,
T:Brown).
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K Solving Egs. (76-79) forl we get

_ i(k? — ¢%) sin, (qa)
A= —2qkcos, (qa) + i(k? + ¢*) sin, (qa) (80)

0.0006

The reflection probability density is given by

0.0004

R = |A]?e,(—ika)e, (ika)
= |A*(sin? (ka) + cos?(ka)), (81)

0.0002

where

2 2\2 2
|A|2 — (k . 2q ) Slnu(qa) . (82)
(k% + q2)%sin, (qa) + 4k%q? cos2(qa)

— E
10 20 30 40 50

FIGURE 4. Plot of R versusE with Vp = 0.5,m = 1 fora = 0.8
(Pink),a = 1 (Brown) and fora = 0.6 (Gray).

In Fig. 4 shows the behavior of the reflection probability den-
sity versus energy. Now let us investigate the Ramsauer-
Townsend effect. This effect is a physical phenomenon in-
>yo|ving the scattering of low-energy electrons by atoms of a
noble gas. Ramsauer-Townsend effect is no reflection condi-

5. Ramsauer-Townsend effect

Let us consider the quantum well whose potential is given b

0 (z<0, Region) tion. From|A|? = 0, we have
Vi)=<¢-V (0<z<a, Regonl) (68) .
0 (x>a, Regionlll) sin, (qa) = 0. (83)
whereVj is a positive constant and we assufiie> 0. Thus, we have
Now let us consider the Wigner-Dunkl-Séldinger equa-
: . 2au+1/2.p
tion for three cases: g= —L=2P 0 =1,2,---, (84)
a
1 2
_%Dl’w' = Ev, (69) wherea, ;1 /2,, denoteg-th zero ofJ, 1 2 ().
1
—5-D; - Vo) i = B, (70) .
( 2m 6. Conclusion
1
—%Diwm = Ey. (71)  Inthis paper we derived the continuity equation for Wigner-

Dunkl-Schibdinger equation. We found the flux and prob-

Solving three equations, we get ability density. We found that the probability conserved in

U = e, (ikz) + Ae, (—ikz), (72) time. From the Dunkl integral (inverse of Dunkl deriva-
tive ), we found that the wave function and first order Dunkl
Ui = Be,(igz) + Ce, (—igz), (73)  derivative are continuous although the potential is not con-
du = Dey (ika) (74) tinuous. We i_ntroduce_\d the-_deformed_functions re_lated to
. Y ’ Dunkl derivative and investigated their mathematical prop-
where erties. Using the continuity condition in the Wigner-Dunkl-
Schibdinger equation we discussed two examples; the step
k= V2mE, ¢ = v 2m(E+ Vo). (79) potential problem and Ramsauer-Townsend effect.

Now the boundary conditions are the continuity of the wave

fun_ctions and their first Dunkl derivatives at the boundaries,AppendiX A
which are
A—B—-C=—1, (76) In right side of Eq. (11), let us set
kA+qB —qC =k, (77) I = K(z)(¢(x,t)D2* (2, 1)
Be, (iqa) + Ce,(—iqa) = De,(ika), (78) —ap* (x,t) D2ap(, 1)). (A1)

qBe,(iqa) — qCe,(—iqa) = kDe,(ika). ~ (79)  Then we have
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2v v

_ * 2 271/ 71 o o 2 e Y o * * *
I=Ky (a +Zo- 50 P))1p Kw(a +Zo- S0 p))¢ — K@ +90)
9 2v 14 2 2v v * *
X<8 +xa_xz(l_P)>(we+wo)_K(¢e+¢o)<a +xa_z2(1_P)>(’(/Je+wo)
* 2 2v * 2 2v % 2 2v 2v
:Kwe (8 +a> ,(/)6+Kwo (8 +6> we+K1/)e (8 +a_2) wo
X X x x
+ Ky, <62+ Wy - QZ> o — K1be (62+ 2”8) v — K, (a2+ 2’/3) or
X T T T

K (074 o 2 ) s - K (024 2o - 2 )
x x? x x?

2v
= —0s (K(2) (09" — 97 0:9)) = 5 K () (b0 — Yetis), (A.2)
where we used
2
K'(z) = 2K (z). (A.3)
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