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1. Introduction

In 1950 Wigner [1] proposed a deformed Heisenberg algebra
including reflection operator in the form,

[x̂, p̂] = i(1 + 2νP ), (1)

whereP denotes the reflection operatorPf(x) = f(−x).
The realization of this algebra [2,3] was given by

p̂ =
1
i
Dx, x̂ = x, (2)

where we set~ = 1 and the Dunkl derivative [3] is defined as

Dx = ∂x +
ν

x
(1− P ). (3)

In fact, Wigner was the first who discussed the question on
supreme level of the Heisenberg-Lie equations on the com-
mutation relation between the momentum and position op-
erator. In 1951 Yang simply developed the problem treated
by Wigner and obtained the well-known non-canonical de-
scription of the non-relativistic momentum operator [2]. In
1980 N. Mukunda et al investigated Energy position and mo-
mentum eigenstates of para-Bose oscillator operators. They
found that the two apparently different solutions obtained by
Ohnuki and Kamefuchi in this context are actually unitarily
equivalent [3]. Also in next year coherent states and the min-
imum uncertainty states of para-Bose oscillator operators in-
vestigate by J. K. Sharmaet al. [4]. In 1989 Dunkl con-
structed a commutative set of first-order differential differ-
ence operators associated to the second-order operator [5].
The canonical approach to the non-relativistic quantum me-
chanics withν = 0 is a special case of the non-canonical
approach for arbitraryν that was proposed by Wigner. Ref-
erence [6] shows the Wigner function of the ground state
for the para-Bose oscillator (it is an oscillator that was dis-
cussed in Refs. [3,4]) that generalizes Gaussian distribution

almost overlaps with the Wigner function of the canonical
non-relativistic bosonic harmonic oscillator. If there is over-
lap of the Wigner function of non-canonical ground state with
the any excited canonical state, then it means that not only
Ramsauer-Townsend effect, but also a lot of other physical
effects can be obtained theoretically if to replace canonical
momentum operator with non-canonical one. Some studies
related to the Wigner-Dunkl quantum mechanics have been
accomplished in Refs. [7-12].

In one-dimensional Wigner-Dunkl quantum mechanics,
the inner product is given by [7,12]

〈f |g〉 =

∞∫

−∞
g∗(x)f(x)|x|2νdx, (4)

where|x|2ν is a weight function. The expectation value of
a physical operatorO with respect to the stateψ(x, t) is de-
fined by

〈O〉 = 〈ψ|Oψ〉 =

∞∫

−∞
ψ∗(x, t)Oψ(x, t)|x|2νdx, (5)

andO is a Hermitian operator if it obeys

〈Oψ|ψ〉 = 〈ψ|Oψ〉. (6)

For the weight function (6) the momentum operatorp̂ =
1/iDx is a Hermitian operator.

In this paper we study the continuity Equation for
Wigner-Dunkl-Schr̈odinger equation. We discuss some prop-
erties ofν-deformed functions related to Dunkl derivative.
Using these we discuss the step potential and Ramsauer-
Townsend effect in Wigner-Dunkl quantum mechanics. This
paper is organized as follows: In Sec. 2 we discuss continuity
equation for Wigner-Dunkl-Schrödinger equation. In Sec. 3
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we discuss theν-deformed functions. In Sec. 4 we discuss
Step potential. In Sec. 5 we discuss Ramsauer-Townsend ef-
fect.

2. Continuity equation for Wigner-Dunkl-
Schrödinger equation

Now let us consider the time-dependent Wigner-Dunkl-
Schr̈odinger equation,

i
∂ψ(x, t)

∂t
=

(
− 1

2m
D2

x + V (x)
)

ψ(x, t). (7)

Now let us derive the continuity equation for the Wigner-
Dunkl-Schr̈odinger equation. From Eq.(7) we have

i
∂|ψ(x, t)|2

∂t
=

1
2m

(
ψ(x, t)D2

xψ∗(x, t)

− ψ∗(x, t)D2
xψ(x, t)

)
. (8)

The wave function can be split into the even part and odd
part,

ψe =
1
2
(1 + P )ψ =

1
2

(ψ(x) + ψ(−x)) , (9)

ψo =
1
2
(1− P )ψ =

1
2

(ψ(x)− ψ(−x)) . (10)

Now let us multiply the weight functionK(x) = |x|2ν by
Eq.(8),

∂K(x)|ψ(x, t)|2
∂t

=
1

2mi
K(x)

(
ψ(x, t)D2

xψ∗(x, t)

− ψ∗(x, t)D2
xψ(x, t)

)
, (11)

Let us set

ρ = K(x)|ψ(x, t)|2, (12)

where we set

ψ = ψe + ψo. (13)

Then we have

ρ = ρe + ρo, (14)

where

ρe = K(x)(|ψe|2 + |ψo|2), (15)

ρo = K(x)(ψeψ
∗
o + ψoψ

∗
e). (16)

Thus we have the continuity equation of the form,

∂tρ = −∂xJ + f(x), (17)

where the flux is

J =
1

2mi
|x|2ν(ψ∂xψ∗ − ψ∗∂xψ), (18)

and the source is

f(x) = − ν

mix2
|x|2ν(ψ∗eψo − ψeψ

∗
o). (19)

The derivation of Eq.(17) is given in Appendix A. Then we
have

d

dt

∞∫

−∞
|x|2ν |ψ|2dx = 0, (20)

where we have

∞∫

−∞
f(x)dx = 0, (21)

becausef is odd. Thus,|x|2ν |ψ|2 can be interpreted as the
probability density function.

Now let us consider the time-independent Wigner-Dunkl-
Schr̈odinger equation,

(
− 1

2m
D2

x + V (x)
)

ψ(x) = Eψ(x), (22)

or

D2
xψ(x) = 2m(V (x)− E)ψ(x). (23)

This means thatD2
xψ(x) is not continuous in general because

the potential can be discontinuous.
To find the continuity condition in the Wigner-Dunkl-

Schr̈odinger equation, we should find the inverse of Dunkl
derivative. The Dunkl derivative can be written as

Dx =
(
1 +

ν

x
(1− P )∂−1

x

)
∂x. (24)

The inverse of Dunkl derivative is

D−1
x = ∂−1

x

(
1 +

ν

x
(1− P )∂−1

x

)−1

= ∂−1
x

∞∑
n=0

(−1)n
(ν

x
(1− P )∂−1

x

)n

, (25)

where∂−1
x denotes the ordinary integration. Thus we have

D−1
x xN =

xN+1

[N + 1]ν
, (26)

where Dunkl number is

[n]ν = n + ν(1− (−1)n). (27)

Because the inverse of Dunkl derivative is expressed in terms
of multiple of the ordinary integration, from Eq. (23) we
know that bothDxψ andψ are continuous.
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3. Theν-deformed functions

Now let us find theν-exponential function obeying

Dxeν(ax) = aeν(ax), eν(0) = 1. (28)

We consider theν-deformed differential equation

Dxy(x) = ay(x), y(0) = 1. (29)

Let us set

y(x) = ye(x) + yo(x), (30)

whereye(x) is the even function obeyingPye(x) = ye(x)
while yo(x) is the odd function obeyingPyo(x) = −yo(x).
Inserting Eq. (30) into Eq. (28) and splitting into the even part
and odd part we get

dye(x)
dx

= ayo(x), (31)

dyo(x)
dx

+
2ν

x
yo(x) = aye(x). (32)

Let us set

ye(x) =
∞∑

n=0

anx2n, (33)

yo(x) =
∞∑

n=0

bnx2n+1. (34)

Inserting Eqs. (33,34) into Eq. (31,32), we get

2(n + 1)an+1 = abn, (35)

(2n + 1 + 2ν)bn = aan. (36)

From the above equations we have

an+1 =
a2

2(n + 1)(2n + 1 + 2ν)
an. (37)

Thus, we have

an =
1

n!
(
ν + 1

2

)
n

(a

2

)2n

, (38)

bn =
1

n!
(
ν + 1

2

)
n+1

(a

2

)2n+1

. (39)

Thus, we have

y(x) = eν(ax) = coshν(ax) + sinhν(ax), (40)

where

coshν(ax) =
∞∑

n=0

1
n!

(
ν + 1

2

)
n

(ax

2

)2n

= 0F1

(
; ν +

1
2
;
a2x2

4

)
, (41)

sinhν(ax) =
∞∑

n=0

1
n!

(
ν + 1

2

)
n+1

(ax

2

)2n+1

=
ax

2ν + 1 0F1

(
; ν +

3
2
;
a2x2

4

)
, (42)

and

0F1(; a;x) =
∞∑

n=0

1
n!(a)n

xn, (43)

and

(a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n− 1). (44)

One can also express theν-deformed hyperbolic functions as

coshν(ax) =
( |ax|

2

)−ν+ 1
2

× Γ
(

ν +
1
2

)
Iν−1/2(|ax|), (45)

sinhν(ax) =
ax

2

( |ax|
2

)−ν− 1
2

× Γ
(

ν +
1
2

)
Iν+1/2(|ax|), (46)

whereIα(x) denotes the modified Bessel function. These
deformed hyperbolic functions reduce tocosh(ax) and
sinh(ax) in the limit ν → 0. The ν-deformed hyperbolic
functions obey

P coshν(ax) = coshν(ax), (47)

P sinhν(ax) = − sinhν(ax). (48)

Action of theν-derivative gives

Dxeν(ax) = aeν(ax), (49)

Dx coshν(ax) = a sinhν(ax), (50)

Dx sinhν(ax) = a coshν(ax). (51)

If we replacex → ix, we have theν-deformed Euler relation

eν(iax) = cosν(ax) + i sinν(ax), (52)

where

cosν(ax) =
∞∑

n=0

(−1)n

n!
(
ν + 1

2

)
n

(ax

2

)2n

= 0F1

(
; ν +

1
2
;−a2x2

4

)
, (53)

sinν(ax) =
∞∑

n=0

(−1)n

n!
(
ν + 1

2

)
n+1

(ax

2

)2n+1

=
ax

2ν + 1 0F1

(
; ν +

3
2
;−a2x2

4

)
. (54)
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FIGURE 1. Plot ofy = cosν(x) for ν = 0 (Pink),ν = 0.1 (Brown)
and forν = −0.1 (Gray).

FIGURE 2. Plot ofy = sinν(x) for ν = 0 (Pink),ν = 0.1 (Brown)
and forν = −0.1 (Gray).

One can also express theν-deformed trigonometric functions
as

cosν(ax) =
( |ax|

2

)−ν+ 1
2

Γ
(

ν +
1
2

)
Jν−1/2(|ax|), (55)

sinν(ax)=
ax

2

( |ax|
2

)−ν− 1
2

Γ
(

ν+
1
2

)
Jν+1/2(|ax|), (56)

whereJα(x) denotes the Bessel function. Theν-deformed
trigonometric functions obey the following relations

Dx cosν(ax) = −a sinν(ax), (57)

Dx sinν(ax) = a cosν(ax). (58)

Figure 1 shows the plot ofy = cosν(x) for ν = 0 (Pink),
ν = 0.1 (Brown) and forν = −0.1 (Gray). Figure 2 shows
the plot ofy = sinν(x) for ν = 0 (Pink), ν = 0.1 (Brown)
and forν = −0.1 (Gray).

4. Step potential

Now let us consider the step potential problem whose poten-
tial is given by

V (x) =

{
0 (x < 0)
V0 (x > 0)

. (59)

Now let us consider the case of0 < V0 < E. Then, Wigner-
Dunkl-Schr̈odinger equation reads

(
− 1

2m
D2

x

)
ψI(x) = EψI(x), (60)

for x < 0, while it reads

(
− 1

2m
D2

x + V0

)
ψII(x) = EψII(x), (61)

for x > 0. The solution is given by

ψI(x) = eν(ik0x) + reν(−ik0x), (62)

and

ψII(x) = teν(iqx), (63)

where

k0 =
√

2mE, q =
√

2m(E − V0). (64)

From the continuity ofψ andDxψ we have

1 + r = t, 1− r =
q

k0
t. (65)

Thus we have

r =
k0 − q

k0 + q
, t =

2k0

k0 + q
, (66)

which is the same as the case ofν = 0. In this case the
transmission and reflection flux are

R = |r|2, T =
q

k0
|t|2. (67)

We see that transmission and reflection flux are independent
of the ν-deformed parameter. Figure 3 shows the plot ofR
andT versusE with V0 = 1.

FIGURE 3. Plot of R and T versusE withV0 = 1, (R:Pink,
T :Brown).

Rev. Mex. Fis.69011201



STEP POTENTIAL AND RAMSAUER-TOWNSEND EFFECT IN WIGNER-DUNKL QUANTUM MECHANICS 5

FIGURE 4. Plot ofR versusE with V0 = 0.5, m = 1 for a = 0.8

(Pink),a = 1 (Brown) and fora = 0.6 (Gray).

5. Ramsauer-Townsend effect

Let us consider the quantum well whose potential is given by

V (x) =





0 (x < 0, Region I)
−V0 (0 < x < a, Region II)
0 (x > a, Region III)

, (68)

whereV0 is a positive constant and we assumeE > 0.
Now let us consider the Wigner-Dunkl-Schrödinger equa-

tion for three cases:

− 1
2m

D2
xψI = EψI , (69)

(
− 1

2m
D2

x − V0

)
ψII = EψII , (70)

− 1
2m

D2
xψIII = EψIII . (71)

Solving three equations, we get

ψI = eν(ikx) + Aeν(−ikx), (72)

ψII = Beν(iqx) + Ceν(−iqx), (73)

ψIII = Deν(ikx), (74)

where

k =
√

2mE, q =
√

2m(E + V0). (75)

Now the boundary conditions are the continuity of the wave
functions and their first Dunkl derivatives at the boundaries,
which are

A−B − C = −1, (76)

kA + qB − qC = k, (77)

Beν(iqa) + Ceν(−iqa) = Deν(ika), (78)

qBeν(iqa)− qCeν(−iqa) = kDeν(ika). (79)

Solving Eqs. (76-79) forA we get

A =
i(k2 − q2) sinν(qa)

−2qkcosν(qa) + i(k2 + q2) sinν(qa)
. (80)

The reflection probability density is given by

R = |A|2eν(−ika)eν(ika)

= |A|2(sin2
ν(ka) + cos2ν(ka)), (81)

where

|A|2 =
(k2 − q2)2 sin2

ν(qa)
(k2 + q2)2 sin2

ν(qa) + 4k2q2 cos2ν(qa)
. (82)

In Fig. 4 shows the behavior of the reflection probability den-
sity versus energy. Now let us investigate the Ramsauer-
Townsend effect. This effect is a physical phenomenon in-
volving the scattering of low-energy electrons by atoms of a
noble gas. Ramsauer-Townsend effect is no reflection condi-
tion. From|A|2 = 0, we have

sinν(qa) = 0. (83)

Thus, we have

q =
2αν+1/2,p

a
, p = 1, 2, · · · , (84)

whereαν+1/2,p denotesp-th zero ofJν+1/2(x).

6. Conclusion

In this paper we derived the continuity equation for Wigner-
Dunkl-Schr̈odinger equation. We found the flux and prob-
ability density. We found that the probability conserved in
time. From the Dunkl integral ( inverse of Dunkl deriva-
tive ), we found that the wave function and first order Dunkl
derivative are continuous although the potential is not con-
tinuous. We introduced theν-deformed functions related to
Dunkl derivative and investigated their mathematical prop-
erties. Using the continuity condition in the Wigner-Dunkl-
Schr̈odinger equation we discussed two examples; the step
potential problem and Ramsauer-Townsend effect.

Appendix A

In right side of Eq. (11), let us set

I = K(x)(ψ(x, t)D2
xψ∗(x, t)

− ψ∗(x, t)D2
xψ(x, t)). (A.1)

Then we have
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I = Kψ∗
(

∂2 +
2ν

x
∂ − ν

x2
(1− P )

)
ψ −Kψ

(
∂2 +

2ν

x
∂ − ν

x2
(1− P )

)
ψ∗ = K(ψ∗e + ψ∗o)

×
(

∂2 +
2ν

x
∂ − ν

x2
(1− P )

)
(ψe + ψo)−K(ψe + ψo)

(
∂2 +

2ν

x
∂ − ν

x2
(1− P )

)
(ψ∗e + ψ∗o)

= Kψ∗e

(
∂2 +

2ν

x
∂

)
ψe + Kψ∗o

(
∂2 +

2ν

x
∂

)
ψe + Kψ∗e

(
∂2 +

2ν

x
∂ − 2ν

x2

)
ψo

+ Kψ∗o

(
∂2 +

2ν

x
∂ − 2ν

x2

)
ψo −Kψe

(
∂2 +

2ν

x
∂

)
ψ∗e −Kψo

(
∂2 +

2ν

x
∂

)
ψ∗e

−Kψe

(
∂2 +

2ν

x
∂ − 2ν

x2

)
ψ∗o −Kψo

(
∂2 +

2ν

x
∂ − 2ν

x2

)
ψ∗o

= −∂x (K(x)(ψ∂xψ∗ − ψ∗∂xψ))− 2ν

x2
K(x)(ψ∗eψo − ψeψ

∗
o), (A.2)

where we used

K ′(x) =
2ν

x
K(x). (A.3)
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