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Discrete analogue of Boltzmann factor and discrete thermodynamics
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In this paper we present the discrete thermodynamics where the inverse temperature is not continuous but discrete. We construct the discrete
analogue of Boltzmann factor based on the discrete inverse temperature lattice. We study the discrete thermodynamics related to the discrete
analogue of Boltzmann factor. We also discuss the superstatistics for the discrete inverse temperature.

Keywords: Superstatistics; discrete analogue of Boltzmann.

DOI: https://doi.org/10.31349/RevMexFis.69.011701

1. Introduction

The Boltzmann factor for a state with energyE and equilib-
rium inverse temperatureβ = 1/(kBT ) is given by

BE(β) = e−βE , (1)

where T and kB denote the equilibrium temperature and
Boltzmann constant, respectively. When we regard the Boltz-
mann factor as a function inβ, we know that it is a solution
of the first order differential equation

dy

dβ
= −Ey, (2)

wherey = BE(β).
In the thermal field theory [1-3], the inverse temperature

is regarded as an inverse time through the relation

β = it. (3)

Thus, the Boltzmann factor in the thermal field theory cor-
responds to the time evolution operator in the quantum field
theory,

BE(β) → UE(t) = e−itE , (4)

where the time evolution operator obeys the first order differ-
ential equation

dUE(t)
dt

= −iEUE(t). (5)

Using Eq. (3), we know that the Eq. (5) is equivalent to
Eq. (2).

The imaginary-time formalism is just a mathematical tool
to represent the partition function as a path integral, which
does not mean that the imaginary time is equivalent to tem-
perature.

Use of the discrete time in physics has long history. First
use was focussed on the discrete calculus of variations [4,5].
After this, the discrete N̈other theorem was found [6]. The
possibility that time could be regarded as a discrete dynam-
ical variable was examined through all phases of mechanics
[7]. Some progress has been accomplished in this direction
[4-10]. Recently, discrete time is adopted in the study of the
stochastic wave equation [11-16].

In the discrete time mechanics, the continuous timet is
replaced with a discrete times forming the lattice

T = {tn|tn = t0 + nτ, n = 0, 1, 2, · · · }. (6)

The classical discrete time mechanics was discussed in [10].
Here the derivative with respect to time in the continuous
time mechanics was replaced with the finite difference be-
tween two adjacent discrete times, which is defined as

∆x(tn) =
x(tn+1)− x(tn)

τ
. (7)

Thus, the quantum evolution operator in the discrete time lat-
tice obeys the first order finite difference equation,

∆UE(tn) = −iEUE(tn), (8)

which is solved as

UE(tn) = (1− iτE)n. (9)

The Eq. (8) becomes Eq. (5) in the continuous time limit
τ → 0 with tn = nτ = t fixed.

In this paper we introduce the discrete inverse tempera-
ture from the discrete analogue of Eq. (4) and use it to con-
struct the analogue of Boltzmann factor based on the discrete
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inverse temperature lattice. We investigate the discrete ther-
modynamics based on the discrete analogue of Boltzmann
factor. We also discuss the superstatistics for the discrete in-
verse temperature. This paper is organized as follows: In
Sec. 2 we discuss the discrete analogue of Boltzmann factor.
In Sec. 3 we discuss the entropy and internal energy in dis-
crete thermodynamics. In Sec. 4 we discuss some examples.
In Sec. 5 we discuss the discrete superstatistics.

2. Discrete analogue of Boltzmann factor

From the discrete analogue of Eq. (3), we can define the dis-
crete inverse temperature corresponding to the discrete time
as

βn = itn, (10)

which defines the discrete inverse temperature lattice

B = {βn|βn = β0 + nb, n = 0, 1, 2, · · · }. (11)

Here we introduce the discrete inverse temperature as a dis-
cretization of the continuous inverse temperature. Among
possible discrete inverse temperatures, we adopt the discrete
inverse temperature with equal spacing for simplicity.

Another motivation of the discrete inverse temperature
is to find the origin of Tsallis’sq-deformed Boltzmann fac-
tor. Thus, the discrete analogue of the inverse temperature
is a kind of deformation corresponding to the Tsallis’sq-
deformed Boltzmann factor, which will be discussed later.

For the discrete inverse temperatures, the discrete temper-
aturesTn are defined as

βn =
1

kBTn
, (12)

which implies

Tn =
1

kB(β0 + nb)
. (13)

Thus, the above equation shows that (i) the discrete temper-
ature forms a harmonic sequence, and (ii) it depends on the
choice ofβ0. In this stage, three cases can be discussed:

Case ofβ0 > 0: In this case, we have non-zero minimum
temperature. We have two values:

T0 =
1

kBβ0
> 0, (14)

lim
n→∞

Tn = 0. (15)

Case ofβ0 = 0: In this case, we have zero minimum
temperature. We have two values:

T0 = ∞, (16)

lim
n→∞

Tn = 0. (17)

Case ofβ0 < 0: In this case, we have negative tempera-
ture [17] forn < −β0/b. We have two values:

T0 =
1

kBβ0
< 0, (18)

lim
n→∞

Tn = 0. (19)

From now on we refer to the thermodynamics with a
discrete Boltzmann factor as the discrete thermodynamics.
In the discrete thermodynamics, the thermodynamic equilib-
rium occurs at the discrete inverse temperature. In this model,
the thermodynamic quantities depends on the discrete inverse
temperature. Thus, the discrete analogue of Eq. (2) is given
by

∆BE(βn) = −EBE(βn), (20)

where the finite difference is defined as

∆F (βn) =
F (βn+1)− F (βn)

b
. (21)

Solving Eq. (20), we get

BE(βn+1) = (1− bE)BE(βn), (22)

which gives

BE(βn) = (1− bE)n
, (23)

where we set

BE(β0) = 1. (24)

The continuous version is obtained by settingβn = β0 +
nb = β and taking the limitn →∞, b → 0 with nb+β0 = β
fixed. In the continuous limit, we have the Boltzmann factor
(1). Indeed, we get

lim
b→0,βn=β

BE(βn) = e−(β−β0)E . (25)

When b is not zero, the Eq. (23) is well defined only for
E ≤ 1/b. Thus, we demand that the energy is bounded from
above for non-zerob. Thus, the discrete Boltzmann factor
takes the form

BE(βn) =

{
(1− bE)n

(
E ≤ 1

b

)

0
(
E ≥ 1

b

) . (26)

This equation shows that the discrete Boltzmann factor is
a kind of deformed Boltzmann factor. That means the exis-
tence of a relationship between the discrete Boltzmann factor
and the well-knownq-deformed Boltzmann factor appearing
in Tsallis’s entropy [18].

Now, if we setβN = β = finite, we haveb = β/N . The
continuous inverse temperature is then obtained by taking the
limit b → 0 or N →∞ with Nb = β fixed.

If we identify q − 1 = −b, we can express Eq. (26) in
terms ofq-exponential function [18] as

BE(β) = [eq(E)]−β , (27)
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whereq-exponential is defined as

eq(x) = [1 + (1− q)x]
1

1−q

+ , (28)

and[ ]+ denotes the Tsallis cutoff which implies that[x]+ =
0 for x ≤ 0. Thus, the energy upper bound comes from the
Tsallis cutoff. We note here that the Boltzmann factor given
in Eq.(27) was introduced in Ref. [19].

In addition, we can see that Eq. (27) is not the same as the
Tsallis’s q-deformed Boltzmann factor. But, when we iden-
tify N = 1/1− q, we obtain

BE(β) = eq(−βE), (29)

which is the Tsallis’sq-deformed Boltzmann factor.
From the discrete Boltzmann factor, we know that the

probability finding a state with energyE at the equilibrium
inverse temperatureβn for a system is proportional to the dis-
crete Boltzmann factor,

PE(βn) =
1

Z(βn)
BE(βn) =

1
Z(βn)

(1− bE)n, (30)

where the partition functionZ(βn) is defined as

Z(βn) =
∑

E

(1− bE)n, (31)

for a discrete energy, and

Z(βn) =
∫

E

dE (1− bE)n
, (32)

for a continuous energy.

3. Entropy and internal energy in discrete
thermodynamics

For a system which is in thermal equilibrium with a reservoir
of given discrete inverse temperatureβn we use the canonical
ensemble formulation. The probability of finding a state with
Ei in this system is given by

Pi(βn) =
1

Z(βn)
(1− bEi)

n
, (33)

which obeys
∑

i

Pi(βn) = 1. (34)

Now let us consider the entropy in the form,

S = −kB

∑

i

Pi(βn) ln Pi(βn). (35)

For the average, the linear average is not the only one
that can be used. In the general theory of averages, for
any monotonously increasing and bijective functionψ(x)

called deforming map, the Kolmogorov-Nagumo (KN) av-
erage [20,21] can be adopted. Now let us define the internal
energyU as the KN mean of energy as

∑

i

ψ(Ei)Pi(βn) = ψ(U). (36)

Based on the variational method for the discrete theory
[4,5], we can obtain the maximum entropy probability form
the extreme condition of the functional,

Φ = S + λ1

(∑

i

ψ(Ei)Pi(βn)− ψ(U)

)

+ λ2

(∑

i

Pi − 1

)
. (37)

Demanding∂Φ/∂Pi = 0, we get

−kB(1 + ln Pi) + λ1ψ(Ei) + λ2 = 0. (38)

Comparing Eq. (32) with Eq. (37), we get

λ1 = kB(βn − β0), (39)

λ2 = kB(lnZ − 1), (40)

and

ψ(x) = −1
b

ln(1− bx). (41)

Thus, we have

ψ(U) = −1
b

∑

i

Pi(βn) ln(1− bEi). (42)

The internal energy (or energy expectation value) is then
given by

〈Ei〉 = U(βn) =
1
b

(
1− e

∑
i Pi(βn) ln(1−bEi)

)
. (43)

Using the relation

(−∆)Z =
∑

i

Ei(1− bEi)n, (44)

we have

U =
1
b

(
1− e

1
Z ln(1+b∆)Z

)
. (45)

In the continuum limit, Eq. (44) becomes

U = − 1
Z

∂Z

∂β
. (46)

The discrete specific heat for the temperature intervalJn =
[Tn+1, Tn] is defined as

C(Jn) =
U(βn+1)− U(βn)

Tn+1 − Tn
. (47)

Thus, the Boltzmann-Gibbs relation reads

S =
(

1
Tn

− 1
T0

) (
−1

b
ln(1− bU)

)
+ kB ln Z. (48)
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4. Some examples

Now let us discuss some examples based on the discrete ther-
modynamics.

4.1. Classical harmonic oscillator

Let us discuss the classical harmonic oscillator whose Hamil-
tonian is given by

H =
p2

2m
+

1
2
mw2x2, (49)

where the energyE is continuous andE ≥ 0. The partition
function at discrete inverse temperatureβn is then given by

Z(βn) =

1/b∫

0

dE (1− bE)n

=
1

b(1 + n)
=

1
βn − β0 + b

. (50)

The internal energy is then given by

U(βn) =
1
b

(
1− e−

1
n+1

)
=

n
(
1− e−

1
n+1

)

βn − β0
. (51)

In the continuum limit, we have

U(βn) → U(β) =
1

β − β0
=

kBT

1− T
T0

. (52)

The discrete specific heat forJn = [Tn+1, Tn] is given by

C(Jn) =
kB

b2
(β0 + bn)(β0 + b(n + 1))

×
(
e−

1
n+1 − e−

1
n+2

)
. (53)

In the continuum limit, we have

C(Jn) → kB . (54)

4.2. Maxwell-Boltzmann distribution of molecular
speeds in a gas

Now let us apply discrete thermodynamics to the kinetic the-
ory of an ideal gas. First we consider the single particle
case. Let us consider the Maxwell-Boltzmann distribution of
molecular speeds in a gas which is actually a probability den-
sity function of a continuous variable,v =

√
v2

x + v2
y + v2

z ,
the speed of a molecule with a massµ. The discrete Boltz-
mann factor is given by

B

(
1
2
µv2 : βn

)
=

(
1− b

2µ
v2

)n

. (55)

The partition function is

Z =

√
2µ/b∫

0

4πv2dv

(
1− b

2µ
v2

)n

=

(
2πµ

b

)3/2
Γ(n + 1)

Γ
(
n + 5

2

) . (56)

Thus the internal energy

U =
〈

1
2
µv2

〉
=

1
b

(
1− e

Hn−H
n+ 3

2

)
, (57)

whereHx denotes the harmonic number. The rms speed is
then given by

vrms =
√

2
µb

(
1− e

Hn−H
n+ 3

2

)
. (58)

In the continuum limit, Eq. (57) becomes the well-known re-
sult,

vrms ≈
√

3kT

µ
, (59)

where we used the formula

Hn ≈ γ + ln n +
1
2n

. (60)

for a largen andγ denotes the Euler constant.
Now let us discuss the ideal gas system consisting of N

identical particles. The total energy of this system is

E =
3N∑

i=1

1
2
µv2

i =
1
2
µv2, (61)

where we set

v1 = v1x, v2 = v1y, v3 = v1z, · · · ,

v3N−2 = vNx, v3N−1 = vNy, v3N = vNz. (62)

Using the3N -dimensional hyper spherical coordinate, we
can write the partition function as

Z = Ω3N−1

√
2µ/b∫

0

(
1− b

2µ
v2

)n

v3N−1dv

=

(
2πµ

b

)3N/2
Γ(n + 1)

Γ
(
n + 1 + 3

2N
) , (63)

whereΩ3N−1 is the solid angle of the3N -dimensional hyper
sphere,

Ω3N−1 =
2π3N/2

Γ
(

3N
2

) . (64)
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The rms speed is then given by

vrms =
√

2
µb

(
1− e

Hn−H
n+ 3N

2

)
. (65)

In the continuum limit, Eq.(64) becomes the well-known re-
sult,

vrms ≈
√

3NkT

µ
. (66)

4.3. Two level system

Now let us consider two level system consisting of−ε andε.
The partition function reads

Z(βn) = (1 + bε)n + (1− bε)n. (67)

The internal energy is then given by

U(βn) =
1
b

[
1− (1 + bε)

1
Z (1+bε)n

− (1− bε)
1
Z (1−bε)n

]
. (68)

In the continuum limit Eq. (67) becomes

U(β) = ε tanh(βε). (69)

5. Discrete superstatistics

Now let us discuss the superstatistics for the discrete
Boltzamnn factor. In this case we regard as the discrete in-
verse temperatures as random variablesβ̃m (m = 0, 1, 2, · · · )
which belongs toB. Besides, we demand that the mean ofβ̃m

is the equilibrium inverse temperatureβn and set the variance
of β̃m to beσ2. For the random inverse temperatures, we in-
troduce the probability distribution functionf(β̃m) obeying

b

∞∑
m=0

f(β̃m) = 1, (70)

and

βn = 〈β̃m〉 = b

∞∑
m=0

β̃mf(β̃m), (71)

and

b2σ2 = 〈β̃2
m〉 − 〈β̃m〉2. (72)

From the superstatistics [22], we define the superstatistical
Boltzmann factor as

B
(s)
E (βn) = b

∞∑
m=0

BE(β̃m)f(β̃m). (73)

The superstatistical partition function is defined as

Z(s) =
∞∑

n=0

B
(s)
E (βn). (74)

As an example, let us consider the following probability dis-
tribution function

f(β̃m) = Aδm,n−1 + Bδm,n + δm,n+1. (75)

From Eq. (69), Eq. (70) and Eq. (71), we get

b(A + B + C) = 1, (76)

C = A, (77)

b(C + A) = σ2. (78)

Thus, we have

f(β̃m) =
σ2

2b
δm,n−1 +

1
b
(1− σ2)δm,n +

σ2

2b
δm,n+1. (79)

From the superstatistics [22], we define the superstatistical
discrete Boltzmann factor as

B
(s)
E (βn) = b

∞∑
m=0

BE(β̃m)f(β̃m). (80)

In the low-energy asymptotics of superstatistics, the general-
ized Boltzmann factor is then given by

B
(s)
E (βn) = (1− bE)n

(
1 +

σ2bE(bE − 4)
2(1− bE)

)
, (81)

and the superstatistical partition function is given by

Z(s) =
1

βn − β0 + b
+

σ2

2

(
1

βn − β0

+
1

βn − β0 + 2b
− 2

βn − β0 + b

)
. (82)

6. Conclusion

Based on the discrete time mechanics and inverse tempera-
ture formalism in the thermal field theory, we introduced the
discrete inverse temperature and discussed the discrete ana-
logue of the thermodynamics. To do so, we introduced the
discrete inverse temperature lattice and defined the discrete
analogue of Boltzmann factor. For a general discussion, we
considered that there exists a finite minimum inverse temper-
ature corresponding to a finite maximum temperature. We
adopted the discrete inverse temperature as having the equal
spacing.

Our discrete inverse temperature is different from the dis-
crete inverse temperature [23] appearing in the superstatistics
where discrete inverse temperature was regarded as a fluctu-
ation around the equilibrium temperature. But our discrete
inverse temperature can be regarded as a discretization of the
continuous inverse temperature. The discrete inverse temper-
ature in Eq. (11) is not a unique choice. We can consider
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more general discrete inverse temperature. For example, we
can consider the pseudo discrete inverse temperature through

βn+1 ªf βn = const= b, (83)

or

βn+1 = βn ⊕f b, (84)

where the pseudo-addition and pseudo subtraction [24] are
defined as

a⊕f b = f−1(f(a) + f(b)), (85)

and

aªf b = f−1(f(a)− f(b)). (86)

For simplicity, in this paper we considered the case off =
Id.

We found that discrete Boltzmann factor could be ob-
tained for the maximum entropy principle with a certain KN
mean for the energy. We found the formula for the inter-
nal energy defined as a KN mean of energy and investi-
gated the relation between the internal energy and partition
function. As examples we presented three examples; classi-
cal harmonic oscillator, Maxwell-Boltzmann distribution of
molecular speeds in a gas, two level system. Finally we dis-
cussed the discrete superstatistics for the discrete thermody-
namics.
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