
Fluid Dynamics Revista Mexicana de Fı́sica68060601 1–6 NOVEMBER-DECEMBER 2022

Dynamics of the capillary rise in tilted Taylor-Hauksbee cells
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In this work, we theoretically and experimentally study the issue of the spontaneous capillary rise of a viscous liquid in wedge-shaped tilted
cells, with very short angles of aperture,α. We provide the equilibrium profilesyse and, by means of the Reynolds lubrication equations,
we find the time-dependent profiles and the dynamic evolution of the meniscus close to the edge of the wedge, as a function of time, which
follow power laws of the formys ∼ t1/3. Experiments performed at various inclinations are consistent with our theoretical results.
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1. Introduction

The spontaneous capillary rise of a viscous liquid within a
vertical wedge-shaped cell, made out of two flat plates touch-
ing at an edge and having a very short angle between them,
was experimentally studied for the first time by Brook Tay-
lor [1] and Francis Hauksbee [2] in 1712, showing the ex-
istence of the capillary action; as well as the formation of
equilibrium profiles, shaped as rectangular hyperbolas. We
will refer to this configuration as the Taylor-Hauksbee (T-H)
cell.

Surprisingly, such configuration has been very helpful to
understand the capillary rise in a myriad of natural and man-
ufactured functional surfaces having open, nano or micro V-
grooves. For instance, a study of the peristome surface of
Nepenthes alata (a carnivorous pitcher plant) showed that the
plant has taken full advantage of the corner geometry to ap-
ply the straightforwardional control of the liquid flow [3–5].
Natural functional surfaces like peristome surface give inspi-
ration for designing and fabricating functional surfaces and
materials with wide applications including water transport
for agricultural drip irrigation over long distances, control-
lable self-lubrication and smart and controllable microfluidic
devices [5], to name a few. Implementations of V-grooves in
devices at a larger scale has been done to improve the heat
transfer capacity of heat pipes [6] as well as open capillary
siphons [7]. Coincidently, it has recently been proposed that
capillary corner flow is also an important transport mecha-
nism during the spreading of viruses and bacteria [8,9].

From a theoretical point of view, Tanget al. [10] stud-
ied the capillary rise along the angular corner formed by the
contact of a thin rod inside a larger vertical tube (whose di-
ameter is smaller than the capillary lengtha = (σ/ρg)1/2,
whereσ is the surface tension,ρ is the density of the liq-
uid andg is the acceleration of gravity). They found that at
large time scales the elevation of the meniscus at the edge
of the groove,h, follows a slow motion characterized by a
power law of the formh ∼ t1/3. Subsequently, the same
power law was found in theoretical studies for capillary rise
in linear [11–13] and nonlinear corner-like grooves [13, 14],
having a small opening angle. In all these cases, apparently
there are no equilibrium heights for the menisci rise [15,16].

In a theoretical treatment of tilted T-H cells, carried out
by Tianet al.[17], the capillary rise and the time evolution of
the free surface, far from the horizontal surface of the liquid,
were studied. Such study was motivated since the microstruc-
tures on the peristome surface resembles the geometry of in-
tersecting plates but with the arista being curved and tilted.
Based on the Onsager principle,i.e., a method to find the
minimum of the Rayleighian, which is the summation of the
change rate of the free energy of the liquid and the dissipa-
tion function, Tianet alobtained that the rise of the meniscus
front also obeys, at large times, thet1/3 power law.

Motivated by the new applications, in the present work
we will analyze the issue of the dynamic evolution of the free
surface within a tilted Taylor-Hauksbee cell by using the lu-
brication theory approximation, which was previously used
to model the capillary rise in vertical T-H cells [11]. Now,
following this approach we formulate the Reynolds lubrica-
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tion equations, in the tilted system, which allows us to obtain
the simplest form the problem for the dynamic evolution of
the free surface in the tilted system.

Our treatment, as backed by experiments, will provide
evidence that the capillary rise of the meniscus, close to the
sharp edge, is faster for larger inclinations and that it also
follows the power lawt1/3 for large time periods.

To reach our goal, in the next Section we describe the
problem and we obtain analytically the equilibrium surfaces
in terms of the rotated and un rotated coordinate systems.
Later on, in Sec. 3, we use said coordinate system in the lubri-
cation theory to obtain the simplest set of equations possible.
In Sec. 4, we performed a series of experiments, using glass-
made tilted T-H cells and silicone oil, to obtain the dynamic
evolution of the free surfaces before attaining the equilibrium
surfaces. The physical parameters governing the experiments
will be introduced in the numerical treatment to do a straight-
forward comparison between the theoretical and experimen-
tal profiles and to show that our theoretical approach is suit-
able. Finally, in Sec. 5, we present the main conclusions for
this work.

2. Equilibrium profiles

2.1. The physical problem

The tilted T-H cell is formed when two plates touch at the
edge and make a very short aperture angleα (α ¿ 1), mean-
while, the whole cell is tilted at a clockwise angle,β, with
respect to the vertical, see Fig. 1a). If the cell is brought in

FIGURE 1. a) Depiction of a Taylor-Hauksbee cell, tilted at a clock-
wise angleβ with respect to the vertical, and with a small aperture
angleα. In this case the horizontal level of the liquid meets the
lower corner on the left had side of the cell. b) Schematic indi-
cating the two-dimensional Cartesian coordinate systems (x′, y′)
and (x, y), with a common origin. The equilibrium free surface is
yse(x), in the tilted system. c) Schematic of the arc lenght,αx, of
the channel at the distancex from the intersection edge (x = 0)
with the contact angle,θ, also being shown.

to contact with a viscous liquid of dynamic viscosityµ and
it wets the interior surfaces of the plates, it will rises into the
initially empty wedge-shaped gap. From a theoretical point
of view, it is possible to describe the capillary rise of the liq-
uid by taking into account that under the gravity action, the
liquid’s horizontal level is aty′ = 0, alluding to the unrotated
two-dimensional Cartesian coordinate system (x′, y′), where
thex′-axis is parallel to the horizontal level, see Fig. 1b).

If liquid wets the plates, the contact angleθ obeys that
θ < π/2, see Fig. 1c). As depicted in Fig. 1b), the profile
of the free surface of the liquid in the tilted cell could also
be described with the rotated Cartesian coordinate system (x,
y), whosey-axis is attached to the arista of the cell. Notice
that the rotated and the unrotated coordinate systems have the
same origin. Our aim here is to analytically describe the free
surface profiles in both coordinate system, which will also
be useful in the formulation of the capillary rise equations,
derived from the lubrication theory.

2.2. Cartesian coordinate systems

The actual equilibrium profiles evolve within the tilted T-H
cells driven by the capillary action and limited by gravity.
Therefore, the natural description of these profiles must car-
ried out at the tilted (rotated) coordinate system (x, y). How-
ever, mathematically, it is possible to describe such profiles at
the un tilted system (x′, y′), but in this latest coordinate sys-
tem the profiles may not be one-to-one (injective) functions.

If we locate the pointP in the unrotated coordinate sys-
tem, said point has the coordinates (x′, y′), as seen in Fig.
1b), but the same pointP in the system (x, y), rotated an an-
gleβ, is given by the transformation

x = x′ cos β − y′ sin β, (1)

y = x′ sin β + y′ cos β. (2)

and the location of the pointP at the unrotated system, in
terms of the coordinates (x, y), is given by

x′ = x cosβ + y sin β, (3)

y′ = −x sinβ + y cosβ. (4)

These transformations will become useful in the descrip-
tion of the equilibrium profiles, and in the capillary rise the-
ory formulation.

2.3. The equilibrium profiles in the tilted system

Given the coordinate systems, it is straightforward to obtain
the equilibrium free surface in the coordinate system (x, y),
given that in said system, the curvature radius at the pointP
takes the valueαx/2 cos θ, since said point is at a distancex
from the edge. There, the pressure jump across the surface
is approximately∆ps = 2σ cos θ/αx [11, 18]. At the same
point, the hydrostatic pressure is∆ps = ρgy′, measured in
the unrotated coordinate system, meanwhile said pressure has
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the form∆ps = ρg (yse
cos β − x sin β), in terms of the co-

ordinates of the rotated system (where the Eq. (4) was used).
The balance of both pressure values yields the equations for
the equilibrium surfaces, in the tilted system,

yse
(x) =

2σ cos θ

ρgαx cos β
+ x tanβ, (5)

notice that ifβ = 0 in Eq. (5), the classical equilibrium sur-
face is obtained [11]

yse
(x) =

2σ cos θ

ρgαx
, (6)

formally, from Eq. (5) it is clear that the equilibrium height
of the liquid at the edge (whenx → 0), for any angle between
0 ≤ β < π/2, goes to infinity (limx→0 yse → ∞), however
the rest of the equilibrium profile takes finite heights.

On the other hand, the equilibrium surfaces in the tilted
system have their minima (whendyse/dx = 0) at

xmin =
(

2σ cos θ

ρgα sin β

)1/2

, (7)

it is clear that the position ofxmin will be located at infinity if
β → 0. Similarly, the corresponding value ofymin, atxmin,
is given for each specific inclinationβ, as

ymin =
(

2σ cos θ

ρgα

)1/2 2 sin1/2 β

cosβ
, (8)

it is clear that the position ofymin goes to infinity ifβ → π/2.
In experiments discussed later on the work fluid was sili-

cone oil, a nonvolatile liquid at room temperature; which has
the following nominal values: dynamic viscosityµ = 0.1
Pa s, surface tensionσ = 0.0215 N/m and densityρ =
971 Kg/m3. The average contact angle, measured using the
static sessile drop method, for silicone oil over flat glass was

FIGURE 2. Plot of the equilibrium profiles (Eq. (5)), from the per-
spective of the rotated coordinate system (x, y), the aperture angle
beingα = 0.0166 rad (0.95◦). The dashed curves belong to the
tilt angles: blackβ = 0, redβ = 0.2618 (15◦), greenβ = 0.5236
(30◦), blueβ = 0.7854 (45◦) and magentaβ = 1.0472 (60◦).

FIGURE 3. Plot of the change ofxmin as a function of the tilt an-
gle β (Eq. (7)). In the inset a similar plot forymin (Eq. (8)), is
presented.

found to beθ = 0.122 ± 0.006 rad (7◦) at room tempera-
ture Troom = 296.15 K. The plots in Fig. 2 were computed
using previously available data and the aperture angle was
taken to beα = 0.016 rad (0.95◦). We show several plots
of the equilibrium profiles (Eq. (5)), in which the positions
of their minima in the rotated coordinate system (x, y) can be
appreciated for several tilt anglesβ.

Employing the same data as in Fig. 2, the graphical be-
havior of the positions ofxmin andymin, for a continuum of
values ofβ are given in Fig. 3, where the aforementioned
observations of the locations of the minima, are confirmed.

2.4. Profiles from an unrotated coordinate system

It has been mentioned that it is also possible to plot the equi-
librium profiles formed in the tilted cell, for the unrotated
system (x′, y′). The equilibrium profiles in the unrotated
coordinate system are obtained by introducing Eq. (5) into
Eqs. (3)–(4), yielding

y′se =
x′ ±

√
x′2 − 8σ cos θ

ρgα
tan β
cos β

2 tan β
. (9)

If we choose the plus sign in Eq. (9), we find for large
values ofx′ that

y′se ≈
x′

tan β
− 2σ cos θ

ρgα

1
x′ cosβ

, (10)

meanwhile, if the sign minus it is chosen, we find that

y′se ≈
2σ cos θ

ρgα

1
x′ cos β

. (11)

In Fig. 4 we plot the equilibrium profiles in the unrotated
coordinates (x′, y′se), using Eq. (9) for the same liquid and
inclination and aperture angles given in Fig. 2.

Rev. Mex. Fis.68060601
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FIGURE 4. Plots of the equilibrium profiles (Eq.(9)) in the(x′, y′)
coordinate system. The tilt and aperture angles are the same as
those in Fig. 2.

In plots of Fig. 4 the upper part of each profile is given by
Eq. (10) and the respective lower part of each profile is given
by Eq. (11). Some experimental profiles will be shown later
on.

3. Capillary rise: use of the lubrication theory

The film flow due to capillary rise in T-H cells occurs at small
Reynolds numbers [11]. Therefore, we can use the Reynolds’
lubrication theory to compute the distribution of the modified
pressureP and the rise of the meniscus. In the unrotated sys-
tem said a pressure isP = p+ρgy′, wherep is the pressure of
the liquid referred to the pressure of the surrounding gas (pa)
andy′ is the vertical distance from the the horizontal level of
the outer liquid. By using Eq. (4) in the aforementioned mod-
ified pressure, it is straightforward to find that the form of this
pressure in the tilted system isP = p+ρg(y cosβ−x sin β).

The lubrication theory [11, 19], uses the width-averaged
flux per unit length given byq = (qx, qy) where qx =
− (αx)3 (∂P/∂x) /12µ and qy = − (αx)3 (∂P/∂y) /12µ.
Therefore, the mass conservation equation∂qx/∂x +
∂qy/∂y = 0 yields the Reynolds equation for the modified
pressure as

∂

∂x

(
x3 ∂P

∂x

)
+ x3 ∂2P

∂y2
= 0,

in 0 < y < ys(x, t), x > 0, (12)

here,ys is the free surface in the tilted system. The modified
pressure obeys the equation

P = −2σ cos θ

αx
+ ρg (ys cos β − x sin β) ,

at y = ys (x, t) . (13)

which expresses that said pressure at the free surface is
the sum of the capillary depression−∆ps, previously men-
tioned, plus the hydrostatic term.

At the evolving free surfaceys, the kinematic condi-
tion (which states that the fluid does not cross the free sur-
face) is given by− (∂f/∂t)αx = q·∇f [18]; wheref =
y− ys(x, t) = 0, is the free surface equation. Then, the kine-
matic condition can be written as

∂ys

∂t
+

(αx)2

12µ

(
∂P

∂y
− ∂P

∂x

∂ys

∂x

)
= 0,

at y = ys (x, t) . (14)

Equations (12), (13) and (14) will be solved under the
following boundary conditions

qx = − (αx)
12µ

3
∂P

∂x
→ 0 if x → 0, (15)

P = 0 at y = 0, (16)

ys → x tan β for x →∞. (17)

The condition (15) imposes that the flux through the edge
of the wedge (x = 0) is zero, Eq. (16) expresses that the
modified pressure at the lower edge of the plates (y = 0 if
the lower cornerx = y = 0 is at the level of the outer liquid,
as in Fig. 1) is also zero and finally, Eq. (17) states that far
from the arista the free surface is very close to the horizontal
level of the liquid. The problem described by Eqs. (12)-
(14) will be solved numerically for a given initial condition
ys(x, 0) = ysi(x).

The system of partial differential equations subject to the
boundary conditions was solved using an implicit finite dif-
ferences discretization. A careful analysis of the solutions
as functions of the spatial and temporal in-homogeneous
meshes allowed us to find out that a50 × 50 mesh is ade-
quate to achieve an accurate solution. The numerical time
step was variable; in the first stages of the phenomenon the
time step was about10−9 and it was exponentially increased
as the phenomenon evolved. Typical calculations were made
for a total of 20 000 time steps.

Incidentally, following the same approach as used in
Ref. [11], but now for the tilted system, we find that the
asymptotic self-similar solution for the meniscus of the thin
layer close to the edge (x → 0), at large values of the
time t, yields the elevation of the meniscus at the edge as
ys ≈ A (t/ cos β)1/3 with A = 1.25 (σ cos θ)2/3/(µρg)1/3

[20].

4. Experiments

To compare the numerical dynamic profiles with those ob-
tained experimentally, we performed a series of experiments
with silicone oil. Ad hocT-H cells having different inclina-
tions of the arista were made with flat glass plates (3 mm
thick) of different sizes. Wedges with different short angles
were made by keeping the plates in contact along the arista
and by fitting, between the glass plates, a thin metallic sheet,

Rev. Mex. Fis.68060601



DYNAMICS OF THE CAPILLARY RISE IN TILTED TAYLOR-HAUKSBEE CELLS 5

FIGURE 5. Pictures of the equilibrium profiles, indicated by dashed
curves, at tilt angles: a)β = 0 rad, b)β = 0.524±0.002 rad(30◦)
and c)β = 1.047± 0.002 rad(60◦); where the mean aperture an-
gle wasα = 0.011 rad. Photographs were taken approximately
one day after the start up of the capillary rise. The scale on the
ruler is in cm.

parallel to the arista, at a certain distance from it. Special
care was taken to avoid any contact of the metallic sheet with
the silicone oil during the profile formation. Each angleα, of
a given cell, was computed through the measurement of the
narrow space between the plates, at the rim opposite to the
edge. On the other hand, the tilt angleβ was measured using
a digital clinometer (accuracy±0.1◦).

In Fig. 5 we present pictures of the equilibrium profiles
for three representative cases with inclination angles: 5a)
β = 0 ± 0.002 rad, 5b)β = 0.524 ± 0.002 rad (30◦) and
5c) β = 1.047 ± 0.002 rad (60◦). In these experiments the
mean aperture wasα = 0.012 rad and the equilibrium pro-

files were photographed in all cases, one day after the T-H
cells were brought into contact with the silicone oil.

Due to our assembly procedure of the T-H cells, the aper-
ture anglesα were different for every experiment. In Fig. 6
we show the plot of several instantaneous profiles in a cell
having the same tilt angles as in Fig. 5, but the aperture an-
gles were: 6a)α = 0.019± 0.0001 rad(1.0◦), Fig. 6b)α =
0.008± 0.0004 rad(0.45◦) and Fig. 6c)α = 0.010± 0.0005
rad(0.63◦). It is evident that the scales in the plots were lo-
cated on the unrotated coordinates and, as a reference, the
black-color solid lines on the left side represent the edges
of the cells (y-axis). In Fig. 6 symbols depict experimental
data and the dashed curves that closely fit them represent the
numerically computed profiles, obtained from the numerical
solutions of the problem posed by Eqs. (12)-(17).

From comparisons between the experimental and numer-
ical profiles, given in Fig. 6, we can establish that the nu-
merical computations closely predict the evolution towards
the equilibrium state of the free surfaces. The black-color
dashed curves correspond to the numerical equilibrium pro-
files, which were obtained as in Fig. 5,i.e., one day after
of the start-up of the capillary rise, having not observed any
change of said equilibrium profiles. The shapes of the equi-
librium profiles can also be obtained with Eq. (5) and none
appreciable difference was found between the analytic and
numerical profiles.

The location of the instantaneous heightys(t), for each
tilt angle, is shown in Fig. 7. The numerical computations
closely fit the experimental data. It can be noted that all data
fit power laws of the formys ∼ t1/3; the green curve was
drawn as a visual guide of the power lawys ∼ t1/3. From the
plots in Fig. 7 we can also appreciate that the aperture and in-
clination angles determine substantial changes in the kinetics
of the capillary rise.

FIGURE 6. Numerically computed and experimentally obtained profiles for different time lapses during the capillary rise. The tilt angles are:
a) β = 0 rad, b)β = 0.524 ± 0.002 rad(30◦) and c)β = 1.047 ± 0.002 rad(60◦). The aperture angles for each inclination are specified
in the main text. The dashed curves represent the numerical solutions of Eqs. (12)-(17). Error bars and symbols are of the same size.
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FIGURE 7. Plots of the time dependent heightsys(t), measured
at the edges, for the three inclinations used in Fig. 6. The black,
blue and magenta curves correspond to the numerical solutions of
Eqs. (12)-(14) for various inclinations. Symbols in this plot match
those for experimental data in Fig. 6. The green curve represents
the power lawys ∼ t1/3. For the three different tilt angles, power
laws of this type closely fit data at large times. Error bars corre-
sponds to a 4% error.

5. Conclusions

In this work, we have theoretically and experimentally ana-
lyzed the problem of the spontaneous capillary rise of vis-

cous liquids in tilted Taylor-Hauskbee cells, with a particular
case being the rise in vertical cells. In the theoretical treat-
ment we used the rotation of coordinates to describe in a
straightforward manner the equilibrium profiles and the dy-
namic evolution of the free surfaces, following the applica-
tion of the Reynolds lubrication equations. We found self-
similar asymptotic solutions for the meniscus elevation, at
large values of time, which follows power laws of the form
ys ∼ t1/3. The complete set of equations of the problem,
given by Eqs. (12)-(14), were also solved numerically, and
these solutions allowed us to compute the instantaneous pro-
files for three inclination angles and to validate that at large
values of time the meniscus elevation, close to the edge, fol-
lows the power lawsys ∼ t1/3. Experiments withAd Hoc
T-H cells for three different tilt angles,β, and different aper-
ture angles,α, back our numerical results. Finally, in the
context of applications, given that the capillary flow in tilted
corners is faster than in vertical standing corners, crucial phe-
nomena such as the transport of viruses and bacteria will be
substantially modified.
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