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Dynamics of the capillary rise in tilted Taylor-Hauksbee cells
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In this work, we theoretically and experimentally study the issue of the spontaneous capillary rise of a viscous liquid in wedge-shaped tilted
cells, with very short angles of aperture, We provide the equilibrium profilegs, and, by means of the Reynolds lubrication equations,

we find the time-dependent profiles and the dynamic evolution of the meniscus close to the edge of the wedge, as a function of time, which
follow power laws of the formy, ~ ¢'/3. Experiments performed at various inclinations are consistent with our theoretical results.
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1. Introduction From a theoretical point of view, Taret al. [10] stud-
ied the capillary rise along the angular corner formed by the

] ) ] ... contact of a thin rod inside a larger vertical tube (whose di-
The spontaneous capillary rise of a viscous liquid within a,ater is smaller than the capillary length= (U/pg)lﬂ

yertical wedge-shaped gell, made out of two flat plates touchg yare  is the surface tension; is the density of the lig-

ing at an edge and having a very short angle between therg;y 4nq is the acceleration of gravity). They found that at
was experimentally studied for the first time by Brook Tay- 5,46 time scales the elevation of the meniscus at the edge
lor [1] and Francis Hauksbee [2] in 1712, showing the eX-4¢ the groove,, follows a slow motion characterized by a
istence of the capillary action; as well as the formation Ofpower law of the formh ~ t'/3. Subsequently, the same

equilibrium profiles, shaped as rectangular hyperbolas. Wgqer jaw was found in theoretical studies for capillary rise
will refer to this configuration as the Taylor-Hauksbee (T-H) i, jinear [11-13] and nonlinear corner-like grooves [13, 14],

cell. having a small opening angle. In all these cases, apparently
Surprisingly, such configuration has been very helpful tothere are no equilibrium heights for the menisci rise [15, 16].
understand the capillary rise in a myriad of natural and man- In a theoretical treatment of tilted T-H cells, carried out
ufactured functional surfaces having open, nano or micro Vby Tianet al.[17], the capillary rise and the time evolution of
grooves. For instance, a study of the peristome surface dhe free surface, far from the horizontal surface of the liquid,
Nepenthes alata (a carnivorous pitcher plant) showed that theere studied. Such study was motivated since the microstruc-
plant has taken full advantage of the corner geometry to apures on the peristome surface resembles the geometry of in-
ply the straightforwardional control of the liquid flow [3-5]. tersecting plates but with the arista being curved and tilted.
Natural functional surfaces like peristome surface give inspiBased on the Onsager principlieg., a method to find the
ration for designing and fabricating functional surfaces andmninimum of the Rayleighian, which is the summation of the
materials with wide applications including water transportchange rate of the free energy of the liquid and the dissipa-
for agricultural drip irrigation over long distances, control- tion function, Tiaret alobtained that the rise of the meniscus
lable self-lubrication and smart and controllable microfluidic front also obeys, at large times, thHé? power law.
devices [5], to name a few. Implementations of V-grooves in  Motivated by the new applications, in the present work
devices at a larger scale has been done to improve the heae will analyze the issue of the dynamic evolution of the free
transfer capacity of heat pipes [6] as well as open capillanysurface within a tilted Taylor-Hauksbee cell by using the lu-
siphons [7]. Coincidently, it has recently been proposed thabrication theory approximation, which was previously used
capillary corner flow is also an important transport mechato model the capillary rise in vertical T-H cells [11]. Now,
nism during the spreading of viruses and bacteria [8, 9]. following this approach we formulate the Reynolds lubrica-
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tion equations, in the tilted system, which allows us to obtaino contact with a viscous liquid of dynamic viscosjtyand
the simplest form the problem for the dynamic evolution ofit wets the interior surfaces of the plates, it will rises into the
the free surface in the tilted system. initially empty wedge-shaped gap. From a theoretical point
Our treatment, as backed by experiments, will provideof view, it is possible to describe the capillary rise of the lig-
evidence that the capillary rise of the meniscus, close to thaid by taking into account that under the gravity action, the
sharp edge, is faster for larger inclinations and that it alsdiquid’s horizontal level is ayy’ = 0, alluding to the unrotated
follows the power lawt'/? for large time periods. two-dimensional Cartesian coordinate systefm{’), where
To reach our goal, in the next Section we describe théhez’-axis is parallel to the horizontal level, see Fig. 1b).
problem and we obtain analytically the equilibrium surfaces  If liquid wets the plates, the contact andgleobeys that
in terms of the rotated and un rotated coordinate system#. < w/2, see Fig. 1c). As depicted in Fig. 1b), the profile
Later on, in Sec. 3, we use said coordinate system in the lubribf the free surface of the liquid in the tilted cell could also
cation theory to obtain the simplest set of equations possiblde described with the rotated Cartesian coordinate system (
In Sec. 4, we performed a series of experiments, using glasg), whosey-axis is attached to the arista of the cell. Notice
made tilted T-H cells and silicone olil, to obtain the dynamicthat the rotated and the unrotated coordinate systems have the
evolution of the free surfaces before attaining the equilibriumsame origin. Our aim here is to analytically describe the free
surfaces. The physical parameters governing the experimenssirface profiles in both coordinate system, which will also
will be introduced in the numerical treatment to do a straight-be useful in the formulation of the capillary rise equations,
forward comparison between the theoretical and experimerderived from the lubrication theory.
tal profiles and to show that our theoretical approach is suit-
able. Finally, in Sec. 5, we present the main conclusions foR.2. Cartesian coordinate systems

this work. o ] o )
The actual equilibrium profiles evolve within the tilted T-H

o . cells driven by the capillary action and limited by gravity.
2. Equilibrium profiles Therefore, the natural description of these profiles must car-
ried out at the tilted (rotated) coordinate systenuf). How-
ever, mathematically, it is possible to describe such profiles at
the un tilted systenmu(, ¢'), but in this latest coordinate sys-
tem the profiles may not be one-to-one (injective) functions.
while, the whole cell is tilted at a clockwise ang|é, with If we locate the poin#” in the unrotated coordinate sys-

respect to the vertical, see Fig. 1a). Ifthe cellis brought inl€M said point has the coordinates,(,'), as seen in Fig.
1b), but the same poirf? in the system, ), rotated an an-

gle 3, is given by the transformation

2.1. The physical problem

The tilted T-H cell is formed when two plates touch at the
edge and make a very short aperture ang{e: < 1), mean-

Close-

¥ ! R n_)ge!h er
gl 4 G x =12’ cos B —y'sinf, (1)
j’l )is-e Horizontal y = .Z'/ Sin B + y/ Cos ﬁ (2)
level
/ and the location of the poinP at the unrotated system, in
fﬁ terms of the coordinates: (y), is given by
o
g (\ 9:| x' =z cos B+ ysin g, 3)
[ o)
> ;,'__,_7__‘_7__ y' = —xsin 3 + y cos B (4)
[t E——
= x' These transformations will become useful in the descrip-
tion of the equilibrium profiles, and in the capillary rise the-
b) ory formulation.
x 2.3. The equilibrium profiles in the tilted system

FIGURE 1. &) Depiction of a Taylor-Hauksbee cell, tilted ata clock- - Gjyen the coordinate systems, it is straightforward to obtain

wise angle3 with respect to the vertical, and with a small aperture the equilibrium free surface in the coordinate systesny{

anglea. In this case the horizontal level of the liquid meets the . . . . T
given that in said system, the curvature radius at the pgdint

lower corner on the left had side of the cell. b) Schematic indi- kes th | 0 si id point i di
cating the two-dimensional Cartesian coordinate systerhg/)  [@Kes the valuea/2 cosd, since said pointis at a distance

and &, y), with a common origin. The equilibrium free surface is from the gdge. There, the pressure jump across the surface
ys. (z), in the tilted system. c¢) Schematic of the arc lenght, of is approximatelyAp; = 2o cos/ax [11,18]. At the same
the channel at the distanaefrom the intersection edge:(= 0) point, the hydrostatic pressure 4, = pgy’, measured in
with the contact angle), also being shown. the unrotated coordinate system, meanwhile said pressure has
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the formAp, = pg (ys, cos § — x sin (), in terms of the co-
ordinates of the rotated system (where the B)was used).

The balance of both pressure values yields the equations fol =

the equilibrium surfaces, in the tilted system,

20 cos 6

()

Ys. () = + z tan (3,

~ pgazxcos 3
notice that if3 = 0 in Eq. (), the classical equilibrium sur-
face is obtained [11]

20 cos
Ys. (x) = )
pgar

formally, from Eq. 6) it is clear that the equilibrium height
of the liquid at the edge (when— 0), for any angle between
0 < 8 < 7/2, goes to infinity lim, o yse — o0), however
the rest of the equilibrium profile takes finite heights.

(6)
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On the other hand, the equilibrium surfaces in the tilted™'GURE 3. Plot of the change af i as a function of the tilt an-

system have their minima (whely,, /dx = 0) at

( 20 cos 6 )1/2
Lmin — N )
pgasin 3

it is clear that the position aof,,,;,, will be located at infinity if
£ — 0. Similarly, the corresponding value ¢f;,,, atz iy,
is given for each specific inclinatioh, as

( 20 cos 9)
Ymin =
pgo

itis clear that the position af.,,;, goes to infinity if3 — /2.

()

1/2 9 gin1/2 06
cos 3

8

gle 8 (Eq. 7). In the inset a similar plot foymin (Eg. @)), is
presented.

found to bef = 0.122 £ 0.006 rad (7°) at room tempera-
ture Troom = 296.15 K. The plots in Fig. 2 were computed
using previously available data and the aperture angle was
taken to ben = 0.016 rad (0.95°). We show several plots
of the equilibrium profiles (Eq/5)), in which the positions
of their minima in the rotated coordinate systemf) can be
appreciated for several tilt anglgs

Employing the same data as in Fig. 2, the graphical be-
havior of the positions of,,;;, andy,;,, for a continuum of
values of 3 are given in Fig. 3, where the aforementioned

In experiments discussed later on the work fluid was sili-ghservations of the locations of the minima, are confirmed.
cone oil, a nonvolatile liquid at room temperature; which has

the following nominal values: dynamic viscosity = 0.1
Pa s, surface tensiom = 0.0215 N/m and densityp =

2.4. Profiles from an unrotated coordinate system

3 i . L. . .
971 Kg/m*. The average contact angle, measured using th§ has heen mentioned that it is also possible to plot the equi-
static sessile drop method, for silicone oil over flat glass wasiprium profiles formed in the tilted cell, for the unrotated
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FIGURE 2. Plot of the equilibrium profiles (Eq5}), from the per-
spective of the rotated coordinate systenu/), the aperture angle
beinga = 0.0166 rad (0.95°). The dashed curves belong to the
tilt angles: black3 = 0, red8 = 0.2618 (15°), green3 = 0.5236
(30°), blue3 = 0.7854 (45°) and magents = 1.0472 (60°).

system ¢’,3’). The equilibrium profiles in the unrotated
coordinate system are obtained by introducing EX). irfto
Egs. B)—(4), yielding

_ 8ocosf tan
pgo cos 3

©)

If we choose the plus sign in Eq9)( we find for large
values ofz’ that

z 20cosf 1

tanf  pga a'cosf’

(10)

’
Yse =

meanwhile, if the sign minus it is chosen, we find that

, _20cosf 1
™ " pga x'cosf

(11)

In Fig. 4 we plot the equilibrium profiles in the unrotated
coordinates 4, y..), using Eq. ) for the same liquid and
inclination and aperture angles given in Fig. 2.
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g ox At the evolving free surface, the kinematic condi-
3 3 4 5t s tion (which states that the fluid does not cross the free sur-
™ 025 | / ’ ’ face) is given by— (0f/0t) ax = q-Vf [18]; wheref =
1 ’/ ; . - .
! ‘ . 5 y—ys(z,t) = 0, is the free surface equation. Then, the kine-
0.20 - g & / matic condition can be written as
] F
/ / 4
o 7 By 2 (0P 9P dy,
0.15 4 (‘ ! i : i + (ax) - = Y = 07
¢ ¥ P ot 12 Oy Oz Ox
oy, ’ r -
: / : Bt} at y =y, (z,t). 14
0.10 : ! ! P - - B0.262 (15%) y=ys (1) (14)
I 4 i o
0_05_: ' ;i 5 o E:g::’;g Ezg"; Equations|12), (13) and (14) will be solved under the
',\.L,’i’{' ’ o B_1.047 (60°) following boundary conditions
0.00 e o . T 3
0.0 0.1 0.2 03 0.4 05 (ax)” 0P ;
= ———— — if 1
x'(m) N 12p Oz - z=9, (15)
FIGURE 4. Plots of the equilibrium profiles (E@)) in the (z’, y") P=0 at y=0, (16)
coordinate system. The tilt and aperture angles are the same as
those in Fig. 2. ys — xtanf  for 2 — oo. a7

In plots of Fig. 4 the upper part of each profile is givenby  The condition/L5) imposes that the flux through the edge
Eg. (10) and the respective lower part of each profile is givenof the wedge £ = 0) is zero, Eq. [16) expresses that the
by Eg. (L1). Some experimental profiles will be shown later modified pressure at the lower edge of the plates=(0 if
on. the lower corner: = y = 0 is at the level of the outer liquid,

as in Fig. 1) is also zero and finally, EQ.7) states that far
3. Capillary rise: use of the lubrication theory from the arista the free surface is very close to the horizontal
level of the liquid. The problem described by Eqsl2)¢
The film flow due to capillary rise in T-H cells occurs at small (14) will be solved numerically for a given initial condition
Reynolds numbers [11]. Therefore, we can use the Reynoldg/s(z,0) = ys, (x).
lubrication theory to compute the distribution of the modified  The system of partial differential equations subject to the
pressureP and the rise of the meniscus. In the unrotated sysboundary conditions was solved using an implicit finite dif-
tem said a pressure I3 = p+pgy’, wherep is the pressure of ferences discretization. A careful analysis of the solutions
the liquid referred to the pressure of the surrounding gas ( as functions of the spatial and temporal in-homogeneous
andy’ is the vertical distance from the the horizontal level of meshes allowed us to find out thatbé x 50 mesh is ade-
the outer liquid. By using Eg4j in the aforementioned mod- quate to achieve an accurate solution. The numerical time
ified pressure, it is straightforward to find that the form of thisstep was variable; in the first stages of the phenomenon the
pressure in the tilted systemis= p+ pg(ycos 3—xsin8).  time step was aboui—° and it was exponentially increased

The lubrication theory [11, 19], uses the width-averagedas the phenomenon evolved. Typical calculations were made
flux per unit length given byy = (g.,q,) wWheregq, =  for atotal of 20 000 time steps.

—(ax)® (8P/0x) /12u and g, = — (ax)’ (OP/dy) /124. Incidentally, following the same approach as used in
Therefore, the mass conservation equatidq,/0x + Ref. [11], but now for the tilted system, we find that the
0qy/0y = 0 yields the Reynolds equation for the modified asymptotic self-similar solution for the meniscus of the thin

pressure as layer close to the edger(— 0), at large values of the
9 oP 2P time t, yields the elevation of the meniscus at the edge as
— (2= ) +2° =5 =0 ~ At 1/3 with A = 1.25 9)%/3 1/3
O Oz dy? ’ ys ~ A(t/cos )" wi 25 (0 cos0)*7/(upg)
[20].

in 0<y<uys(z,t), >0 (12)

here,y; is the free surface in the tilted system. The modifiedg Experiments
pressure obeys the equation

20 cos 0 ) To compare the numerical dynamic profiles with those ob-
P=- or P9 (ys cos § — wsin ), tained experimentally, we performed a series of experiments
with silicone oil. Ad hocT-H cells having different inclina-
at y=ys ('Tv t) . (13)

tions of the arista were made with flat glass plates (3 mm
which expresses that said pressure at the free surface tisick) of different sizes. Wedges with different short angles
the sum of the capillary depressiem\p,, previously men- were made by keeping the plates in contact along the arista
tioned, plus the hydrostatic term. and by fitting, between the glass plates, a thin metallic sheet,
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files were photographed in all cases, one day after the T-H
cells were brought into contact with the silicone oil.

Due to our assembly procedure of the T-H cells, the aper-
ture anglesy were different for every experiment. In Fig. 6
we show the plot of several instantaneous profiles in a cell
having the same tilt angles as in Fig. 5, but the aperture an-
gles were: 6a)» = 0.019 £ 0.0001 rad (1.0°), Fig. 6b)a: =
0.008 £ 0.0004 rad (0.45°) and Fig. 6¢)x = 0.010 4 0.0005
rad (0.63°). It is evident that the scales in the plots were lo-
cated on the unrotated coordinates and, as a reference, the
black-color solid lines on the left side represent the edges
of the cells {-axis). In Fig. 6 symbols depict experimental
data and the dashed curves that closely fit them represent the
numerically computed profiles, obtained from the numerical
solutions of the problem posed by Eq4.2)-(17).

FIGURES. Pictures of the equilibrium profiles 'd'catedb dashed From comparisons between the experimental and numer-
. FPICtU unioriu 1 , INdl Yy . . . . . . _
curves, at filt angles: & — 0 rad, b)3 — 0.52440.002 rad(30°) 'c& Profiles, given in Fig. 6, we can establish that the nu
and c)3 — 1.047 + 0.002 rad (60°); where the mean aperture an- merical computations closely predict the evolution towards
gle wasa — 0.011 rad. Photogra’phs were taken approximately (€ equilibrium state of the free surfaces. The black-color
one day after the start up of the capillary rise. The scale on thedashed curves correspond to the numerical equilibrium pro-
ruler is in cm. files, which were obtained as in Fig. be., one day after
of the start-up of the capillary rise, having not observed any

parallel to the arista, at a certain distance from it. Speci _he_mge of ;aid equilibrium profilt_as. Th? shapes of the equi-
care was taken to avoid any contact of the metallic sheet wit br|um_proflle§ can also be obtained with E) @nd nhone
the silicone oil during the profile formation. Each angleof appreqlable dlfference was found between the analytic and
a given cell, was computed through the measurement of th@umencal prgflles. _ _
narrow space between the plates, at the rim opposite to the The location of the instantaneous heightt), for each
edge. On the other hand, the tilt anglevas measured using tilt angle, is shown in Fig. 7. The numerical computations
a digital clinometer (accuracy0.1°). closely fit the experimental data. It can be noted that all data

In Fig. 5 we present pictures of the equilibrium profiles fit power laws of the formy, ~ t!/3; the green curve was
for three representative cases with inclination angles: Sajrawn as a visual guide of the power lgw~ '/%. From the
B = 0=+ 0.002 rad, 5b)3 = 0.524 + 0.002 rad (30°) and plots in Fig. 7 we can also appreciate that the aperture and in-
5¢) 3 = 1.047 4 0.002 rad (60°). In these experiments the clination angles determine substantial changes in the kinetics
mean aperture was = 0.012 rad and the equilibrium pro- Of the capillary rise.
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FIGURE 6. Numerically computed and experimentally obtained profiles for different time lapses during the capillary rise. The tilt angles are:
a) 8 = 0rad, b)3 = 0.524 £+ 0.002 rad (30°) and c)8 = 1.047 £+ 0.002 rad (60°). The aperture angles for each inclination are specified
in the main text. The dashed curves represent the numerical solutions dfLB)g6l7). Error bars and symbols are of the same size.
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— — Numerical solution B=0. B Expt f=0
=] — - —Numerical solution B=0.52%. @ Expt p=0.524
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FIGURE 7. Plots of the time dependent heighis(t), measured

cous liquids in tilted Taylor-Hauskbee cells, with a particular
case being the rise in vertical cells. In the theoretical treat-
ment we used the rotation of coordinates to describe in a
straightforward manner the equilibrium profiles and the dy-
namic evolution of the free surfaces, following the applica-
tion of the Reynolds lubrication equations. We found self-
similar asymptotic solutions for the meniscus elevation, at
large values of time, which follows power laws of the form
ys ~ t'/3. The complete set of equations of the problem,
given by Eqgs.12)-(14), were also solved numerically, and
these solutions allowed us to compute the instantaneous pro-
files for three inclination angles and to validate that at large
values of time the meniscus elevation, close to the edge, fol-
lows the power lawsg), ~ t'/3. Experiments withAd Hoc

T-H cells for three different tilt anglesi, and different aper-
ture anglesy, back our numerical results. Finally, in the

at the edges, for the three inclinations used in Fig. 6. The black,context of applications, given that the capillary flow in tilted
blue and magenta curves correspond to the numerical solutions oforners is faster than in vertical standing corners, crucial phe-

Eqgs. @2)-(14) for various inclinations. Symbols in this plot match

those for experimental data in Fig. 6. The green curve represent

the power lawy, ~ t'/3. For the three different tilt angles, power

laws of this type closely fit data at large times. Error bars corre-

sponds to a 4% error.

5. Conclusions

nomena such as the transport of viruses and bacteria will be

Substantially modified.
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