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In this work, we adopt the three-order perturbation formulae for g-facigrsg(.) of d! ions in the octahedral environment to calculate

the g-factors of W' ions in tungsten phosphate glasses containing lithiup®gRLi»WO,-Li»O). In the light of the high valence state

of the studied W centers and hence the strong covalency of the studied octahedra] [W€luster, we consider the contributions to g-
factors from the ligand orbital and spin-orbit (SO) coupling interactions based on the cluster approach. The required tetragonal crystal-field
parameters are calculated from the local structure df \iéns based on the superposition model. According to the theoretical calculations,

we find that the octahedral [WiY ~ clusters possess the tetragonally compressed distortion with a shorter W-O bond4engih é\) and

a longer one# 2.26 ,&) along C, axis and four normal W-O bond length:(1.94 A) in the perpendicular plane, which infers that théWw

ions are in the form of tungstyl iong¢., WO?1). Based on the local structural data, the theoretical valugs ahdg, agree well with the
experimental values.
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1. Introduction of the EPR parameters and the local structure of the metal-
lic ion W5* must be essential to understand the properties of

the BO5-LioWO4-LioO glasses system, further theoretical

Glass QOped W'th transmon_ me_tal ions has many eXCeIIenithvestigations on the experimental results of the system are
properties €. high refractive index [1-3], low phonon of great significance

energy [4, 5], unique non-linear optical properties [6, 7)), Here, we apply the three-order perturbation formulae of
which has attracted great interest of many researchers [8], ! ; . .
-factors for the Hions in the octahedral environment to the-

Many theoretical and experimental studies show that th oretically investigate these factors of the studied\W5d')

different structures of oxygen coord_matlon polyhedron "Nions. Because of the high valence state of the studied ion, one
glass network strongly correlated with the excellent prop- o : .
. o can expect significant orbital admixtures between the central
erties of the glasses system [8-10]. As it is known, one - . S
ions and the ligand ions. Thus, the contributions to g-factors

can adopt the electron paramagnetic resonance (EPR) tecﬁbm the ligand orbital and spin-orbit (SO) coupling inter-

nique to conveniently study the structures of the glasses _.. . . .
. . - .~ ~actions are included in the perturbation formulae based on
by using probing agents such as the transition metal ion

(6.3 WO+ [8,11-13], MG+ [14-16], VO** [17-20] the cluster appr(_)ach. Accorgling to the superpo_sitior? model
CU+ [17 21_2’3] Ci+ ’[24—26]). EPR éxperiments for t’he (SPM), the required crystal-field energy separations in these

. . . formulae are calculated from the parameter of the local envi-
glasses systemyP);5-Lio,WO,-Li, O were carried out decades . . . ;
ronment around the studied® ions. Thus, information on
ago [15] and the EPR parameters g-factgysandg ) of the L )
5y : : the local structure of the metallic ion is confirmed. The theo-
W53+ ions reduced from W in the formation of the glasses .
. . : : . retical results¢ andg ) present here show good agreement
system BO;-LioWO,-Li,O were obtained in the experiment . :
: . with the experimental results.
[15]. From the property of the experimental g-factors.(
g < 91 < ges ge ~ 2.0023 is the spin-only value), the
W5+ jon was found to locate at the axially distorted octahe-2 Calculations
dral environment, in which the metallic ion W was in the
form of tungstyl ion WG+ with a short W-O bond length 2.1, The local structure and energy level splitting for
[15]. However, up to date, the g-factors ofPWions in the W57 in the P,O5-Li ;WO,4-Li 5,0 glasses system
glasses systemyPs-LioWO4-LioO have not been satisfac-
torily interpreted and the local structure of the metallic ionsin Ref. [15], the obtained EPR spectra characterized by the
W53+ in the system has not been confirmed in the quantitativenajor signal can be ascribed to the’Wion reduced from
calculation. Considering that the microscopic mechanismghe WA+ ion in the formation of the glasses system. Based
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% J \ FIGURE 2. (Color online) Crystal-field energy splitting of don
) . in an octahedral environment with the tetragonally compressed dis-
tortion.

(A2 |Vdyz) = (dy:|V|dy,) = —4Dy — Ds + 4Dy,
FIGURE 1. (Color online) Local structure of the octahedral _
[WO¢]"~ cluster with tetragonally compressed distortion yOp- (day|V|day) = —4Dq +2D;s — Dt @
LiaWO4-Li»O glasses. The W ions are in the form of tungstyl
ions WOt with a short W-O bond lengtt®; (described by the . ; .
green solid line) and a long on‘éﬂ (shown by red solid line) along electron. Thus, the energy differendes(i=1,2,3, see Fig. 2)

the C, axis and four normal perpendicular W-O bond lenggh l;etween the excitedE,, ?Biy, A1, and the ground state
(shown by the blue solid line). B,, can be calculated [28-30]:

Here,V denotes the crystal field potential energy of the d

on the featurey < g1 < g. of the experimental g-factors, Ey=5D,—3D,, E,=10Dq,
one can assume that theséWons are coordinated by six
oxygen ligands forming the octahedral environment. As ob-
served in other glasses [8, 12, 13], the meta!llc loRtW According to the superposition model [31] and the lo-
should be very close to one of the two oxygen ligands alon% ; . : .

) . . . . al geometrical relationship (see Fig. 1), the tetragonal CF
the C, axis leading to the axially compressed distortion octa- arameters Dand D, can be written as follows:
hedron (see Fig. 1). Therefore, the shorter axial bond IengtR ‘ ' '

H / —

R and the longer axial bond Iengﬂ%H as well as the four DS:(2/7)A2(R)[2<R/RJ_)1‘,2_(R/Ru)tg_(R/Rﬁ)tg]’
normal W-O bond lengttR; in the perpendicular plane can -
be expressed by the reference lerigénd the relative tetrag- Dy=—(8/21)A4(R)[2(R/R )"
onal compression ratip:

Es = 10D, — 4D, — 5D;. 3)

—(R/R))"“—(R/R))"], (4)
Ry~ R(1-p), Rj=~R(1+p), where 4;(R) and A4(R) are the intrinsic parameters with
R. ~ R(1+ p%/2). 1) the reference lengti® [31]. The radiosA4(R)/D, ~ 3/4,

A3(R)/A4(R) ~ 10.8 have been proved to be valid for
) o d” ions in octahedral crystal-field environments for many
For' the free éI.IOHS, the d-prbltal is five-fold degenera}te. glasses systems [9,32,33]. They can be reasonably applied in
In _cublc crystal field, the quintuple dege_n_eracy is partially, present workis (~ 3) andt, (~ 5) are the power-law ex-
rellevegd and the octahedral ai:luster exhibits two energy ,nents [31]. According to the optical absorption spectra of
levels“E, (|d.2), [du2—y2)) and=Toy(|dsy), [dy2), |dez)), 8 the similar [WQ;]7~ cluster in some tungstate glasses [13],

shown in Fig. 2. The original lower orbital tripléfT,, in one can obtaiD, ~ 2500 cm~L. Thus, only the parameter
cubic crystal-field would split into an orbital doublég, pis unknown in Eq. (4).

(|dy=),|d=-)) and an orbital singléB,, (|d.,)) due to the

tetragonally compressed distortion with the latter being low-; 2 perturbation formulae of g-factors

est [27]. Meanwhile, the original upper orbital doubl&,

would splitinto two orbital singlet$B, , (|d,2_,2)) and?A, In the light of the high valence state of the metalli¢ ¥Mon
(|d.2)). According to crystal field theory [27], the Hamilto- in [WOg]”~ cluster, one can expect the strong covalency ef-
nian matrices for tion in the tetragonally compressed octa- fect and hence the obvious mixings between the orbitals of
hedron can be expressed by the cubic crystal-field parametéme ligand G~ and the central WH ions. Thus, the contri-

(CF) Dy, the tetragonal CF parameters &nd O, butions to EPR parameterg( g.) from the ligand orbital
and SO coupling interactions become significant, which has
(d,2|V|d.2) = 6D, — 2Dg — 6D, been proved in many theoretical works [13]. For thé*®w
ion in the tetragonally compressed octahedral environment,
(dy2_y2|V]dy2_y2) = 6Dg + 2D — Dy, the high-order perturbation formulae of g-factors including
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TABLE 1. (¢, ¢) (incm™Y), Ny, (A, As) and &, k') for W5 ion in P,O5-LisWO,-Li» O glasses.

N, N. At Ae As ¢ ¢ k K
0.6708 0.7180 0.7334 0.5878 0.4720 2457 2339 0.8512 0.3898

the above contributions can be derived on the basis of the

cluster approach [34-36]: TABLE II. The g-factors for W ion in P,Os-LioWO,-Li2O
) - glasses.
_ _ !~ _ _ ! ! _
91=9e—8k'C'/ E2—2k("/ EY — 4K'CC' | EvEp — 2¢7/ EY, Car Cal Caf Exp’
91 = ge — 2k(/Ey + kC?/EY — 2k(” | E\ By 9| 1.4142  1.7106 15949  1.5932-1.6015
2K CC /BBy — AC' B2 — C?/E2. ) 9. 18114 17331 17321  1.7321-1.7398

®Theoretical results based on Egs. (5)-(7) but neglecting the ligand contri-

Here, energy separatio§ andE, corresponding to d-d butions. ®Theoretical results based on Egs. (6), (7) and the second-order
transitions are given in Eg. (3).and¢’ are the SO coupling perturbation formulaei.€. the formulae of g-factors include only the first
coefficientsk andk’ are the orbital reduction factors charac- two terms in Eq. (5)).“Theoretical results based on Egs. (5)-(7) including
terizing the degree of covalency between the centrat¥ahd  the ligand contributions’Ref. [15].
the ligands @~ in present glasses system. These quantities

(¢, ¢', k, k') can be derived from the cluster approach [9,35]:orbital reducti_on factorgk, k_’) are_determined as the cova-
lency factorN is known. By inserting the relevant quantities

¢ =N, (Cd + Apr/Q) 7 (_E_l, Es, ¢, () int_o the formulae of g—factqrs (Eq. (5)) and
fitting the theoretical g-factors to the experimental resuits,

¢ = (N;N)Y2 (Ca = MdeCp/2), andp are determined:

k=N (14+X7/2), N ~0.655; p~ 0.1915. @)

K = (NeNo) 2 [1= A (A + AsA) /2] (6) The corresponding calculated resulté,( A, A, ¢, ¢/,

k, k") are collected in Table | and the corresponding g-factors
The subscripty = e and¢ denote the irreducible repre- (g, g, ) are gathered in Table I1. For the convenience of com-
sentations 3, and E; of the O, group, respectivelyN,-is  parison and discussion, the calculated resultsCahsed
the normalization factorA,, or (\s)is the orbital mixing co-  on the relative compression rationithout the ligand orbital
efficients. (; and(,, are the SO coupling coefficients of the and SO coupling contributions.é., ¢ = ¢’ = N¢; and
metal and ligand ions in free state, respectively. Based op — i’ = N) are collected in Table Il. The calculated re-
the cluster approach, these molecular orbital parameters aggilts (Calt) based on the second-order perturbation formulae

calculated by using the covalency fact§r the group over- including the ligand contributions are also shown in Table II.
lap integrals §ape, Sape, Sas) and the integrald. Here, the

overlap integralsSy,: and.Sg,. involve the W(d) orbital and
the O(2p) orbitals with the san®, and £, symmetries, re-
spectively. Also,Sy, involves the W(d) and the O(2s) or-

3. Discussion

' . g From Table I, one can find that the theoretical g-factors
bitals with the samed,, symmetry. A denotes the integral (CaF) based on the three-order perturbation formulae of

R (ns |0/9y| npy) with the impurity-ligand distanc& of the  y,eq6 factors for! ions in the tetragonally compressed oc-
studied system. More information can be found in the literayapeqra) environment including the contributions from the

tures [28, 35,37, 38]. ligand orbital and SO coupling interactions as well as the
relative tetragonal compression ratioare in good agree-
2.3. Calculated results of the g-factors for W' ionsin  ment with the experimental results reported in Ref. [15].
P205-Li s WO 4-Li 2O glasses system Therefore, the experimental EPR spectra are satisfactorily ex-

] plained and the local structure is quantitatively confirmed.
For the octahedral cluster [W{J ~ in some tungsten phos-

ehate glasses [12], the average bond length is about 1.9(1) Based on the relative compresosion ratie= 0.1915)
A, which can be reasonably taken as the reference length and the reference lengiR(~ 1.9A [15]), one can ob-

in this work. Utilizing the lengthR (~ 1.9 [12]) and tain the local structural data for the studied cluster
the Slater-type SCF functions, the group overlap integrals [WOg]7~ including the very short W-O bond length
Sapt ~ 0.03211, Sgpe =~ 0.09075, Sgs ~ 0.07287 and the R (~ 1.54,&) and the long oneRﬁ (~ 2.26,&) along the
integral A ~ 1.2371 are determined. From the free-ion val- C, axis and the four normal perpendicular W-O bond
ues¢; ~ 3500 cm~! [36,39] for W and(, ~ 151 cm™! length R, (~ 1.94A), which infers a tetragonal com-
[9, 28] for O*—, the SO coupling coefficientg, ¢’) and the pression distortion along the,@xis (see Fig. 1). This
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S

A;(R)/AL(R)

Ay(R)/A4(R)

FIGURE 3. (Color online)g andg. as functions of the relative compression ragiand the ratiads(R)/A4(R) are shown in Panels a)
and b), respectively. In the two panels, the three black curves from left to right represent 99.5%, 100% and 100.5% of the corresponding
experimental values, respectively.

may suitably explain the observed property (< (3) The possible errors of the present work may be ana-
g1 < g.) of g-factors. Similar tetragonally com- lyzed in the following aspects. Firstly, only the con-
pressed distortions of the octahedratWcenters are tributions from the nearest neighbor oxygen ligands of
also found in other tungstate phosphate glasseas ( the metallic W ion are considered from the cluster
R, ~16A, R, ~22A R, ~ 19 ,&) [12] by EPR approach. Fortunately, the approach has been proved

. [ . . .
analysis. Many theoretical works demonstrate that the to be valid by many theoretical works on EPR parame-

similar distortions may be ascribed to the Jahn-Teller ters [8,9, 28, 29, 32—-34,38-40].
effect which may modify the immediate local environ-

ment by stretching or shrinking the metal-ligand bond Secondly, the empirical relationshifs(R)/A4(R) ~

lengths [8, 9, 28, 40, 41]. Thus, the local environment L g - -
10.8 applied in the calculations of tetragonal CF parameters
around the W ion confirmed in this work is suitable. 0.8 app g P

may bring some errors to the compression ratend hence

the g-factors (note that the relationshiy(R)/A4(R) =~

(2) Itcan be seen from Table Il that the calculated g-factor® ~ 12 for d” ions has been proved to be valid in many
(CaF) based on Egs. (5), (6) and (7) are more con-theoretical works [29, 31, 33, 40, 42—-47]). According to our
sistent with the experimental results than the calcu-calculations, the errors of the final g-factors and the relative
lated results (C&) based on Egs. (5) and (7) with- compression rati@ are estimated not to exceed 1% and 6%
out the contributions from the ligand orbital and spin- (see Fig. 3) respectively, as the ratlg(R)/A4(R) changes
orbit coupling interactions. Particularly, the calculatedby 10% around 10.8. Thirdly, in the calculations of the
value of g| from the results (Cd) is much smaller group overlap integrals, the reference bonding length of the
than the experimental value. According to our calcula-studied [WQ]”~ cluster is obtained from the similar cluster
tions, the relative discrepancy between the calculatedvith tetragonally compressed distortion in the other tungstate
results (Cal) and the experimental values are aboutphosphate glasses. This would introduce small errors into the
11.3% and 4.6% fog andg, respectively, which can integrals and hence bring forward an influence in the calcu-
hardly be eliminated by freely adjusting the relative lated g-factors. However, because of the small integrals, one
tetragonal compression ratipand the covalency fac- can expect the errors arising from the uncertainty of the in-
tor N. In fact, one can expect the strong covalency andegrals must be very small. According to the calculations,
hence the obvious mixings between the metal and ligwhen the integrals change by 10%, the errors of the final
and orbitals because of the high valence state of W g-factors are estimated not to exceed 1%. Finally, only the
This point is supported by the small covalency factorcontributions from the crystal-field mechanism are consid-
N (= 0.655 << 1) and the significant mixing coeffi- ered in the calculations of the g-factors, while the contribu-
cients (\; =~ 0.7334, A\, ~ 0.5878 and\, ~ 0.4720) tions due to the charge-transfer mechanism are not included.
(see Table I). By comparing the results betweerf*Cal This should lead to some errors in the final g-factors. How-
and Cal in Table I, we also find that the contribu- ever, considering that (i) some adjustable paramegegsthe
tions from the ligand orbital and SO coupling inter- bonding molecular orbit coefficients, charge-transfer energy
actions are more important than those from the thirddevels [34, 36, 39, 47]) should be introduced in the calcula-
order terms. Therefore, the high-order perturbationtions if the charge-transfer mechanism is adopted. (ii) Based
formulae of the g-factors including the ligand contri- on the theoretical studies of the octahedral clusters for the
butions seem to be much applicable in the explanations! ions €.g V4t [47, 48], Mot [34, 49], W [36, 39],
of these parameters. Cr* [25,47,48]) doping in the crystals or glasses, the contri-
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bution to the g-factors from the charge-transfer mechanism ipling interactions are taken into account because of the strong

much smaller than that from the crystal-field mechanism, neeovalency of the studied cluster [WD~. According to

glecting the contribution to g-factors from the charge-transfeour calculations, the relative tetragonal compression ratio

mechanism is acceptable. The theoretical g-factors¢{Cal is found to be about 0.1915 due to the Jahn-Teller effect.

show good agreement with the experimental values, whictBased on the local structural data and the three-order per-

further supports this point. turbation formulae, the theoretical results of g-factors are in
good agreement with the experimental results.

4. Conclusion
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