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Rabi oscillations at the exceptional point in
anti-parity-time symmetric diffusive systems
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The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating
in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-
to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that
the system exhibits a parity-time (PT ) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding
non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass
through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbrokenPT
symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system
at the exceptional point in heat diffusive systems.
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1. Introduction

A closed or conservative system evolves according to a Her-
mitian Hamiltonian in contrast with open or non conserva-
tive systems which are described by non-Hermitian Hamilto-
nians. There is a special class of non-Hermitian systems in
which the energy exchange between the system and the envi-
ronment is balanced. The entire balanced system exhibits a
symmetry calledPT symmetry where the symbolP stands
for parity and interchanges the gain and loss components of
the total system andT represents the operation of time re-
versal and has the effect of turning a system with loss into a
system with gain and viceversa [1–3].

Non-HermitianPT symmetric systems can exhibit a rich
and unexpected behavior and have broad applications in clas-
sical and quantum physics [4–7].PT symmetric systems
have been intensively studied in optics in which many intrigu-
ing phenomena haven been experimentally confirmed and has
led to the development of new ways of controlling light prop-
agation [8–11].

Recently, anti-PT (APT) symmetric systems have at-
tracted a lot of attention because they exhibit noteworthy
effects different from thePT counterpart. An APT sym-
metric Hamiltonian can be defined in terms of aPT sym-
metric Hamiltonian byH(APT ) = ±iH(PT ), but physically
it is really difficult to implement it in the laboratory since
it requires the coupling between the two subsystems to be
a purely imaginary value, in contrast with thePT systems
which requires a real coupling. Anti-PT symmetry has been
demonstrated by using dissipatively coupled atomic beams

[12], cold atoms [13], electrical circuits [14], and optical de-
vices [15–17]. These breakthroughs have initiated the field
of exploring unique APT effects. More recently, Liet al
reported the experimental realization of an APT symmetric
diffusive system in Ref. [18]. The system investigated in
Ref. [18] is depicted in Fig. 1 and consists of two identi-
cal solid rings with inner and outer radius given byR and
R + δR, respectively. The thickness isb. The upper ring is
rotating with angular velocityω1, while the lower ring is ro-
tating with angular velocityω2 = −ω1. There is an interface
of thicknessd and thermal conductivityki between the two
rings. The temperature distribution along the inner edges of
the upper and lower rings is given by the following diffusion
coupled partial differential equations

∂T1

∂t
= D

∂2T1

∂x2
− v

∂T1

∂x
+ hc(T2 − T1),

∂T2

∂t
= D

∂2T2

∂x2
+ v

∂T2

∂x
+ hc(T1 − T2), (1)

wherex is the coordinate along each edge,D = k/ρc is the
diffusivity, v is the tangential velocity in the inner edge of the
rings, hc = h/ρcb is the rate of heat exchange coupling,ρ
is the density,c is the heat capacity andh = ki/d is a co-
efficient that represents the heat exchange between the two
rings. Using plane wave solutions,i.e. Ti = Aie

i(κx−ωt), the
system given in Eq. (1) can be cast into an APT symmetric
Hamiltonian given by

H(APT )=
(−i(κ2D+hc)+κv ihc

ihc −i(κ2D+hc)−κv

)
, (2)
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FIGURE 1. The figure a) shows two identical rotating rings with equal but opposite angular velocities joined together by a stationary
intermediate layer and b) the imaginary and real parts of the eigenfrequencies as a function of the tangential velocity where the dotted line
represents the exceptional pointvEP = hc/κ.

whereκ is the wave number andω are the eigenvalues of the
APT Hamiltonian which are given by

ω± = −i
[
(κ2D + hc)±

√
h2

c − κ2v2
]
. (3)

The exceptional point where the two eigenvectors coalesce
is whenv2

EP = h2
c/κ2, i.e. ω+ = ω−. The sudden col-

lapse of the eigenvectors and eigenvalues at the exceptional
point leads to an abrupt reduction in dimensionality,i.e. the
Hamiltonian matrix cannot be expressed in a diagonal form.
Many of the interesting properties of non-Hermitian systems
are found at or close to the exceptional point which have led
to many novel and exotic phenomena. Exceptional points
are currently the subject of many interesting and counter-
intuitive phenomena associated with them such as topological
mode switching [19,20], reflection and transmission [21–23],
instrinsic single-mode lasing [24,25] and coherent perfect ab-
sorption [26].

In this work we study the APT symmetric diffusive sys-
tem given by Eq. (1) whenv = vEP and show that the system
behaves as a pair of coupled linear oscillators one with gain
and the other one with loss. The noteworthy feature of the
exceptional pointvEP is that it exhibits damped Rabi oscil-
lations in the unbrokenPT phase transition that depends on
the radii of the rotating rings. We obtain the analytical tem-
perature distribution of each ring at the exceptional point and
obtain the conditions that have to be fulfill in order for the
system to be in equilibrium.

2. Analysis at the exceptional point

We start our investigation by making the following change
of variables in Eq. (1): τ = hct, z =

√
hc(λ− 1)/Dx

whereλ > 1 is an auxiliary constant to be determined and
∆Ti = Ti − T0 whereT0 is a reference temperature. Rewrit-
ing Eq. (1) in terms of the new variables we have

hc
∂∆T1

∂τ
= hc(λ− 1)

∂2∆T1

∂z2

− vEP

√
hc(λ− 1)

D

∂∆T1

∂z
+hc(∆T2−∆T1),

hc
∂∆T2

∂τ
= hc(λ− 1)

∂2∆T2

∂x2

+vEP

√
hc(λ−1)

D

∂∆T2

∂z
+hc(∆T1−∆T2). (4)

Looking for solutions of the form∆Ti = e−λτfi(z) in
Eq. (4) we end up with the following system of coupled ordi-
nary differential equations

d2f1

dz2
− vEP√

Dhc(λ− 1)
df1

dz
+ f1 +

1
λ− 1

f2 = 0,

d2f2

dz2
+

vEP√
Dhc(λ− 1)

df2

dz
+ f2 +

1
λ− 1

f1 = 0. (5)

Inspection of Eqs. (5) reveals that they are invariant under
combined parity,i.e. f1 ↔ f2, and time reversalt → −t
transformation. To solve the system of equations analytically
we first differentiate one of the equations and then use the
other equation to eliminatef2 in order to get the following
fourth order differential equation

(
d4

dz4
+

(
2− εv2

EP

Dhc

)
d2

dz2
+ (1− ε2)

)
f1(z) = 0. (6)
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FIGURE 2. Numerical solution of the coupled equations given in Eq. (5). The initial values aref1(0) = 1, f2(0) = 0, f ′1(0) = 0 and
f ′2(0) = 1. Plots are shown for different values of theε : a) ε = 0.86 and b)ε = 0.96 presents the numerical solution in the region of
unbrokenPT symmetry, respectively. c)ε = 0.09 and d)ε = 1.1 in the brokenPT symmetry, respectively. The behavior in the broken
and unbroken regimes are qualitatively different. In the unbroken regime case the envelopes of the solutions exhibit oscillations,i.e. Rabi
oscillations. In the broken regime case the solutions oscillate and grow exponentially.

whereε = 1/(λ − 1). By assuming a solution of the form
f1(z) ∝ cosh(χz) for Eq. (6) we get the following condition
overχ:

χ4 + (2− a2)χ2 + (1− ε2) = 0, (7)

wherea2 = εv2
EP /Dhc. The solution of Eq. (7) is given by

χ2 =
1
2

(
a2 − 2±

√
a4 − 4a2 + 4ε2

)
. (8)

In order to have an oscillatory behavior we must demand that
χ2 < 0, which implies that

(i) a4 − 4a2 + 4ε2 > 0

(ii) a2 − 2 +
√

a4 − 4a2 + 4ε2 < 0.

Condition (ii) givesε < 1 and condition (i) gives

a < acrit = 2
(
1−

√
1− ε2

)
. (9)

If ε < 1 anda < acrit we get the following oscillatory solu-
tion for f1

f1(z) = A1 cos (χ1z) + B1 cos (χ2z) , (10)

whereχ1,2 =
√
|χ2±| andA1 andB1 are constants to be de-

termined. In order to obtain the value ofε we must consider
the periodicty off1(z), i.e. f(0) = f(2πR

√
hc/Dε), which

gives us the following conditions

χ1,2R

√
hc

Dε
= n, (11)

wheren = ±1,±2, . . .. Solving Eq. (11) we get the follow-
ing value forε

ε =
hcR

2

Dn2
. (12)

Rev. Mex. Fis.69040501



4 G. GONZÁLEZ

Using the fact thatε = 1/(λ− 1) we get the following value
for λ

λ = 1 +
Dn2

hcR2
. (13)

Equation (13) is in agreement with Eq. (3) when v2
EP =

h2
c/κ2 andk = n/R. Interestingly, Eq. (13) is valid only

when conditions (i) and (ii) are fulfilled.
Once we know the value ofε we can substitute ina2 =

εv2
EP /Dhc in order to geta = ε. Substituting this value

into Eq. (9), the conditions to be satisfied in order to have
unbroken-PT symmetry at the exceptional point are0 < ε <
1 and0 < ε < 2(1−√1− ε2), which gives us the following
solution

4
5

< ε < 1. (14)

Equation (14) is the main result of this study which states that
two phase transitions take place at the exceptional point and
depend only on the radii of the rotating rings. Substituting
a = ε in Eq. (8) we getχ2

+ = ε2 − 1 andχ2
− = −1, there-

fore f1(z) = A1 cos(
√

1− ε2z) + B1 cos(z) which means
we have to chooseA1 = 0 in order to fulfill the periodicity
condition. Substitutingf1 into Eq. (5) we obtain the follow-
ing ordinary differential equation forf2:

d2f2

dz2
+ ε

df2

dz
+ f2 = −εB1 cos(z). (15)

The general solution for Eq. (15) is given by

f2(z) = A2e
−z/2ε

× cos
(√

1− (ε/2)2z + φ
)
−B1 sin(z), (16)

whereA2, B1, φ andn are constants to be determined by the
initial conditions.

If we impose the following initial conditions over the
temperature profiles in the rings

T1(x, 0) = T2(x, 0) = T0 + A cos(x/R), (17)

we need to choosen = 1 andB1 = A in order to get

f1(x) = A cos(x/R), (18)

and

f2(x) = Ae−Dx/2R3hc

× sec(φ) cos
(
α

x

R
+ φ

)
−A sin(x/R), (19)

whereα =
√

1− (hcR2/2D)2 and

φ = arctan
[
cot(2πα)− csc(2πα)eπD/hcR2

]
. (20)

The solution given in Eq. (18) means that∆T1(x, 0) =
f1(x), therefore the temperature distribution in the first ring
will not change in position but will only decay on time, in

FIGURE 3. The graph shows the temperature profiles of the rings
for the following valuesD = 100 mm2/s, ρ = 1000 Kg/m3,
c = 1000 J/Kg◦K, ki = 1 W/m◦K, a = 100 mm, b = 5 mm,
d = 1 mm and for the radiiR = 21 mm andvEP = 4.2 mm/s.

contrast with the solution given in Eq. (19) which is different
from the initial condition, therefore the temperature profile
will change in position and decay on time. In Fig. 2 we show
the Rabi oscillations as a function of position for different
values ofε.

If we impose the following new conditions over the tem-
perature profiles in the rings

T1(x, 0) = T0 + A cos(x/R) and

T2(x, 0) = T0 + A sin(x/R), (21)

we need to choosen = 1, B1 = −A, A2 = 0, which means
that∆Ti(x, 0) = fi(x), therefore both temperature distribu-
tions will remain invariant and will only decay on time.

Using the same experimental values given in Ref. [18],
i.e. D = 100 mm2/s, ρ = 1000 Kg/m3, c = 1000 J/Kg◦K,
ki = 1 W/m◦K, a = 100 mm, b = 5 mm andd = 1 mm,
we find that Rabi oscillations take place for the fundamental
wave if the inner ring radius is between20mm < R < 22mm
and the rings are rotating with equal but opposite velocities
given byvEP = hcR. In Fig. 3 we show the temperature
fields for the unbroken-PT regime where damped Rabi os-
cillations occur in which the maximum and minimum tem-
peratures are 90◦ out of phase.

3. Conclusions

In conclusion, we have predicted the existence of Rabi os-
cillations at the exceptional point in the diffusive system pro-
posed by Liet al. We showed that at the exceptional point the
system exhibits twoPT phase transitions which take place at
critical values for the radii of the rotating rings. Specifically,
if the rings are rotating in opposite directions with equal tan-
gential velocity given byvEP = hc/|κ| and the ring radius
lies between

√
4D/5hc < R <

√
D/hc for the fundamental

Rev. Mex. Fis.69040501
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wave,i.e. κ = ±1/R, the temperature fields exhibit damped
Rabi oscillations.

Let us now consider the case when the rings are rotating
with different velocities close to the exceptional point, specif-
ically we would like to solve the following system

∂T1

∂t
= D

∂2T1

∂x2
− (vEP + δv)

∂T1

∂x
+ hc(T2 − T1),

∂T2

∂t
= D

∂2T2

∂x2
+ (vEP − δv)

∂T2

∂x
+ hc(T1 − T2), (22)

whereδv << vEP . At first it seems that the system given
in Eq. (22) is not APT symmetric, however if we make the
following transformationξ = x − δvt we obtain a system
of equations identical to the one given in Eq. (1) replacing
x → ξ andv → vEP . The solution for Eq. (22) is given by

∆T1 = e−λhct cos((x− δvt)/R), (23)

∆T2 = −e−λhct sin((x− δvt)/R), (24)

which means that the temperature profiles are moving. This
result shows that we can have a rest-to-motion temperature
profile without having equal opposite rotating velocities. Our
work reveals the rich structure of exceptional points in anti-
parity-time symmetric diffusive systems.
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