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The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating
in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-
to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that
the system exhibits a parity-tim&({") phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding
non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass
through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case Bffunbroken
symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system
at the exceptional point in heat diffusive systems.

Keywords: Rabi oscillations; parity-time symmetry; heat diffusive systems.

DOI: https://doi.org/10.31349/RevMexFis.69.040501

1. Introduction [12], cold atoms [13], electrical circuits [14], and optical de-
vices [15-17]. These breakthroughs have initiated the field
A closed or conservative system evolves according to a Helef exploring unique APT effects. More recently, ket al
mitian Hamiltonian in contrast with open or non conserva-reported the experimental realization of an APT symmetric
tive systems which are described by non-Hermitian Hamiltodiffusive system in Ref. [18]. The system investigated in
nians. There is a special class of non-Hermitian systems iRef. [18] is depicted in Fig. 1 and consists of two identi-
which the energy exchange between the system and the enwial solid rings with inner and outer radius given Byand
ronment is balanced. The entire balanced system exhibits & + 0 R, respectively. The thickness bs The upper ring is
symmetry calledP7 symmetry where the symb@ stands rotating with angular velocity;, while the lower ring is ro-
for parity and interchanges the gain and loss components d&iting with angular velocityws = —w;. There is an interface
the total system and™ represents the operation of time re- of thicknessd and thermal conductivity; between the two
versal and has the effect of turning a system with loss into aings. The temperature distribution along the inner edges of
system with gain and viceversa [1-3]. the upper and lower rings is given by the following diffusion
Non-Hermitian?7 symmetric systems can exhibit a rich coupled partial differential equations
and unexpected behavior and have broad applications in clas- oT, 02T, o,

sical and quantum physics [4-7]P7 symmetric systems 2 = Paz Vg + he(Ty — Ty),

have been intensively studied in optics in which many intrigu- r z

ing phenomena haven been experimentally confirmed and has Ty 0Ty n T, 4 he(T) = To) @
led to the development of new ways of controlling light prop- ot Ox2 v Oz e\l 2/

agation [8—11]. . . .
) ) wherez is the coordinate along each edde,= k/pc is the
Recently, antiP7 (APT) symmetric systems have at- diffusivity, v is the tangential velocity in the inner edge of the

tracted a lot of attention because they exhibit noteworthyrings he = h/pch is the rate of heat exchange coupling
eﬁegts diffe.rent.from thePT cqunte_rpart. An APT sym- o thé dcensityp is the heat capacity andl = &, /d is a co-’
metric Hamiltonian can be defined in terms oPPd Sym-  ogiciant that represents the heat exchange between the two
metric Hamiltonian byH (A*T) = +iH T but physically rings. Using plane wave solutiorise. T} = A,ei("o~<1), the

it is really difficult to implement it in the laboratory since system given in Eq.) can be cast into an APT sym,metric

it requires the coupling between the two subsystems to bﬁamiltonian given by

a purely imaginary value, in contrast with tf& systems

which requires a real coupling. Anti-PT symmetry has been FJ(APT) —i(Kk2D+he)+kv the

demonstrated by using dissipatively coupled atomic beams = ( ih, Z‘(,{2D+hc)m}> , (2)
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FIGURE 1. The figure a) shows two identical rotating rings with equal but opposite angular velocities joined together by a stationary

intermediate layer and b) the imaginary and real parts of the eigenfrequencies as a function of the tangential velocity where the dotted line
represents the exceptional poinip = h./x.

Im[w]

wherex is the wave number and are the eigenvalues of the whereX > 1 is an auxiliary constant to be determined and
APT Hamiltonian which are given by AT; = T; — Ty whereTy is a reference temperature. Rewrit-

o = i [(KQD bhe) R = I€2’U2i| ' 3) ing Eg. [1) in terms of the new variables we have
The exceptional point where the two eigenvectors coalesce OATh = he(\ — 1)82AT1
is whenv?, = h?/k? ie. wy = w_. The sudden col- T 022
lapse of the eigenvectors and eigenvalues at the exceptional he(A — 1) OAT,
point leads to an abrupt reduction in dimensionality, the TUVEP\ T o, +he(AT>—ATY),
Hamiltonian matrix cannot be expressed in a diagonal form. )
Many of the interesting properties of non-Hermitian systems hc% = he(X — 1)6 ATy
are found at or close to the exceptional point which have led or O
to many novel and exotic phenomena. Exceptional points he(A—1) OAT,
are currently the subject of many interesting and counter- topp\| — 5 5, th(ATi-AT:). (4)

intuitive phenomena associated with them such as topological
mode switching [19,20], reflection and transmission [21-23] Looking for solutions of the formAT; = e=*7fi(z) in
instrinsic single-mode lasing [24,25] and coherent perfect abEq. [4) we end up with the following system of coupled ordi-

sorption [26]. nary differential equations

In this work we study the APT symmetric diffusive sys- )
tem given by Eq.1) whenv = vgp and show that the system °f VEP dh + A+ LfQ -0
behaves as a pair of coupled linear oscillators one with gain 42> \/Dh.(A —1) dz A-1 7
and the other one with loss. The noteworthy feature of the 2, vEp dfs 1
exceptional poinvgp is that it exhibits damped Rabi oscil- 5 + —+fo+——=f=0. (5
lations in the unbrokef7 phase transition that depends on dz VDhe(A—1) dz A—1

the radii of the rotating rings. We obtain the analytical tem'lnspection of Eqs.5) reveals that they are invariant under
perature distribution of each ring at the exceptional point an¢., 1 vined parityj.e. fi — fo, and time reversal — —t

obtain the conditions that have to be fulfill in order for the transformation. To solve the system of equations analytically

system to be in equilibrium. we first differentiate one of the equations and then use the
other equation to eliminatg, in order to get the following
2. Analysis at the exceptional point fourth order differential equation

. P . . 4 2 2
We start our investigation by making the following change (dc; (2 evEP) 522 (1- 62)>f1(2:) —0. ()

of variables in Eq. 1): 7 = het, z = /he(A—1)/Dx a2 T\ " on )iz
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FIGURE 2. Numerical solution of the coupled equations given in E5). (The initial values aref;(0) = 1, f2(0) = 0, f1(0) = 0 and
f2(0) = 1. Plots are shown for different values of the a) e = 0.86 and b)e = 0.96 presents the numerical solution in the region of
unbrokenP7 symmetry, respectively. @) = 0.09 and d)e = 1.1 in the brokenP7 symmetry, respectively. The behavior in the broken
and unbroken regimes are qualitatively different. In the unbroken regime case the envelopes of the solutions exhibit osodlaRabs,
oscillations. In the broken regime case the solutions oscillate and grow exponentially.

wheree = 1/(A — 1). By assuming a solution of the form If ¢ < 1 anda < a.-;+ we get the following oscillatory solu-
f1(z) o cosh(xz) for Eqg. 6) we get the following condition tion for f;

overy:
X'+ 2-a®)+(1-€) =0, (7) f1(2) = Ay cos (x12) + By cos (x22), (10)
wherea? = ev%,,/Dh.. The solution of Eq.[{) is given by 5
wherexi 2 = 1/|x3| andA; andB; are constants to be de-
2= % <a2 —2++vVa* —4a? + 462) . (8)  termined. In order to obtain the value ofve must consider

the periodicty off(z), i.e. f(0) = f(2mR+/h./De), which
In order to have an oscillatory behavior we must demand thagives us the following conditions
x? < 0, which implies that

() a* —4a® +4€2 >0 x1.2R % =n, (11)
€
(i) a® — 2+ Va* —4a? + 4e2 < 0. ,
wheren = +1,+2,.... Solving Eq. 1) we get the follow-
Condition (ii) givese < 1 and condition (i) gives ing value fore
h.R?
a < agit =2 (1 V1o 62) . 9) =T (12)
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Using the fact that = 1/(\ — 1) we get the following value

for A
Dn?

heR?’
Equation [(3) is in agreement with Eq.[3] whenv%, =
h?/k? andk = n/R. Interestingly, Eq. [13) is valid only
when conditions (i) and (ii) are fulfilled.

Once we know the value efwe can substitute in? =

A=1+

(13)

ev%p/Dh,. in order to geta = €. Substituting this value
into Eq. 19), the conditions to be satisfied in order to have

unbrokenP7 symmetry at the exceptional point &re< e <

lando < e < 2(1 — /1 — €2), which gives us the following

solution

4
—<e<l1.

- (14)

Equation|4) is the main result of this study which states that

5
Tl (X,t), 0
TZ (X9t) 5

}0

15

20"

two phase transitions take place at the exceptional point angigure 3. The graph shows the temperature profiles of the rings
depend only on the radii of the rotating rings. Substitutingfor the following valuesD = 100 mm?/s, p = 1000 Kg/m?,

a = ein Eq. 8) we gety? = ¢ — 1 andx? = —1, there-
fore fi1(z) = Ajcos(v1 — €2z) + By cos(z) which means
we have to choosd; = 0 in order to fulfill the periodicity
condition. Substituting’;, into Eq. 6) we obtain the follow-
ing ordinary differential equation fof;:

d?fo  dfs

1 + e + fo = —€Bj cos(z2). (15)
The general solution for Eq1B) is given by
Jolz) = Age/%*
X coS (\/ 1—(e/2)%z + ¢) — Bysin(z),  (16)

whereAs,, By, ¢ andn are constants to be determined by the

initial conditions.

If we impose the following initial conditions over the

temperature profiles in the rings

Ty (z,0) = To(x,0) = To + Acos(xz/R), a7
we need to choose = 1 andB; = A in order to get
fi(x) = Acos(z/R), (18)
and
folz) = Ae—Dx/2R%he
xw@ﬁ%@%+@—Am@m% (19)
wherea = /1 — (h.R?/2D)? and
¢ = arctan [cot(27ra) — CSC(27TO[)67TD/hCR2 . (20)

The solution given in Eq.18) means thatAT)(z,0) =

¢ = 1000 JKg’K, k; = 1 W/Im°K, a = 100 mm, b = 5 mm,
d = 1 mm and for the radikR = 21 mm andvgp = 4.2 mm/s.

contrast with the solution given in E(LY) which is different
from the initial condition, therefore the temperature profile
will change in position and decay on time. In Fig. 2 we show
the Rabi oscillations as a function of position for different
values ofe.

If we impose the following new conditions over the tem-
perature profiles in the rings

Ty (z,0) =Ty + Acos(z/R) and
T5(z,0) = Ty + Asin(z/R), (21)
we need to choose = 1, B; = —A, A, = 0, which means

thatAT;(x,0) = f;(z), therefore both temperature distribu-
tions will remain invariant and will only decay on time.

Using the same experimental values given in Ref. [18],
i.e. D = 100 mm?/s, p = 1000 Kg/m?, ¢ = 1000 J/KgPK,
k; = 1 W/M°K, @ = 100 mm,b = 5 mm andd = 1 mm,
we find that Rabi oscillations take place for the fundamental
wave if the inner ring radius is betwefimm < R < 22mm
and the rings are rotating with equal but opposite velocities
given byvgp = h.R. In Fig. 3 we show the temperature
fields for the unbrokeP7T regime where damped Rabi os-
cillations occur in which the maximum and minimum tem-
peratures are 90out of phase.

3. Conclusions

In conclusion, we have predicted the existence of Rabi os-
cillations at the exceptional point in the diffusive system pro-
posed by Liet al. We showed that at the exceptional point the
system exhibits tw@7 phase transitions which take place at
critical values for the radii of the rotating rings. Specifically,
if the rings are rotating in opposite directions with equal tan-

fi(x), therefore the temperature distribution in the first ringgential velocity given bywgp = h./|x| and the ring radius
will not change in position but will only decay on time, in lies between/4D/5h. < R < /D/h. for the fundamental
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wave,i.e. k = £1/R, the temperature fields exhibit damped
Rabi oscillations.

with different velocities close to the exceptional point, specif-

Let us now consider the case when the rings are rotating

ATy = e et cos((z — dvt)/R),
ATy = —e et sin((x — dvt)/R),

(23)
(24)

ically we would like to solve the following system

8T1 - 82T1 6T1

Bt = Dz — (e +00) G A helT> = Th),

oT,  0°T) T

E = DW + (UEP — 5’[)) % + hc(Tl - T2)7 (22)

wheredv << vgp. Atfirst it seems that the system given
in Eq. (22) is not APT symmetric, however if we make the

following transformatior = = — dvt we obtain a system
of equations identical to the one given in E{) (eplacing
x — £ andv — vgp. The solution for Eq.[22) is given by

which means that the temperature profiles are moving. This
result shows that we can have a rest-to-motion temperature

profile without having equal opposite rotating velocities. Our
work reveals the rich structure of exceptional points in anti-
parity-time symmetric diffusive systems.
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