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In this work a 1D slightly doped n-type Silicon layer is considered. Irreversible thermodynamics transport equations are used to obtain
the spatial particle distribution in isothermal stationary state. The excess patrticle transport is studied in low injection regime and quasi-
neutrality condition. The material is subjected to Dirichlet-Neumann (N-D) conditions at the boundaries. We wonder if an asymmetry of the
particle flux exists when the boundary conditions are inverted. We find that the asymmetry does exist and a rectification factor may reach
the valued.35. We conclude that particle flux rectification seems to be featuring the particle transport in slightly non-homogeneously doped
semiconductor when the excess hole concentration is smaller than the equilibrium hole concentration.
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1. Introduction materials. Among others, particular cases are the following.
Firstly, we mention the relation of thermoelectric efficiency
In this work we study electron and hole transport in a semiyjth the microstructure of the material. For example, the ef-
conductor material. We wonder if an analOgOUS effect to thafect of bipo|ar transport Coming from the band structure on
of the rectification of heat flux exists in the case of parti-the figure of merit [15-17]. Other examples are: the effect
cle transport in semiconductor materials. Thermal reCtiﬁ-of local Compositiona| inhomogeneities resumng from com-
cation is achieved when an asymmetry in the heat flow appaction processes on the transport properties and hence on
pears when the thermal boundary conditions are inverted. ke efficiency of the conversion [18-20]. When the material
has a wide range of applications which has generated gregf optimally doped, its thermoelectric performance can be im-
theoretical and experimental interest for many years. Thefproved. The effect of doping on both the figure of merit and
mal rectification seems to be a concomitant phenomenon ghe efficiency conversion may be seen in [21,22]. Finally, low
non-homogeneity, which can originate in almost any physicalattice thermal conductivity may be obtained through struc-
property of the system such as a concentration of impuritiesyral complexity on various length scales. It may be investi-

thermal conductivity, porosity, mass density, etc. Thus, studgated microstructres like nanometer-sized inclusions among
ies on thermal rectification have been carried out on systemgthers [23—25]. This is a promising research field.

as diverse as lattices, segmented materials, graded materials,
porous media, interfaces, nanofluids, suspensions, and oth- Here the ambipolar equation in quasi-neutrality regime is
ers. In order to address the above question we study a slightiolved by using Wolfram Mathematica subjected to Dirichlet-
inhomogeneosly doped Silicon layer in low injection regimeNeumann boundary conditions in order to study the parti-
and quasi-neutrality stationary condition. We assume that thele transport in a slightly non homogeneously doped Silicon
particle transport in such a system can be properly describddyer. We obtain the stationary particle concentrations dis-
through a linear model derived within the framework of linear tributions for the cases defined by different boundary con-
irreversible thermodynamics [1-12]. Quasi-neutrality condi-ditions. Our main result shows an asymmetry in the parti-
tion is achieved if the excess electron concentration equalsle distribution in the case of low excess hole concentration
the excess hole concentration across the entire sample of tii€ < py) when the boundary conditions are reversed from
semiconductor material [14]. It leads to the so called am-Dirichlet-Neumann to Neumann-Dirichlet. The development
bipolar equation which we use to obtain the stationary spatiaik as follows. In Sec. 2 the ambipolar equation is obtained and
distribution of the excess hole (electron) concentration. the energy conservation and Poisson equations are shown. In
Models obtained from linear irreversible thermodynam-Sec. 3 the model is simplified by considering the isothermal
ics may be applied to current transport problems which afand quasi-neutrality conditions. We study the particle trans-
fect the transport of particles and energy in semiconductoport in a homogeneous and non-homogeneous Silicon layer
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in low injection regime and quasi-neutrality condition in two wherejn and jp are the excess electron and hole concen-
cases, namely, the so defined here the low level regime (LLirations, respectivelyny andp, are the equilibrium charge
and the high level regime (HL). We examine the stationaryconcentrations which are composed of the intrinsic charge
state when the boundary conditions are reversed and calcaencentratior; and the donofV, and acceptoN, concen-
late a hole flux rectification effect, which is the main result of trations. The equilibrium charge concentrations satisfy

this work. In Sec. 4 are exposed our results. We close with a

discussion and conclusive remarks in Sec. 5. nopo = n; . 9)

o . . The electron and hole continuity equations are given b
2. Constitutive, transport and recombination yed g y

i 0
equations 5’7:51 V.1, = R, (10)
The constitutive equations for electron fluk,) and hole flux P
(J,) include a term in the electrochemical potential gradient 8—]3 +V.J,
plus a contribution due to the cross effect known as the See- t
beck effect in terms of the temperature gradient. AccordingvhereR describes the net generation and recombination of

to [3], the electrochemical potential of electrorfs=() and  electron-hole pairs. The continuity equations above have

—qR, (11)

holes EF,) is been written to give a precise physical meaningRtd3].
T n Positive R means that the recombination rate overpasses the
Er, =E;,—q [¢ - B ( )] , (1)  generation of electron-hole pairs while negative R means
q o the opposite. In this investigation we consider that just the
kT Shockley-Read Hall (SRH) generation-recombination mech-
e, =Ei—q [1/} + Tl (po)] ’ () anism contributes t& [26,27]. It can be simplified as follows
respectively. In this expressions; is the intrinsic Fermi SRH (np—n?) Do Sp
level, ¢ (¢ > 0) is the absolute value of the elementary R :Tp(nJrnl)JrTn(erpl)N?l (H ) , (12)

charge, v is the total electric potentialkg is the Boltz-
mann constant]" is the temperature; andp are the non- wherer,, andr, are usually identified as the carrier recom-
equilibrium charge concentrations amglandp, are the equi-  bination times. Here, we refer them as the recombination
librium charge concentrations for electrons and holes respedimes.n; andp; are the equilibrium concentrations for elec-
tively. So, the flow of electrons and holes are written as trons and holes, respectively, for the special case in which
ke T the energy level of the trap coincides with the Fermi level.
Jn = —qupnVip + ¢g— unVn In Eq. (12) it is supposed that, = 7, = 7. Moreover, the
expressions for the concentratiomsandp were used in the

n exponential form that involve the electrochemical potentials

+ {“”anln (no) B q”"nS"} VT, () of electrons and holes.
T The energy balance equation can be obtained from the
Jp = —quppVy — qB—upr principles of the linear reversible thermodynamics. It reads
q

D orT 1
_ |:/14ppkB In <p> + QNppSp:| VT, (4) pcva —V- Jq = gv [EF"Jn + EFpJp] R (13)

0

herep,, andp, are the electron and holes mobiliti€%, and ~ wherep andc, are the mass density and specific heat at con-
S, are the Seebeck coefficient for electrons and holes respestant volume of the material, respectively. Note that &8) (
tively. It is assumed that the transport properties of the matedoes not include lighting. The set of equations presented is

rial are obtained through experimental measurement. closed with the Poisson equation
The near equilibrium charge concentration of electrons

and holes are written as follows V- (eVy) =qn —p— (N, = N,)]. (14)
n =ng + on, (5)  Herece is the electric permittivity.
p = po + dp, (6)

with 3. Quasi-neutrality and the ambipolar equa-

tion
no = n; + IV, (7
The quasi-neutrality condition and the consequent ambipolar

po =n; + N,, (8)

equation, is a frequently used model to study slightly doped
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materials near equilibrium. Itis assumed a negligible spatial electric charge within homogeneously doped semiconductors away
from junctions or boundaries, that is, the quasi-neutrality condition assumes that excess electrons concentration is balanced b
an equal excess holes concentration at any point in space and timed13],

n = op. (15)

The quasi-neutrality condition implieg2+) = 0, which means that Poisson’s equation is no longer needed since it becomes

decoupled from the continuity and energy balance equations. The parametgip — on)/dp is often used as a measure of

the deviation that exists from the quasi-neutrality condition. According to [dA¥ 1 is an equivalent form of this condition.

As itis observed in EqlE) we have not included a possible charge concentration in the traps as it is made in Refs. [28-31].
Using Egs.8), (4), (5), (6) and 12) in (10) and [L1), we can obtain the non-linear ambipolar equation for the non-isothermal

case. The procedure implies multiplying pyp the Eq.00) and byu,n the Eq.|L1). Adding these equations we get

d6p DT _, 1 D,D n P D,
PP L (—V) - Vep+ 22 d — e o () fam ()| 4220
or = HalTVUL Vo E Y p*{ToDnHDpp {pn(no)+nn<po T

+ ——(nS, — pS,) pVép-VT +{ ————— |In| — | +In| —
fnn + upp( po P )} b { Ty Dpn+ Dyp no Po

Hn HpTtp 2 Tot n2 n p
+ ——————(Sp — Spn) VT —C_n; <)+ln<>}, 16
Mnn+upp( b )} N [ ng Do (16)
where
n - D Dn
= P fip (1 p)7 p, = PeDn(n+p) (17)
UnT + [pp Dyn+ Dpp

In Eq. (16) the parameteD,, is called the ambipolar diffusion coefficient apgd the ambipolar mobility coefficient. Note that
in the isothermal case the ambipolar equation reduces to

o6y
ot

This form of the ambipolar equation is commonly found in the literature [14, 32, 33].

The low injection condition implies that the charge carriers excess concentsatanmddp is much lower than the majority
carrier concentratiom(, for an n-type omp, for a p-type semiconductor) in thermal equilibrium. For a n-type semiconductor in
low-level injection the ambipolar mobility coefficiept, — —u,, and the ambipolar diffusion coefficieft, — D,,. Similarly,
for a p-type semiconductor, — u,, andD, — D,,. This shows that for a doped semiconductor, the diffusion and mobility
coefficient are reduced to a constant, which corresponds to that of the minority carriers for each case respectively.

The ambipolar Eql16), is written in terms of the charge carriers excéssthe electric field-V1 and the temperaturE.
Using Eqgs./8) and @) the electric field is obtained for the non-isothermal case, which in quasi-neutrality condition becomes

= — po(=V) - Vép + D, V35p — R. (18)

—Vip = J/q _ED"_DP Vi — anln( )—I—Dpln( )_Dnnsn+DppSp
HnT + HpP TO HnT + HpP P TO HnT + HpP Dnn + Dpp

VT, (19)

whereJ = J,, + J,, is the total electric charge flux.
The equation for the temperature is obtained from the energy balance equation. In the quasi-neutrality condition it is
reduced to

or D, S, D Sp D, S, n D,S, P
pev gy = V- {qT [(MnSnn + ppSpp) Vi =T ( T T, ) Vip — ( T nln (no) T, pln (po)) VT] }
L ever 4 B lPo gy <1 ) [ < ) +ln< ﬂ kT [m <”) +1In < ﬂ 90p
T q ng Do ot
k, n T n
+ {—Vw + = (ln () VT + V5p>} n [—qnvw + k,TVép + (nkB In <) — ann> VT}
q ng n o

+ [—Vw _k (ln (p) VT + TVp) p {—qpvw — k,TVop — (pk: In ( ) + qpSp ) VT} . (20)
q Po p DPo
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4 V. HERNANDEZ AND F. VAZQUEZ

In the non-isothermal case the diffusive term of the chargevhere ks is Boltzmann constant/, is the value of the ex-
carriers exces¥2dp is influenced by the temperature due to cess hole flux caused by the non-homogeneity of the hole
the coefficientl’/T,. As expected, as the temperat(ren- concentration at the boundary = 0 and the constant is
creases, there is a greater diffusion of charge carriers due 8uch thatdp(1) < ny. Equation23) is the reduced form
the termV26p. of the constitutive Eq.4) (under isothermal conditions and

We finish this section by pointing out that in the quasi- with negligible electric field). Condition28) and 24) must
neutrality condition {n = ¢dp) the variables of interest are be compatible withpy < p.

the excess of charge carrieyg, the electric field-V+), and On the other hand, E¢2P) has the analytical solution
the temperatur&. The solutions for these variables are ob-
tained through Eqgs6), (19) and 20), with suitable initial dp(x) = Ae="/Lv 4 Be®/Lr, (25)

and boundary conditions. .
In the following section we rewrite the above equationsWhere A and B are constants determined by the boundary

for the particular case which is addressed in this work. conditions. These conditions read
dop
. . . . kppyTo——(0) = J§, 26
4. N-type semiconductor in quasi-neutrality Bl de( )= (26)
condition and isothermal low injection op(1) = ¢'po, (27)

regime
beingJ§ the excess hole flux caused by the non-homogeneity
The description of electric charge and energy transport irof the hole excess concentration at the boundagy 0, the
semiconductor materials then implies the use of highly noneonstant’ should assure thap(1) < po.
linear equations. In this section we discuss the equations for The non-dimensional transport equations for both of the
the isothermal case in the quasi-neutrality condition. conditionspy < dop, Eq. 21), anddp < po, Eq. 22), are
For the sake of clarity, in the following discussion the obtained through the scaling
steady state will be considered for a n-type semiconductor
(np = N, andpy < ng) and the low-injection condition zF = E, Spt = ip, J* = i (28)
(bn < ng). Let us consider that the system can be de- L Do Jo
scribed in one dimension g_nd that it is.subjected to Dirichlet]_|ere on, we limit the study to the one dimension case. In the
Neumann boundary conditions. We will also assume a negli
gible electric field.
The ambipolar equation then reduces to

previous expressions is the length of the layer;, a charac-
teristic time and/, a typical excess flux.
If the coefficients of Eq.41) are constants, as it is the

) i i .
DPV25p _Poy (4 + oy 1) case of a homoggneous material, the corresponding non
T Po dimensional equation becomes
We approximate the logarithm in the above equation to 2¢ 4 2
rewrite it as dop” _ (L Ln (1 + op*) (29)
1 dz*2  \ L, P
V25p = —dp, 22 o
b L2 P (22) The non-homogeneous case, when the recombinationtime

and the equilibrium concentratigy depend on the position,
the system is described by the non-dimensional version of
Eq. 21). It reads

with the assumptiodp < po. L, = (D,7)'/? is known as

the minority carrier hole diffusion length [33].
Equation22) is quite different from Eq/21). Some dif-

ferences will be here discussed and further analysis will be

left to Sec. 6. Note that the low-injection conditidmp, < ng, d?op* L 2 . Sp*

and the quasi-neutrality conditiofiy = dn, are met in both de2 (Lp(x*)> po(”)Ln (1 + p;;(;z:*)) , (30)

equations. However, in Eq22) the approximation made

for the logarithm function requires thap < po, while in - wherepj;(z) = p(x)/po ande)(x) = D,7(z).

Eq. 21) this is not necessarily required. Equatidi) is On the other hand, the non-dimensional version of

valid even ifp, < dp. For the sake of simplicity, The case Eq. (22) with constant coefficients takes the form

po < dp will be named high level (HL) of excess carriers

and the casép < pg the low level (LL) of excess charge d*op* (L 25 . (31)
carriers. Solutions of Eq2(Q) are obtained by applying the dr*2  \ L, P
boundary conditions
dop while for the non-homogeneous case we have
kpppTo——(0) = Jo, (23) ) 9
da d’op* L 5 32)
§p(1) = eno, (24) dr2  \L,(z)) V"
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ASYMMETRY IN PARTICLE TRANSPORT IN SLIGHTLY NON-HOMOGENEOUSLY DOPED SILICON LAYERS... 5

We continue this part by writing the non-dimensional i, = 4.5- 1072 m?V~!'s™!, Npy = 10?2 m~3. The char-

boundary conditions of Eqs28) and B30) as follows acteristic parameters afe= 10=3 m,
dp
dop” (0) = L (dr)eﬁ g% (33) (dp) =75-10" m™, (39)
dz Do 0> dz eff
ip (1) =¢c, (34) and.J, = 1.3-10~° Am~2. Note that the characteristic value

where (dp/dz),, is the effective slope of the excess hole Of the flux is in other units/y = 1.3 - 10~ mAcm 2.

spatial distribution. Similar expressions are obtained of the The stationary spatial distribution of the excess hole con-
boundary conditions for Eqs31) and B32): centration for different constant values of the recombination
time, as derived from Eq2€) with boundary conditions33)

dsp* L (%)eﬁ ¥ and B4), is shown in Fig. 1. The same can be seen in Fig. 2
0= . Jo (3%)  from Eq. 31) with (35) and 36).
The stationary spatial distribution of excess hole con-
op(1) =c. (36)  centration for different constant values of the recombination
Here on the symbol will be omitted in the expressions. time, as obtained from Eq28) with boundary conditions

We now consider the slightly non-homogeneous doped33) and B4), is shown in Fig. 1. The same can be seen in
semiconductor layer. In order to obtain physically mean-Fig- 2 from Eq.[81) with (35) and B6). The strictly decaying
ingful expressions for the non-homogeneous recombinatioRéhavior of the excess hole concentrgtmn observgd in Fig. 2
time and the equilibrium hole concentration, we start fromc0mes from the fact that the constahin the analytical so-
the fact that in a semiconductor with indirect band gap, sucfiition Eq. 81) vanishes in all cases.
as Silicon, recombination depends on the impurity concen-
tration and that this determines the recombination time of . . .
electron-hole pairs. As a consequence, the recombinatiol: Discussion and concluding remarks

time depends on the position as well. This point will be fur- L i ,
ther discussed in Sec. 6. We explore the effects of the spd? Summary, the low-injection particle transport regime

tial dependence of doping, by introducing a dependence dp an isothermal Silicon film in quasi-neutrality condi-
the equilibrium hole concentratig®, and the recombination tion was analysed.. The effects _Of homoge.neou.s apd non-
time  on the position. We make this by following the results "°Mogeneous doping on the stationary particle distributions
of reference [34] shown in Fig. 1 from their paper. Along Were examined. The influence of doping was introduced
with [34] we assume that the material is crystalline Silicon!n € physical model, which was derived from linear irre-
with interstitial Iron. We adopt the values dfp shown in

versible thermodynamics, ed®l1) and 22), through the dop-
Fig. 1 from [34] for an excess hole concentration with valueing concentration and the electron-hole recombination time.

1014 m—3. The proposed expressions, €88)(and B8) are supported by

n;"he fact that, according with the used model of particle trans-
port, a non-homogeneous impurity concentration affects the
recombination time and the equilibrium hole concentration

The expression we use for the spatially dependent reco
bination time is

7(x) =10 (1.1 — 2%), (37)  po. This last became
with ¢ a fitting constant andy, a recombination time fitting n?
: : i L E— 40
value, while for the doping concentration we use po() T N.@) (40)
Np(z) = Npo (0.1 + 2?), (38)

where we have emphasized the fact that the recombination
beingb a fitting constant andVpg a fitting value. center concentratiolVp depends on position.

Transport equations were then solved with the specified The influence of the non-homogeneous doping on the
boundary conditions. Here on, the Neumann-Dirichlet caselectric potential was left for future consideration since Pois-
is named N-D boundary conditions and the inverted boundson equation became decoupled from the continuity equa-
ary conditions,i.e. the Dirichlet-Neumann case, is named tions.

D-N boundary conditions. Firstly, we obtained the stationary charge excess concen-
Results are presented in the following section and furthefration distribution in the low injection regime for a homo-
discussed in Sec. 6. geneous material. We examined two cases, namely, when i)

po < dp (HL case) andiipp < po (LL case). The results can
5. Results be seenin Figs. 1 and 2. As the figures show, the excess hole

concentration in the HL case has a different behavior with re-
For solving the transport equations we take the following val-spect to the concentration in the LL case. The first one has a
ues of the parametergs = 1.38:1072% JK™1, T = 300 K, slow decaying variation with position whereas the second
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Silicon Silicon
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FIGURE 1. Stationary isothermal spatial distribution of the di- FIGURE 3. Stationary isothermal spatial distribution of the di-
mensionless excess hole concentration for a Silicon layer in low-mensionless excess hole concentration for a Silicon layer in low-
injection regime §p < no). Itis obtained from numerical solution  injection regime §p < no). Itis obtained from numerical solution

of Eq. [29) (high level (HL) conditionj.e., po < dp) subjected to  of Eq. 32) (low level (LL) condition,i.e., dp < po) subjected
Dirichlet-Neumann (D-N) type boundary conditions. The recom- to Dirichlet-Neumann (D-N) type boundary conditions (blue) and
bination time is spatially homogeneous and it is measured in unitsNeumann-Dirichlet (N-D) boundary conditions (orange). The con-
of 10~° s. The constanf in Eq. 33) has the valug0~2 andc in stantJy in Eq. (35) has the value0~2 andc’ in i.e(36) is2- 1072,

Eq. (34) is 10~2. The dimensional material lengfty, = 1073 m. The recombination time is takeg = 4 - 10~* s. The dimensional
material lengthLo = 1073 m.

Silicon

5p(x) - Silicon
X
0.020} P
2000

0.015 — 1=40

=20 1950 — D-N
0.010 =10 N-D
0.005 1900 T

0001 0002 0003 0004 0005 L ‘ ‘ ‘ ‘ L

. . e . 0.2 0.4 0.6 08 1.0
FIGURE 2. Stationary isothermal spatial distribution of the di-

mensionless excess hole concentration for a Silicon layer in low-FIGURE 4. Stationary isothermal spatial distribution of the di-
injection regime §p < no). Itis obtained from the analytical solu- mensionless excess hole concentration for a Silicon layer in low-
tion of Eq. 31) (low level (LL) condition,i.e., dp < po) subjected injection regime {p < no). Itis obtained from numerical solution
to Dirichlet-Neumann (D-N) type boundary conditions. Position of Eq. (30) (high level (HL) condition,i.e, po < Jp) subjected
varies from0 to 12L,,, with the diffusion lengthl,, = 4 - 107* m. to N-D boundary conditions (blue) and D-N boundary conditions
The recombination time is spatially homogeneous and it is mea-(orange). The recombination time and the doping concentration
sured in units ol0~® s. The constanf} in Eq. (35) has the value  are spatially non-homogeneous. The constanin Eq. (33) has
103 andc’ in Eq. (36) is 2-10~2. The dimensional material length  the value10~ and ¢ in Eq. (34) is 1072. The recombination
Lo=10"%m. time is takenry = 4 - 10~* s. The dimensional material length
Lo =10"*m.

one abruptly decreases in a space scalbggf = 5-10~m
which is around 12 times the minority hole diffusion length non-homogeneous spatial distribution of doping was not in-
which has a value of., = 4 - 10~*m. Let us recall that verted when the boundary conditions (b.c.) did. Figure 3
the boundary condition at = 0 is Neumann type, meaning shows the excess concentration distributions in the LL case
that the system is open to particle passing. Moreover, Figs. for D-N b.c. (blue line) and N-D b.c. (orange line). It is ob-
and 2 allow to make a rather obvious conclusion, namely, theerved that the distribution is asymmetric as a result of the
bigger the recombination time the bigger the charge excessversion of the b.c. We mean, one is not obtained through
concentration. It is worth noting that the fact that the decay-a reflection transformation from the other. A similar result is
ing length is much smaller than the diffusive length may beobtained in the HL case. As it may be seen in Fig. 4, the dis-
indicating that in the LL regime the hole transport may be oftribution of the excess charge is clearly non-symmetric. The
non-diffusive type. following considerations, which are intended to help qualita-

The stationary distributions were compared when theively understand this results, are based on the fact that the
boundary conditions (denoted b.c. here on) are inverted ionly contribution to the particle flux comes from the particle
the presence of doping. It is necessary to remark that theoncentration gradient. Let us consider then that the particle

Rev. Mex. Fis69011702



ASYMMETRY IN PARTICLE TRANSPORT IN SLIGHTLY NON-HOMOGENEOUSLY DOPED SILICON LAYERS... 7

flux goes from right to left for N-D b.c, and that the flux in- and
verts for reversed D-N b.c. According to E&7}, the higher
values of the recombination time are located near the left
hand side of the material (this distribution was maintained un-
changed when the boundary conditions were inverted). Thi
way, the particles flow from a low to a high recombination _ _ z
timi regiopn when the b.c. are of the D-N t)?pe and vice versa® — 410 's a.ndJO =13-107" Am. E

In other words, particles move towards a region of higher re-  Our conclusions may be summarized as follows: a) the
combination rate in the boundary conditions of the D-N type.£xcess electric charge flux in a slightly non-homogeneously
In the N-D b.c. case, the situation is reverseel, particles doped semiconductor is asymmetric when the boundary con-
move towards a region with a low recombination rate. Theditions are inverted, b) the flux rectification is aroungs in
charge excess concentration in the HL regime seems to JB€ LL regime {p < po) while in the HL regime gy < dp)
affected less by the inversion of the b.c. than the LL caseectification does not in fact exists.

We state our main conclusion, namely, that non-homogeneity Finally, our general conclusion: particle flux rectification
doping results in a symmetry breaking of the particle distri-seems to be featuring the particle transport in slightly non-
bution of excess electric charge concentration in steady stateomogeneously doped semiconductor when the excess hole
when the boundary conditions are reversed. The fact that theoncentration is smaller than the equilibrium hole concentra-
particle flux is mainly maintained by the particle concentra-tion.

tion gradient allows us to glimpse that an asymmetric particle A |ess restrictive physical situation than the one consid-
flow is also present. ered in this work, in which the fields of temperature and

The last comment was analysed by calculating a rectifiself-consistent electric potential will couple to the continu-
cation factor- defined in terms of the charge excess fluxes atty equations, will be studied in the future.

the boundaries of the material. This factor is defined as
_ Abs[JNP(1) — JPN(0)]
~ Max[JND(1), JoN(0)]
The superscript N-D (D-N) indicates the kind of b.c. used
to calculate the corresponding excess flux. Note that this i
made at the material extreme which is subjected to Dirichle
type b.c. condition. We obtain two different valueg-of the
non-homogeneous LL and HL regimes. We have

T = 0.357

THL = 0.003. (43)

%’he above values were both obtained by taking= 3,

(41)
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