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Black-Hole duality in four time and four space dimensions
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A black-hole solution in four time and four space dimensions ((4 + 4)-dimensions) is developed. It is emphasized that such a solution
establishes a duality relation between the(1 + 3) and the(3 + 1) black-holes, which are part of the(4 + 4)-world. Moreover, it is found that
a cosmological constant of the(1 + 3)-world is dual to the cosmological constant in the(3 + 1)-world.
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1. Introduction

Traditionally in relativity, in order to describe different phe-
nomena in our universe, such as a trajectory of an object, one
time and three space are the chosen number of real dimen-
sions ((1 + 3)-dimensions). Yet the physical reasons why
our world requires(1 + 3)-dimensions, remains as an open
problem. It is evident that from the point of view of number
theory the(1 + 3)-world the space and time are not symmet-
ric. The natural question is: why three space and only one
time dimension? Looking for the answer of this question one
finds that the(5 + 5)-dimensional space-time (five time and
five space dimensions) is a common signature to both type
IIA strings and typeIIB strings [1]. In fact, versions of
M -theory [2-3] lead to typeIIA and to typeIIB string in
space-time of signatures(5 + 5). It turns out that by dual-
ity transformations string theories of signatures(5 + 5) are
related to other string signatures such as(1 + 9) [3].

Of course, the(5 + 5)-dimensional world is more sym-
metrical in the number of space and time dimensions than the
(1+3)-world. Thus, considering seriously the(5+5)-world,
just as the(1+3)-dimensional signature can be considered as
a reduced world of the de Sitter(1 + 4)-dimensional or anti-
de Sitter(2+3)-dimensional signaturesvia the cosmological
constantsΛ > 0 and Λ < 0, respectively, here, one may
assume that up to two cosmological constants, the(4 + 4)-
world emerges from(5 + 5)-dimensional world. In fact, the
(4 + 4)-dimensions can be considered as the transverse coor-
dinates of the(5 + 5)-dimensions [4-5].

Fortunately, there are already a number of works with inter-
esting results in the(4 + 4)-world that can be considered as
additional motivation for increasing interest in such a sce-
nario. First, the Dirac equation in(4 + 4)-dimensions is con-
sistent with Majorana-Weyl spinors which give exactly the
same number of components as the complex spinor of1/2-
spin particles such as the electron or quarks [6,7]. Second,
the most general Kruskal-Szekeres transformation of a black-
hole coordinates in(1+3)-dimensions leads to8-regions (in-
stead of the usual4-regions), which can be better described
in (4 + 4)-dimensions [8]. Third, loop quantum gravity in
(4 + 4)-dimensions [9-10] admits a self-duality curvature
structure analogue to the traditional(1 + 3)-dimensions. It
also has been shown [11] that duality

σ2 ↔ 1
σ2

,

of a Gaussian distribution in terms of the standard deviation
σ of 4-space coordinates associated with the de Sitter space
(anti-de Sitter) and the vacuum zero-point energy yields to
a Gaussian of4-time coordinates of the same vacuum sce-
nario. Finally, it has been suggested that the mathematical
structures of matroid theory [12] (see also Refs. [13-20] and
references therein) and surreal number theory [21-23] (see
also Refs [24-25] and references therein) may provide inter-
esting routes for a connection with the(4 + 4)-world.

2. The (4+4)-world black hole

Let us start considering the ansatz
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gµ̂ν̂ =




−ef(r,ρ) 0 0 0 0 0
0 eh(r,ρ) 0 0 0 0
0 0 r2g̃ij(θ(+)) 0 0 0
0 0 0 ep(r,ρ) 0 0
0 0 0 0 −eq(r,ρ) 0
0 0 0 0 0 −ρ2g̃ab(θ(−))




. (1)

Here, the indiceŝµ, ν̂, ...run from1 to 8 and the matrices̃gij(θ(+)) andg̃ab(θ(−)) are defined as

g̃ij(θ(+)) =
(

1 0
0 sin2 θ(+)

)
, (2)

and

g̃ab(θ(−)) =
(

1 0
0 sin2 θ(−)

)
, (3)

respectively. Here, the notationθ(+) andθ(−) means that the angleθ(+) refers to the(1 + 3)-world, while the angleθ(−)

corresponds to the(3 + 1)-world.
From the chosen form ofgµν it is evident that one is dealing with a spheric symmetric static system in(4 + 4)-dimensions.

The only unknown variables will bef(r, ρ), h(r, ρ), p(r, ρ) andq(r, ρ) which must be determined with the relativistic gravita-
tional field equations in(4 + 4)-dimensions.

The non-vanishing Christoffel symbols associated with (1), involving the indices values ofµ, ν = 1 to 4, are

Γ1
12 =

f ′

2
, Γ2

22 =
h′

2
, Γ2

11 =
ef−hf ′

2
, Γ2

ij = −re−hg̃ij , Γi
2j =

δi
j

r
, Γi

jk = Γ̃i
jk, (4)

while for the valuesµ, ν = 5 to 8 one gets

Γ5
56 =

ṗ

2
, Γ6

66 =
q̇

2
, Γ6

55 =
ep−qṗ

2
, Γ6

ab = −ρe−q g̃ab, Γa
6b =

δa
b

ρ
, Γa

bc = Γ̃a
bc, (5)

whereA′ = ∂A/∂r andḂ = ∂B/∂ρ for any arbitrary functionsA(r, ρ) andB(r, ρ). One still must include the non-vanishing
mixture Christoffel symbols

Γ1
16 =

ḟ

2
, Γ6

11 = −ef−q ḟ

2
, Γ2

26 =
ḣ

2
, Γ6

22 =
eh−qḣ

2
, (6)

and

Γ5
52 =

p′

2
, Γ2

55 = −ep−hp′

2
, Γ6

62 =
q′

2
, Γ2

66 =
eq−hq′

2
. (7)

In vacuum the gravitational field equations simply establish that the Ricci tensorRµ̂ν̂ = Rα̂
µ̂α̂ν̂ must vanish, that is one has

Rµ̂ν̂ = 0. (8)

Using the Christoffel symbols (4)-(7) one learns that (8) leads to

R11 =
1
2
ef−h

(
f ′′ +

1
2
f ′2 − 1

2
f ′h′ +

2
r
f ′ +

1
2
f ′p′ +

1
2
f ′q′

)
− 1

2
ef−q

(
f̈ +

1
2
ḟ2 +

1
2
ḟ ḣ +

2
ρ
ḟ +

1
2
ḟ ṗ− 1

2
ḟ q̇

)
= 0,

R22 = −1
2

(
f ′′ +

1
2
f ′2 − 1

2
f ′h′ − 2

r
h′ + p′′ +

1
2
p′2 − 1

2
p′h′ + q′′ +

1
2
q′2 − 1

2
q′h′

)

+
1
2
eh−q

(
ḧ +

1
2
ḣ2 +

1
2
ḣḟ +

1
2
ḣṗ− 1

2
ḣq̇ +

2
ρ
ḣ

)
= 0,

Rij = e−h

(
− 1

2
rf ′ +

1
2
rh′ − 1

2
rp′ − 1

2
rq′ + eh − 1

)
g̃ij = 0, (9)
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(where due to (1) and (2) the indicesi, j, ...run from3 to 4), and also to

R55 =
1
2
ep−q

(
p̈ +

1
2
ṗ2 − 1

2
ṗq̇ +

2
ρ
ṗ +

1
2
ṗḟ +

1
2
ṗḣ

)
− 1

2
ep−h

(
p′′ +

1
2
p′2 +

1
2
p′q′ +

2
r
p′ +

1
2
p′f ′ − 1

2
p′h′

)
= 0,

R66 = −1
2

(
p̈ +

1
2
ṗ2 − 1

2
ṗq̇ − 2

ρ
q̇ + f̈ +

1
2
ḟ2 − 1

2
ḟ q̇ + ḧ +

1
2
ḣ2 − 1

2
ḣq̇

)

+
1
2
eq−h

(
q′′ +

1
2
q′2 +

1
2
q′p′ +

1
2
q′f ′ − 1

2
q′h′ +

2
r
q′

)
= 0,

Rab = e−q

(
− 1

2
ρṗ +

1
2
ρq̇ − 1

2
ρḟ − 1

2
ρḣ + eq − 1

)
g̃ab = 0. (10)

Here, according to the ansatz choice (1) and (3), the in-
dicesa, b, ...take the values7 and8.

3. Black-hole duality solution

Our next step is to look for a black-hole solution of (9) and
(10). For this purpose, focusing in the last formula in (9) one
observes that assuming the two equations

f ′ + h′ = 0,

p′ + q′ = 0, (11)

such a formula can be simplified in the form

rh′ + eh − 1 = 0. (12)

A general solution of this equation can be written as

e−h = 1− A(ρ)
r

, (13)

with A(ρ) an arbitrary function ofρ. Following similar steps
and assuming

ṗ + q̇ = 0,

ḟ + ḣ = 0, (14)

the last equation in (10) leads to

ρq̇ + eq − 1 = 0, (15)

whose solution is

e−q = 1− B(r)
ρ

, (16)

with B(r) an arbitrary function ofr.
Our next step is to determine the functionsA(ρ) and

B(r). For this purpose, one may first focus in the first equa-
tion of (9). Considering (11) and (14) one see that such equa-
tion reduces to

1
2
ef−h

(
f ′′ + f ′2 +

2
r
f ′

)

− 1
2
ef−q

(
f̈ − ḟ q̇ +

2
ρ
ḟ

)
= 0. (17)

Sincee−h = ef , with (13), one verifies that

f ′′ + f ′2 +
2
r
f ′ = 0. (18)

Thus, (17) is further reduced to

f̈ − ḟ q̇ +
2
ρ
ḟ = 0, (19)

which can also be written as

f̈

ḟ
− q̇ +

2
ρ

= 0, (20)

with ḟ 6= 0. This expression can be integrated yielding

ln ḟ − q + ln ρ2 = ln a, (21)

whereln a is a constant independent ofρ. This means that

ḟ e−q =
a

ρ2
. (22)

From (16) one learns that (22) becomes

ḟ e−q = −e−q q̇
a

B
. (23)

Thus, if one setsa = B one sees that

ḟ + q̇ = 0, (24)

in agreement with (14).
Hence, (19) can be written as

f̈ + ḟ2 +
2
ρ
ḟ = 0. (25)

Substituting (13) into this equation one obtains

ln Ȧ + ln ρ2 = −r2
0,

with r0 also a constant. Therefore,

ρ2Ȧ = −r2
0, (26)
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and consequently one gets

A =
r2
0

ρ
. (27)

Substituting this result into (13) one discovers the surprising result

ef = 1− r2
0

ρr
. (28)

Following similar steps one shall obtain that the first equation in (10) leads to the solution

ep = 1− ρ2
0

ρr
. (29)

Summarizing, we have derived the black-hole solution in(4 + 4)-dimensions;

gµν =




−(1− r2
0

ρr ) 0 0 0 0 0
0 1

(1− r2
0

ρr )
0 0 0 0

0 0 r2g̃ij 0 0 0
0 0 0 (1− ρ2

0
ρr ) 0 0

0 0 0 0 − 1

(1− ρ2
0

ρr )
0

0 0 0 0 0 −ρ2g̃ab




. (30)

In principler0 andρ0 are different constants but if one sets

r0 = ρ0 ≡ ξ. (31)

the metric (30) becomes a totally dual black-hole solution. Let us explain in some detail this comment. First from (30) and
(31) one sees that the line element in(4 + 4)-dimensions can be written as

ds2 = ds2
(+) + ds2

(−), (32)

where

ds2
(+) = −

(
1− ξ2

ρr

)
c2dt2(+) +

dr2

(1− ξ2

ρr )
+ r2

(
dθ2

(+) + sin2 θ(+)dφ2
(+)

)
, (33)

and

ds2
(−) = +

(
1− ξ2

ρr

)
c2dt2(−) −

dρ2

(1− ξ2

ρr )
− ρ2

(
dθ2

(−) + sin2 θ(−)dφ2
(−)

)
. (34)

In order fords2
(+) to describe the usual black-hole element in(1 + 3)-world one must set

ξ2

ρ
=

2GM (+)

c2
, (35)

with G the Newton gravitational constant andM (+) the mass source in the(1 + 3)-world. Similarly in order fords2
(−) to

describe the usual black-hole element in(3 + 1)-world one must set

ξ2

r
=

2GM (−)

c2
, (36)

whereM (−) is the source mass in the(3 + 1)-world. Thus, from the perspective of a(1 + 3)-world observer the combination
ξ2/ρ is just a related to the source massM (+). This means that even if the parameterρ associated with(3 + 1)-world appears
in the line elementds2

(+) is in fact related to source massM (+) according to (35). In dual form, the parameterr of the
(1 + 3)-world is interpreted by a(3 + 1)-world observer as the mass sourceM (−) according to (36).

Even clearer dual properties of the line element (32)-(34) emerge when one considers the event horizon of (33) and (34).
Suppose there are parametersr andρ such that

(
1− ξ2

ρsrs

)
= 0. (37)
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Of course, in this case both the terms withdr2 and dρ2

present an apparent singularity. From (37) one sees that this
means that

ρsrs = ξ2, (38)

which is clearly a dual relation: A large radiusrs of the event
horizon of the(1 + 3) black-hole corresponds to a small ra-
diusρs of the(3 + 1) black-hole andvice versa.

At least at the level of black-holes the above result estab-
lishes a dual link between the(1 + 3)-world and the(3 + 1)-
world that needs to be consider when one looks for a solu-
tion of quantum gravity. In fact, thinking about the magnetic
monopoleg and the electric chargee duality, namely

e ←→ n~
e

, (39)

with ge = n~ andn = 1, 2, ..., one is tempted to assume that
(38) implies a quantum duality of the form

ρsrs = nξ2, (40)

Of course in order to fully understand the consequences of
(38) or (40) one needs to clarify the meaning of the constant
parameterξ. At first sight one may propose thatξ = lP , with
lP the Plank length. However, in this case (38) implies a
smaller black-hole radius than the Planck-length. So, assum-
ing that the Planck lengthlP is the smallest possible length
then one must expect thatξ ∼ 1.

4. Cosmological constant duality

Let us now introduce two cosmological constants;Λ+ for the
(1 + 3)-world andΛ− for the (3 + 1)-world. Thus, one as-
sumes that the gravitation field equation (8) can be splitted
as

Rµν = Λ+gµν , (41)

and

RAB = Λ−gab, (42)

with the indiceµ, ν, ...runing from1 to4 and the indicesA,B
runing from5 to8. Assuming again (11) and (14) we find that
the relevant equation in the(1 + 3)-world will be

rh′ + eh − 1 = Λ+r2, (43)

with a general solution of the form

e−h = 1− A(ρ)
r

+ F (ρ)Λ+r2, (44)

with A(ρ) andF (ρ) arbitrary functions ofρ. For the corre-
sponding equation for the(3 + 1)-world one shall have

ρq̇ + eq − 1 = Λ−ρ2, (45)

whose a general solution becomes

e−q = 1− B(r)
ρ

+ G(r)Λ−ρ2, (46)

with B(r) andG(r) arbitrary functions ofr. Again, one may
chooseA(ρ) andB(r) asA = r2

0/ρ andB = r2
0/r, respec-

tively. While a dual solution forF (ρ) andG(r) is obtained
by settingF = l−2ρ2 andG = l−2r2, with l a dimensional
fundamental constant. An intesting aspect of this construc-
tion emerges if one chooses a black-hole horizon such that

Λ+Λ− = const. (47)

Of course this formula leads to a cosmological constant du-
ality of the form

Λ− ↔ const.

Λ+
. (48)

This means that a small cosmological constantΛ+ in the
(1 + 3)-world must lead to a large cosmological constantΛ−

in the(3+1)-world andvice versa, as predicted in Ref. [26].

5. Final remarks

The present work opens many possible physical routes for
further work. First, it may be interesting to consider a gen-
eralized Kruskal-Szekeres transform of the line element (32).
This must lead to a connection with the observation [8] that in
the(4 + 4)-world such a transform implies8-regions instead
of the usual4-regions. Second, since it has been shown that
in (4+4)-dimensions there exist a kind of duality of the cos-
mological constant one wonders what is the relation of such a
duality with dual black-hole solution developed in this work
(see Ref. [11]). Finally the quantum relation (40) may mo-
tive to see the consequences of our dual black-hole solution
with quantum gravity theory. At this respect, it is worth men-
tioning that oriented matroid theory [12] (see also Refs. [13-
19] and references therein) and surreal number theory (see
Ref. [20] and also Refs [21-24] and references therein) are
two promising underlaying mathematical structures for deal-
ing with the key dual concept in(4 + 4)-dimensions [18].
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