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Black-Hole duality in four time and four space dimensions
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A black-hole solution in four time and four space dimensiofis| 4)-dimensions) is developed. It is emphasized that such a solution
establishes a duality relation between (e 3) and the(3 + 1) black-holes, which are part of ti{e 4 4)-world. Moreover, it is found that
a cosmological constant of tifé + 3)-world is dual to the cosmological constant in {t3e+ 1)-world.
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Fortunately, there are already a number of works with inter-
esting results in thé4 + 4)-world that can be considered as
1. Introduction additional motivation for increasing interest in such a sce-
nario. First, the Dirac equation i@ + 4)-dimensions is con-
sistent with Majorana-Weyl spinors which give exactly the
Traditionally in relativity, in order to describe different phe- Same number of components as the complex spindy ®f
nomena in our universe, such as a trajectory of an object, ongPin particles such as the electron or quarks [6,7]. Second,
time and three space are the chosen number of real dimef?e most general Kruskal-Szekeres transformation of a black-
sions (1 + 3)-dimensions). Yet the physical reasons why hole coordinates il +3)-dimensions leads t&-regions (in-
our world requireq1 + 3)-dimensions, remains as an open stead of the usual-regions), which can be better described
problem. It is evident that from the point of view of number in (4 + 4)-dimensions [8]. Third, loop quantum gravity in
theory the(1 + 3)-world the space and time are not symmet- (4 + 4)-dimensions [9-10] admits a self-duality curvature
ric. The natural question is: why three space and only oné&tructure analogue to the traditiondl + 3)-dimensions. It
time dimension? Looking for the answer of this question onedlso has been shown [11] that duality
finds that the5 + 5)-dimensional space-time (five time and
five space dimensions) is a common signature to both type
1T A strings and typd I B strings [1]. In fact, versions of o2
M-theory [2-3] lead to typd I A and to typel I B string in o
space-time of signaturd$ + 5). It turns out that by dual-
ity transformations string theories of signatufés+ 5) are
related to other string signatures such{&s- 9) [3].

of a Gaussian distribution in terms of the standard deviation
o of 4-space coordinates associated with the de Sitter space
(anti-de Sitter) and the vacuum zero-point energy yields to
a Gaussian ofi-time coordinates of the same vacuum sce-

O.f course, the(5 + 5)-d|men5|ona_l worl_d IS More sym- 1 4rio. Finally, it has been suggested that the mathematical
metrical in the number of space and time dimensions than the,

(1-+3)-world. Thus, considering seriously tt&-+5)-world Structures of matroid theory [12] (see also Refs. [13-20] and

just as th€'1+ 3)-dimensional signature can be considered asreferences therein) and surreal number theory [21-23] (see

a reduced world of the de Sittét + 4)-dimensional or anti- alsp Refs [24-25] and refer_ence_s therein) may provide inter-
de Sitter(2 4 3)-dimensional siSnatuZeBa the cosmological esting routes for a connection with the+ 4)-world.
constantsA > 0 and A < 0, respectively, here, one may

assume that up to two cosmological constants,(the 4)-

world emerges front5 + 5)-dimensional world. In fact, the 2- The (4+4)-world black hole

(4 + 4)-dimensions can be considered as the transverse coor-

dinates of thé5 + 5)-dimensions [4-5]. Let us start considering the ansatz
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—efmr) 0 0 0 0
0 ehre) 0 0 0
1o 0 7235 (01y) 0 0 0
I =1 ¢ 0 0 P 0 @
0 0 0 0 —edmP)
0 0 0 0 0 —p*Gab(0(-))
Here, the indiceg, 7, ...run from1 to 8 and the matriceg;; (6)) andg.,(0(—)) are defined as
~ 1 0
Yij (9(+)) - ( 0 sin2 0(+) ) ) (2)
and
~ 1 0
Jab(0(—)) = ( 0 sin6_ > ) 3

respectively. Here, the notatigh, ) andf_, means that the anglg , refers to the(1 + 3)-world, while the angle )
corresponds to thes + 1)-world.

From the chosen form @jf,,,, it is evident that one is dealing with a spheric symmetric static systegm-u)-dimensions.
The only unknown variables will bé(r, p), h(r, p), p(r, p) andg(r, p) which must be determined with the relativistic gravita-
tional field equations if4 + 4)-dimensions.

The non-vanishing Christoffel symbols associated with (1), involving the indices valyes 6f 1 to 4, are

/ W ef—hf/ L ; ot ; -
I, = O I3 = 5 I} = 5 L2 =—re "Gy, Iy = Tj, ik =Lk (4)
while for the valueg:, v = 5 to 8 one gets
p q ep—qp —q~ a oy a na
FgG = 9’ Fgﬁ = 9 Fgf) = T ng = —pe” *Gap, I'sy = ?b’ be = e (5)

whereA’ = A/dr andB = dB/dp for any arbitrary functionsi(r, p) and B(r, p). One still must include the non-vanishing
mixture Christoffel symbols

f 6f’qf h eh—aj,
F%(j = 57 Fflsl = - 2 ) F%f} = 57 F<232 = 2 ) (6)
and
p/ epfhpl ql eqth/
FgQ - 9 ng - - 9 FgZ = 9 Fgﬁ = 9 (7)

In vacuum the gravitational field equations simply establish that the Ricci tétygoe R%M must vanish, that is one has

Ru» = 0. 8

Using the Christoffel symbols (4)-(7) one learns that (8) leads to
Ru = ;e-f"<f” + %f’2 - %f’h’ + %f’ + %f’p’ + ;f’q’> - ;efq(f# %f? + %f'h + %f + %f'p - ;ﬁ) =0,
Rog = —% (f" + %f’z - %f’h' - %h’ +p" + %pa - %p’h’ +q" + %q’Q - ;q’h’)
+ ;eh‘?<ﬁ + %hz + %hf' + %hp - %hq+ ih) =0,
R;; = eh< — %rf’ + %rh’ — %rp’ - %rq’ + el — 1) Gi; =0, 9)
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(where due to (1) and (2) the indicgg, ...run from3 to 4), and also to

1 1 1 2 1. 1. 1 1 1 2 1 1
— Z.p—q 5 It ‘- i 7-h _ ~_p—h // ~ 2 iy “0 7//_7/h/ =0
Rs5 5¢ (p+2p 2pq+pp+2pf+2p> 5€ (p +topTt 5P +Tp+2pf 5P ) ;

1 1 1 2 - 1. 1. 1. 1.
R e i R N ) Sl e ) h *hQ—*h.
66 2<p+2p 5P1 pq+f+2f 2qur t3 5hd
1 1 1 1 1 2
—.q=h( 1 -2 i g — ZgH 20 =
+5e <q T 5dr + 50 —5a +Tq> 0,
Rap = €74 —1'+1'—1f'—lh+eq—1 Gap = 0 (10)
ab = 2PP 2Pq 2P 2/’ Gab = U.
Here, according to the ansatz choice (1) and (3), the in-
dicesa, b, ...take the valueg ands. Sincee~" = e/, with (13), one verifies that
. . 2
3. Black-hole duality solution "+ 12+ =0 (18)

Our next step is to look for a black-hole solution of (9) and Thus, (17) is further reduced to
(10). For this purpose, focusing in the last formula in (9) one
observes that assuming the two equations

. 2.
P +qd =0, (11)  which can also be written as
such a formula can be simplified in the form f 2
- q + - = Oa (20)
rh' +e" —1=0. (12) ! P
A general solution of this equation can be written as with f = 0. This expression can be integrated yielding
e h=1— A(p)’ (13) Inf—q+mhp?=Ina, (21)

r

with A(p) an arbitrary function of. Following similar steps whereln a is a constant independent @f This means that

and assuming a

femi=—. (22)
p+q=0, P
f+h=0, (14)  From (16) one learns that (22) becomes
the last equation in (10) leads to fe1 = 767%%‘ (23)
i+el—1=0, 15 ,
pate (15) Thus, if one seta = B one sees that
whose solution is .
[+¢=0, (24)
er—1- B0 (16)
P in agreement with (14).
with B(r) an arbitrary function of. Hence, (19) can be written as
Our next step is to determine the functiodgp) and 5
B(r). For this purpose, one may first focus in the first equa- f+f2+=2f=o. (25)
tion of (9). Considering (11) and (14) one see that such equa- p

tion reduces to Substituting (13) into this equation one obtains

1 2
- f—h " 2 et .
9¢ (f +f +7«f> 1nA+1np2:—7"g,
- %ef—q (f — fi+ 2f> =0. (17)  Withro also a constant. Therefore,
p
pPA =12, (26)

Rev. Mex. Fis69010703



4 C. AVILES-NIEBLA, J. A. NIETO AND J. F. ZAMACONA

and consequently one gets

_To (27)
P
Substituting this result into (13) one discovers the surprising result
2
f =1-10, (28)
pr
Following similar steps one shall obtain that the first equation in (10) leads to the solution
2
er=1-20 (29)
pr
Summarizing, we have derived the black-hole solutiofdir- 4)-dimensions;
7‘2
—(1- p—‘;) 0 0 0 0 0
0 —L— 0 0 0 0
(1-3%)
0 0 r23i; 0 0 0
Juv = 9ii p2 (30)
0 0 0 (1-— p—g) 0 0
0 0 0 0 -——L— 0
(1-29)
0 0 0 0 0 —0%Gab
In principlerg andp, are different constants but if one sets
ro=po =& (31)

the metric (30) becomes a totally dual black-hole solution. Let us explain in some detail this comment. First from (30) and
(31) one sees that the line elemen{4ry- 4)-dimensions can be written as

ds® = ds%H + ds?f), (32)
where
2 £\ 50 dr? 2 2 .2 2
Aoty == (1= ) Sty + Toa +7 (462, + sin® 03 do?y.)) (33)
pr
and
2 £\ 20 dp* 2 2 2 2
ds?_, =+ (1 - m) Adi?_) ~ i’ (467 +sin 0y do?. ) (34)
In order fords%ﬂ to describe the usual black-hole elementlint- 3)-world one must set
2 2G M)
& —s (35)
p &

with G' the Newton gravitational constant afd(t) the mass source in thg + 3)-world. Similarly in order fords%_) to

describe the usual black-hole elementdnt 1)-world one must set
& 2GM)
ro 2

whereM (=) is the source mass in tI{8 + 1)-world. Thus, from the perspective of &+ 3)-world observer the combination

€2 /pis just a related to the source mags*). This means that even if the parameterssociated witi3 + 1)-world appears
in the line elemends%ﬂ is in fact related to source magg(*) according to (35). In dual form, the parameteof the

(1 + 3)-world is interpreted by 43 + 1)-world observer as the mass soufdé—) according to (36).
Even clearer dual properties of the line element (32)-(34) emerge when one considers the event horizon of (33) and (34).
Suppose there are parameteendp such that
2
(1 £ ) 0. (37)
PsTs
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Of course, in this case both the terms wifh? and dp?
present an apparent singularity. From (37) one sees that this

means that pi+et —1=A"p? (45)
psts = E2, (38)  whose a general solution becomes
L . . B
which is clearly a dual relation: A large radiusof the event 1 (r) n G(r)A_,o27 (46)

horizon of the(1 + 3) black-hole corresponds to a small ra-
diusp; of the (3 + 1) black-hole andiice versa ) ) . ]

At least at the level of black-holes the above result estabWith B(r) andG(r) arbitrary functions of. Again, one may
lishes a dual link between the + 3)-world and the(3 + 1)-  choosed(p) andB(r) asA = r§/p andB = r{/r, respec-
world that needs to be consider when one looks for a solutively. While a dual solution foi(p) andG(r) is obtained
tion of quantum gravity. In fact, thinking about the magnetic by SettingF” = 1=%p? andG = 1%, with [ a dimensional
monopoleg and the electric chargeduality, namely fundamental constant. An intesting aspect of this construc-

tion emerges if one chooses a black-hole horizon such that
nh (39)
— —
¢ e’ ATA™ = const. (47)
with ge = nhandn = 1,2, ..., one is tempted to assume that

(38) implies a quantum duality of the form Of course this formula leads to a cosmological constant du-

ality of the form

2

psrs = n&”, (40) A o conft.. (48)
Of course in order to fully understand the consequences of A
(38) or (40) one needs to clarify the meaning of the constanThis means that a small cosmological constart in the
parametet. At first sight one may propose that= [p, with (1 + 3)-world must lead to a large cosmological constant
Ip the Plank length. However, in this case (38) implies ain the (3 + 1)-world andvice versaas predicted in Ref. [26].
smaller black-hole radius than the Planck-length. So, assum-
ing that the Planck lengtly is the smallest possible length

then one must expect that~ 1. 5. Final remarks

The present work opens many possible physical routes for
4. Cosmological constant duality further work. First, it may be interesting to consider a gen-
) . eralized Kruskal-Szekeres transform of the line element (32).
Let us now introduce two cosmological constarits;forthe  This must lead to a connection with the observation [8] that in
(1 + 3)-world andA™ for the (3 + 1)-world. Thus, one as- the (4 + 4)-world such a transform impliesregions instead
sumes that the gravitation field equation (8) can be splitteg ihe usual-regions. Second, since it has been shown that
as in (4 + 4)-dimensions there exist a kind of duality of the cos-
mological constant one wonders what is the relation of such a
duality with dual black-hole solution developed in this work

Ryw = A g, (41) (see Ref. [11]). Finally the qguantum relation (40) may mo-

and tive to see the consequences of our dual black-hole solution
with quantum gravity theory. At this respect, it is worth men-
Rap = AN ga, (42)  tioning that oriented matroid theory [12] (see also Refs. [13-

19] and references therein) and surreal number theory (see
with the indicep, v, ...runing froml to4 and the indicesl, B Ref. [20] and also Refs [21-24] and references therein) are
runing from5 to 8. Assuming again (11) and (14) we find that two promising underlaying mathematical structures for deal-
the relevant equation in th + 3)-world will be ing with the key dual concept ifit + 4)-dimensions [18].

rh' +e" —1=Atr?, (43)
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