Black-Hole duality in four time and four space dimensions

C. Avilés-Niebla ${ }^{a}$, J. A. Nieto ${ }^{b}$ and J. F. Zamacona ${ }^{a}$
${ }^{a}$ Facultad de Ciencias de la Tierra y el Espacio, Universidad Autónoma de Sinaloa Culiacán, Sinaloa 80010, México, e-mail: jesus.zamacona@uas.edu.mx
${ }^{b}$ Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa 80010, México, e-mail; clarissaaviles.facite@uas.edu.mx ; niet@uas.edu.mx, janietol @asu.edu

Received 22 January 2022; accepted 26 July 2022

A black-hole solution in four time and four space dimensions $((4+4)$-dimensions) is developed. It is emphasized that such a solution establishes a duality relation between the $(1+3)$ and the $(3+1)$ black-holes, which are part of the $(4+4)$-world. Moreover, it is found that a cosmological constant of the $(1+3)$-world is dual to the cosmological constant in the $(3+1)$-world.

Keywords: Black-holes; $(4+4)$-dimensions; quantum gravity.

DOI: https://doi.org/10.31349/RevMexFis.69.010703

1. Introduction

Traditionally in relativity, in order to describe different phenomena in our universe, such as a trajectory of an object, one time and three space are the chosen number of real dimensions $((1+3)$-dimensions). Yet the physical reasons why our world requires $(1+3)$-dimensions, remains as an open problem. It is evident that from the point of view of number theory the $(1+3)$-world the space and time are not symmetric. The natural question is: why three space and only one time dimension? Looking for the answer of this question one finds that the $(5+5)$-dimensional space-time (five time and five space dimensions) is a common signature to both type $I I A$ strings and type $I I B$ strings [1]. In fact, versions of M-theory [2-3] lead to type $I I A$ and to type $I I B$ string in space-time of signatures $(5+5)$. It turns out that by duality transformations string theories of signatures $(5+5)$ are related to other string signatures such as $(1+9)$ [3].

Of course, the $(5+5)$-dimensional world is more symmetrical in the number of space and time dimensions than the $(1+3)$-world. Thus, considering seriously the $(5+5)$-world, just as the $(1+3)$-dimensional signature can be considered as a reduced world of the de Sitter $(1+4)$-dimensional or antide Sitter $(2+3)$-dimensional signatures via the cosmological constants $\Lambda>0$ and $\Lambda<0$, respectively, here, one may assume that up to two cosmological constants, the $(4+4)$ world emerges from $(5+5)$-dimensional world. In fact, the $(4+4)$-dimensions can be considered as the transverse coordinates of the $(5+5)$-dimensions [4-5].

Fortunately, there are already a number of works with interesting results in the $(4+4)$-world that can be considered as additional motivation for increasing interest in such a scenario. First, the Dirac equation in $(4+4)$-dimensions is consistent with Majorana-Weyl spinors which give exactly the same number of components as the complex spinor of $1 / 2$ spin particles such as the electron or quarks [6,7]. Second, the most general Kruskal-Szekeres transformation of a blackhole coordinates in $(1+3)$-dimensions leads to 8 -regions (instead of the usual 4-regions), which can be better described in $(4+4)$-dimensions [8]. Third, loop quantum gravity in $(4+4)$-dimensions [9-10] admits a self-duality curvature structure analogue to the traditional $(1+3)$-dimensions. It also has been shown [11] that duality

$$
\sigma^{2} \leftrightarrow \frac{1}{\sigma^{2}},
$$

of a Gaussian distribution in terms of the standard deviation σ of 4 -space coordinates associated with the de Sitter space (anti-de Sitter) and the vacuum zero-point energy yields to a Gaussian of 4 -time coordinates of the same vacuum scenario. Finally, it has been suggested that the mathematical structures of matroid theory [12] (see also Refs. [13-20] and references therein) and surreal number theory [21-23] (see also Refs [24-25] and references therein) may provide interesting routes for a connection with the $(4+4)$-world.

2. The (4+4)-world black hole

Let us start considering the ansatz

$$
g_{\hat{\mu} \hat{\nu}}=\left(\begin{array}{llllll}
-e^{f(r, \rho)} & 0 & 0 & 0 & 0 & 0 \tag{1}\\
0 & e^{h(r, \rho)} & 0 & 0 & 0 & 0 \\
0 & 0 & r^{2} \tilde{g}_{i j}\left(\theta_{(+)}\right) & 0 & 0 & 0 \\
0 & 0 & 0 & e^{p(r, \rho)} & 0 & 0 \\
0 & 0 & 0 & 0 & -e^{q(r, \rho)} & 0 \\
0 & 0 & 0 & 0 & 0 & -\rho^{2} \tilde{g}_{a b}\left(\theta_{(-)}\right)
\end{array}\right)
$$

Here, the indices $\hat{\mu}, \hat{\nu}, \ldots$ run from 1 to 8 and the matrices $\tilde{g}_{i j}\left(\theta_{(+)}\right)$and $\tilde{g}_{a b}\left(\theta_{(-)}\right)$are defined as

$$
\tilde{g}_{i j}\left(\theta_{(+)}\right)=\left(\begin{array}{ll}
1 & 0 \tag{2}\\
0 & \sin ^{2} \theta_{(+)}
\end{array}\right)
$$

and

$$
\tilde{g}_{a b}\left(\theta_{(-)}\right)=\left(\begin{array}{ll}
1 & 0 \tag{3}\\
0 & \sin ^{2} \theta_{(-)}
\end{array}\right)
$$

respectively. Here, the notation $\theta_{(+)}$and $\theta_{(-)}$means that the angle $\theta_{(+)}$refers to the $(1+3)$-world, while the angle $\theta_{(-)}$ corresponds to the $(3+1)$-world.

From the chosen form of $g_{\mu \nu}$ it is evident that one is dealing with a spheric symmetric static system in $(4+4)$-dimensions. The only unknown variables will be $f(r, \rho), h(r, \rho), p(r, \rho)$ and $q(r, \rho)$ which must be determined with the relativistic gravitational field equations in $(4+4)$-dimensions.

The non-vanishing Christoffel symbols associated with (1), involving the indices values of $\mu, \nu=1$ to 4 , are

$$
\begin{equation*}
\Gamma_{12}^{1}=\frac{f^{\prime}}{2}, \quad \Gamma_{22}^{2}=\frac{h^{\prime}}{2}, \quad \Gamma_{11}^{2}=\frac{e^{f-h} f^{\prime}}{2}, \quad \Gamma_{i j}^{2}=-r e^{-h} \tilde{g}_{i j}, \quad \Gamma_{2 j}^{i}=\frac{\delta_{j}^{i}}{r}, \quad \Gamma_{j k}^{i}=\tilde{\Gamma}_{j k}^{i} \tag{4}
\end{equation*}
$$

while for the values $\mu, \nu=5$ to 8 one gets

$$
\begin{equation*}
\Gamma_{56}^{5}=\frac{\dot{p}}{2}, \quad \Gamma_{66}^{6}=\frac{\dot{q}}{2}, \quad \Gamma_{55}^{6}=\frac{e^{p-q} \dot{p}}{2}, \quad \Gamma_{a b}^{6}=-\rho e^{-q} \tilde{g}_{a b}, \quad \Gamma_{6 b}^{a}=\frac{\delta_{b}^{a}}{\rho}, \quad \Gamma_{b c}^{a}=\tilde{\Gamma}_{b c}^{a} \tag{5}
\end{equation*}
$$

where $A^{\prime}=\partial A / \partial r$ and $\dot{B}=\partial B / \partial \rho$ for any arbitrary functions $A(r, \rho)$ and $B(r, \rho)$. One still must include the non-vanishing mixture Christoffel symbols

$$
\begin{equation*}
\Gamma_{16}^{1}=\frac{\dot{f}}{2}, \quad \Gamma_{11}^{6}=-\frac{e^{f-q} \dot{f}}{2}, \quad \Gamma_{26}^{2}=\frac{\dot{h}}{2}, \quad \Gamma_{22}^{6}=\frac{e^{h-q} \dot{h}}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{52}^{5}=\frac{p^{\prime}}{2}, \quad \Gamma_{55}^{2}=-\frac{e^{p-h} p^{\prime}}{2}, \quad \Gamma_{62}^{6}=\frac{q^{\prime}}{2}, \quad \Gamma_{66}^{2}=\frac{e^{q-h} q^{\prime}}{2} \tag{7}
\end{equation*}
$$

In vacuum the gravitational field equations simply establish that the Ricci tensor $R_{\hat{\mu} \hat{\nu}}=R_{\hat{\mu} \hat{\alpha} \hat{\nu}}^{\hat{\nu}}$ must vanish, that is one has

$$
\begin{equation*}
R_{\hat{\mu} \hat{\nu}}=0 \tag{8}
\end{equation*}
$$

Using the Christoffel symbols (4)-(7) one learns that (8) leads to

$$
\begin{align*}
R_{11} & =\frac{1}{2} e^{f-h}\left(f^{\prime \prime}+\frac{1}{2} f^{\prime 2}-\frac{1}{2} f^{\prime} h^{\prime}+\frac{2}{r} f^{\prime}+\frac{1}{2} f^{\prime} p^{\prime}+\frac{1}{2} f^{\prime} q^{\prime}\right)-\frac{1}{2} e^{f-q}\left(\ddot{f}+\frac{1}{2} \dot{f}^{2}+\frac{1}{2} \dot{f} \dot{h}+\frac{2}{\rho} \dot{f}+\frac{1}{2} \dot{f} \dot{p}-\frac{1}{2} \dot{f} \dot{q}\right)=0 \\
R_{22} & =-\frac{1}{2}\left(f^{\prime \prime}+\frac{1}{2} f^{\prime 2}-\frac{1}{2} f^{\prime} h^{\prime}-\frac{2}{r} h^{\prime}+p^{\prime \prime}+\frac{1}{2} p^{\prime 2}-\frac{1}{2} p^{\prime} h^{\prime}+q^{\prime \prime}+\frac{1}{2} q^{\prime 2}-\frac{1}{2} q^{\prime} h^{\prime}\right) \\
& +\frac{1}{2} e^{h-q}\left(\ddot{h}+\frac{1}{2} \dot{h}^{2}+\frac{1}{2} \dot{h} \dot{f}+\frac{1}{2} \dot{h} \dot{p}-\frac{1}{2} \dot{h} \dot{q}+\frac{2}{\rho} \dot{h}\right)=0 \\
R_{i j} & =e^{-h}\left(-\frac{1}{2} r f^{\prime}+\frac{1}{2} r h^{\prime}-\frac{1}{2} r p^{\prime}-\frac{1}{2} r q^{\prime}+e^{h}-1\right) \tilde{g}_{i j}=0 \tag{9}
\end{align*}
$$

(where due to (1) and (2) the indices i, j, \ldots run from 3 to 4), and also to

$$
\begin{align*}
R_{55} & =\frac{1}{2} e^{p-q}\left(\ddot{p}+\frac{1}{2} \dot{p}^{2}-\frac{1}{2} \dot{p} \dot{q}+\frac{2}{\rho} \dot{p}+\frac{1}{2} \dot{p} \dot{f}+\frac{1}{2} \dot{p} \dot{h}\right)-\frac{1}{2} e^{p-h}\left(p^{\prime \prime}+\frac{1}{2} p^{\prime 2}+\frac{1}{2} p^{\prime} q^{\prime}+\frac{2}{r} p^{\prime}+\frac{1}{2} p^{\prime} f^{\prime}-\frac{1}{2} p^{\prime} h^{\prime}\right)=0 \\
R_{66} & =-\frac{1}{2}\left(\ddot{p}+\frac{1}{2} \dot{p}^{2}-\frac{1}{2} \dot{p} \dot{q}-\frac{2}{\rho} \dot{q}+\ddot{f}+\frac{1}{2} \dot{f}^{2}-\frac{1}{2} \dot{f} \dot{q}+\ddot{h}+\frac{1}{2} \dot{h}^{2}-\frac{1}{2} \dot{h} \dot{q}\right) \\
& +\frac{1}{2} e^{q-h}\left(q^{\prime \prime}+\frac{1}{2} q^{\prime 2}+\frac{1}{2} q^{\prime} p^{\prime}+\frac{1}{2} q^{\prime} f^{\prime}-\frac{1}{2} q^{\prime} h^{\prime}+\frac{2}{r} q^{\prime}\right)=0 \\
R_{a b} & =e^{-q}\left(-\frac{1}{2} \rho \dot{p}+\frac{1}{2} \rho \dot{q}-\frac{1}{2} \rho \dot{f}-\frac{1}{2} \rho \dot{h}+e^{q}-1\right) \tilde{g}_{a b}=0 \tag{10}
\end{align*}
$$

Here, according to the ansatz choice (1) and (3), the indices a, b, \ldots take the values 7 and 8 .

3. Black-hole duality solution

Our next step is to look for a black-hole solution of (9) and (10). For this purpose, focusing in the last formula in (9) one observes that assuming the two equations

$$
\begin{array}{r}
f^{\prime}+h^{\prime}=0 \\
p^{\prime}+q^{\prime}=0, \tag{11}
\end{array}
$$

such a formula can be simplified in the form

$$
\begin{equation*}
r h^{\prime}+e^{h}-1=0 \tag{12}
\end{equation*}
$$

A general solution of this equation can be written as

$$
\begin{equation*}
e^{-h}=1-\frac{A(\rho)}{r} \tag{13}
\end{equation*}
$$

with $A(\rho)$ an arbitrary function of ρ. Following similar steps and assuming

$$
\begin{align*}
& \dot{p}+\dot{q}=0 \\
& \dot{f}+\dot{h}=0 \tag{14}
\end{align*}
$$

the last equation in (10) leads to

$$
\begin{equation*}
\rho \dot{q}+e^{q}-1=0 \tag{15}
\end{equation*}
$$

whose solution is

$$
\begin{equation*}
e^{-q}=1-\frac{B(r)}{\rho} \tag{16}
\end{equation*}
$$

with $B(r)$ an arbitrary function of r.
Our next step is to determine the functions $A(\rho)$ and $B(r)$. For this purpose, one may first focus in the first equation of (9). Considering (11) and (14) one see that such equation reduces to

$$
\begin{align*}
\frac{1}{2} e^{f-h} & \left(f^{\prime \prime}+f^{\prime 2}+\frac{2}{r} f^{\prime}\right) \\
& -\frac{1}{2} e^{f-q}\left(\ddot{f}-\dot{f} \dot{q}+\frac{2}{\rho} \dot{f}\right)=0 \tag{17}
\end{align*}
$$

Since $e^{-h}=e^{f}$, with (13), one verifies that

$$
\begin{equation*}
f^{\prime \prime}+f^{\prime 2}+\frac{2}{r} f^{\prime}=0 \tag{18}
\end{equation*}
$$

Thus, (17) is further reduced to

$$
\begin{equation*}
\ddot{f}-\dot{f} \dot{q}+\frac{2}{\rho} \dot{f}=0 \tag{19}
\end{equation*}
$$

which can also be written as

$$
\begin{equation*}
\frac{\ddot{f}}{\dot{f}}-\dot{q}+\frac{2}{\rho}=0 \tag{20}
\end{equation*}
$$

with $\dot{f} \neq 0$. This expression can be integrated yielding

$$
\begin{equation*}
\ln \dot{f}-q+\ln \rho^{2}=\ln a \tag{21}
\end{equation*}
$$

where $\ln a$ is a constant independent of ρ. This means that

$$
\begin{equation*}
\dot{f} e^{-q}=\frac{a}{\rho^{2}} \tag{22}
\end{equation*}
$$

From (16) one learns that (22) becomes

$$
\begin{equation*}
\dot{f} e^{-q}=-e^{-q} \dot{q} \frac{a}{B} \tag{23}
\end{equation*}
$$

Thus, if one sets $a=B$ one sees that

$$
\begin{equation*}
\dot{f}+\dot{q}=0 \tag{24}
\end{equation*}
$$

in agreement with (14).
Hence, (19) can be written as

$$
\begin{equation*}
\ddot{f}+\dot{f}^{2}+\frac{2}{\rho} \dot{f}=0 \tag{25}
\end{equation*}
$$

Substituting (13) into this equation one obtains

$$
\ln \dot{A}+\ln \rho^{2}=-r_{0}^{2}
$$

with r_{0} also a constant. Therefore,

$$
\begin{equation*}
\rho^{2} \dot{A}=-r_{0}^{2} \tag{26}
\end{equation*}
$$

and consequently one gets

$$
\begin{equation*}
A=\frac{r_{0}^{2}}{\rho} \tag{27}
\end{equation*}
$$

Substituting this result into (13) one discovers the surprising result

$$
\begin{equation*}
e^{f}=1-\frac{r_{0}^{2}}{\rho r} \tag{28}
\end{equation*}
$$

Following similar steps one shall obtain that the first equation in (10) leads to the solution

$$
\begin{equation*}
e^{p}=1-\frac{\rho_{0}^{2}}{\rho r} \tag{29}
\end{equation*}
$$

Summarizing, we have derived the black-hole solution in $(4+4)$-dimensions;

$$
g_{\mu \nu}=\left(\begin{array}{llllll}
-\left(1-\frac{r_{0}^{2}}{\rho r}\right) & 0 & 0 & 0 & 0 & 0 \tag{30}\\
0 & \frac{1}{\left(1-\frac{r_{0}^{2}}{\rho r}\right)} & 0 & 0 & 0 & 0 \\
0 & 0 & r^{2} \tilde{g}_{i j} & 0 & 0 & 0 \\
0 & 0 & 0 & \left(1-\frac{\rho_{0}^{2}}{\rho r}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{\left(1-\frac{\rho_{0}^{2}}{\rho r}\right)} & 0 \\
0 & 0 & 0 & 0 & 0 & -\rho^{2} \tilde{g}_{a b}
\end{array}\right)
$$

In principle r_{0} and ρ_{0} are different constants but if one sets

$$
\begin{equation*}
r_{0}=\rho_{0} \equiv \xi \tag{31}
\end{equation*}
$$

the metric (30) becomes a totally dual black-hole solution. Let us explain in some detail this comment. First from (30) and (31) one sees that the line element in $(4+4)$-dimensions can be written as

$$
\begin{equation*}
d s^{2}=d s_{(+)}^{2}+d s_{(-)}^{2} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
d s_{(+)}^{2}=-\left(1-\frac{\xi^{2}}{\rho r}\right) c^{2} d t_{(+)}^{2}+\frac{d r^{2}}{\left(1-\frac{\xi^{2}}{\rho r}\right)}+r^{2}\left(d \theta_{(+)}^{2}+\sin ^{2} \theta_{(+)} d \phi_{(+)}^{2}\right) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
d s_{(-)}^{2}=+\left(1-\frac{\xi^{2}}{\rho r}\right) c^{2} d t_{(-)}^{2}-\frac{d \rho^{2}}{\left(1-\frac{\xi^{2}}{\rho r}\right)}-\rho^{2}\left(d \theta_{(-)}^{2}+\sin ^{2} \theta_{(-)} d \phi_{(-)}^{2}\right) \tag{34}
\end{equation*}
$$

In order for $d s_{(+)}^{2}$ to describe the usual black-hole element in $(1+3)$-world one must set

$$
\begin{equation*}
\frac{\xi^{2}}{\rho}=\frac{2 G M^{(+)}}{c^{2}} \tag{35}
\end{equation*}
$$

with G the Newton gravitational constant and $M^{(+)}$the mass source in the $(1+3)$-world. Similarly in order for $d s_{(-)}^{2}$ to describe the usual black-hole element in $(3+1)$-world one must set

$$
\begin{equation*}
\frac{\xi^{2}}{r}=\frac{2 G M^{(-)}}{c^{2}} \tag{36}
\end{equation*}
$$

where $M^{(-)}$is the source mass in the $(3+1)$-world. Thus, from the perspective of a $(1+3)$-world observer the combination ξ^{2} / ρ is just a related to the source mass $M^{(+)}$. This means that even if the parameter ρ associated with $(3+1)$-world appears in the line element $d s_{(+)}^{2}$ is in fact related to source mass $M^{(+)}$according to (35). In dual form, the parameter r of the $(1+3)$-world is interpreted by a $(3+1)$-world observer as the mass source $M^{(-)}$according to (36).

Even clearer dual properties of the line element (32)-(34) emerge when one considers the event horizon of (33) and (34). Suppose there are parameters r and ρ such that

$$
\begin{equation*}
\left(1-\frac{\xi^{2}}{\rho_{s} r_{s}}\right)=0 \tag{37}
\end{equation*}
$$

Of course, in this case both the terms with $d r^{2}$ and $d \rho^{2}$ present an apparent singularity. From (37) one sees that this means that

$$
\begin{equation*}
\rho_{s} r_{s}=\xi^{2} \tag{38}
\end{equation*}
$$

which is clearly a dual relation: A large radius r_{s} of the event horizon of the $(1+3)$ black-hole corresponds to a small radius ρ_{s} of the $(3+1)$ black-hole and vice versa.

At least at the level of black-holes the above result establishes a dual link between the $(1+3)$-world and the $(3+1)$ world that needs to be consider when one looks for a solution of quantum gravity. In fact, thinking about the magnetic monopole g and the electric charge e duality, namely

$$
\begin{equation*}
e \longleftrightarrow \frac{n \hbar}{e}, \tag{39}
\end{equation*}
$$

with $g e=n \hbar$ and $n=1,2, \ldots$, one is tempted to assume that (38) implies a quantum duality of the form

$$
\begin{equation*}
\rho_{s} r_{s}=n \xi^{2} \tag{40}
\end{equation*}
$$

Of course in order to fully understand the consequences of (38) or (40) one needs to clarify the meaning of the constant parameter ξ. At first sight one may propose that $\xi=l_{P}$, with l_{P} the Plank length. However, in this case (38) implies a smaller black-hole radius than the Planck-length. So, assuming that the Planck length l_{P} is the smallest possible length then one must expect that $\xi \sim 1$.

4. Cosmological constant duality

Let us now introduce two cosmological constants; Λ^{+}for the $(1+3)$-world and Λ^{-}for the $(3+1)$-world. Thus, one assumes that the gravitation field equation (8) can be splitted as

$$
\begin{equation*}
R_{\mu \nu}=\Lambda^{+} g_{\mu \nu} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{A B}=\Lambda^{-} g_{a b} \tag{42}
\end{equation*}
$$

with the indice μ, ν, \ldots runing from 1 to 4 and the indices A, B runing from 5 to 8 . Assuming again (11) and (14) we find that the relevant equation in the $(1+3)$-world will be

$$
\begin{equation*}
r h^{\prime}+e^{h}-1=\Lambda^{+} r^{2} \tag{43}
\end{equation*}
$$

with a general solution of the form

$$
\begin{equation*}
e^{-h}=1-\frac{A(\rho)}{r}+F(\rho) \Lambda^{+} r^{2} \tag{44}
\end{equation*}
$$

with $A(\rho)$ and $F(\rho)$ arbitrary functions of ρ. For the corresponding equation for the $(3+1)$-world one shall have

$$
\begin{equation*}
\rho \dot{q}+e^{q}-1=\Lambda^{-} \rho^{2}, \tag{45}
\end{equation*}
$$

whose a general solution becomes

$$
\begin{equation*}
e^{-q}=1-\frac{B(r)}{\rho}+G(r) \Lambda^{-} \rho^{2} \tag{46}
\end{equation*}
$$

with $B(r)$ and $G(r)$ arbitrary functions of r. Again, one may choose $A(\rho)$ and $B(r)$ as $A=r_{0}^{2} / \rho$ and $B=r_{0}^{2} / r$, respectively. While a dual solution for $F(\rho)$ and $G(r)$ is obtained by setting $F=l^{-2} \rho^{2}$ and $G=l^{-2} r^{2}$, with l a dimensional fundamental constant. An intesting aspect of this construction emerges if one chooses a black-hole horizon such that

$$
\begin{equation*}
\Lambda^{+} \Lambda^{-}=\text {const } . \tag{47}
\end{equation*}
$$

Of course this formula leads to a cosmological constant duality of the form

$$
\begin{equation*}
\Lambda^{-} \leftrightarrow \frac{\text { const. }}{\Lambda^{+}} \tag{48}
\end{equation*}
$$

This means that a small cosmological constant Λ^{+}in the $(1+3)$-world must lead to a large cosmological constant Λ^{-} in the $(3+1)$-world and vice versa, as predicted in Ref. [26].

5. Final remarks

The present work opens many possible physical routes for further work. First, it may be interesting to consider a generalized Kruskal-Szekeres transform of the line element (32). This must lead to a connection with the observation [8] that in the $(4+4)$-world such a transform implies 8 -regions instead of the usual 4-regions. Second, since it has been shown that in $(4+4)$-dimensions there exist a kind of duality of the cosmological constant one wonders what is the relation of such a duality with dual black-hole solution developed in this work (see Ref. [11]). Finally the quantum relation (40) may motive to see the consequences of our dual black-hole solution with quantum gravity theory. At this respect, it is worth mentioning that oriented matroid theory [12] (see also Refs. [1319] and references therein) and surreal number theory (see Ref. [20] and also Refs [21-24] and references therein) are two promising underlaying mathematical structures for dealing with the key dual concept in $(4+4)$-dimensions [18].

Acknowledgments

We would like that thank an anonymous reviewer for helpful comments. JA Nieto also would like to thank the Mathematical, Computational \& Modeling Sciences Center of the Arizona State University where part of this work was developed. This work was partially supported by PROFAPI 2013.

1. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory I and II (Cambridge University Press, 1987).
2. M. J. Duff, Int. J. Mod. Phys. A 11, 5623 (1996) ; hepth/9608117.
3. C. M. Hull, JHEP 11, 017 (1998); hep-th/9807127.
4. M. A. De Andrade, M. Rojas and F. Toppan, Int. J. Mod. Phys. A 16 (2001) 4453; hep-th/0005035.
5. M. Rojas, M. A. De Andrade, L. P. Colatto, J. L. MatheusValle, L. P. G. De Assis and J. A. Helayel-Neto, "Mass Generation and Related Issues from Exotic Higher Dimensions"; hep-th/1111.2261.
6. J. A. Nieto and M. Espinoza, Int. J. Geom. Meth. Mod. Phys. 14 (2017) 1750014.
7. M. A. De Andrade and I.V. Vancea, "Action for spinor fields in arbitrary dimensions"; hep-th/0105025.
8. J. A. Nieto and E. Madriz, Phys. Scripta 94 (2019) 115303.
9. J. A. Nieto, Class. Quant. Grav. 23 (2006) 4387, e-Print: hepth/0509169
10. J. A. Nieto, Class. Quant. Grav. 22 (2005) 947; e-Print: hepth/0410260.
11. M. Medina, J. A. Nieto and P. A. Nieto-Marín, J. Mod. Phys. 12 (2021) 1027.
12. A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented Matroids. Encyclopedia of Mathematics and Its Applications. 46 (2nd ed.). Cambridge University Press., 1999).
13. J. A. Nieto, Adv. Theor. Math. Phys. 8, 177 (2004); arXiv: hepth/0310071.
14. J. A. Nieto, Adv. Theor. Math. Phys. 10, 747 (2006), arXiv: hep-th/0506106.
15. J. A. Nieto, J. Math. Phys. 45, 285 (2004); arXiv: hepth/0212100.
16. J. A. Nieto, Nucl. Phys. B 883, 350 (2014); arXiv: 1402.6998 [hep-th].
17. J. A. Nieto and M. C. Marín, J. Math. Phys. 41, 7997 (2000); hep-th/0005117.
18. J. A. Nieto, Phys. Lett. B 718, 1543 (2013); e-Print: arXiv:1210.0928 [hep-th].
19. J. A. Nieto, Phys. Lett. B 692, 43 (2010); e-Print: arXiv:1004.5372 [hep-th].
20. J. A. Nieto, Front. Phys., 6 (2018) (article 106).
21. J. H. Conway, On Number and Games, London Mathematical Society Monographs (Academic Press, 1976).
22. D. E. Knuth, Surreal Numbers: How Two Ex-Students Turned on To Pure Mathematicsand Found Total Happiness: A Mathematical Novelette (Addison-Wesley Publising Co, 1974).
23. H. Gonshor, An Introduction to the Theory of Surreal Numbers, London Mathematical Society Lectures Notes Series, Vol. 110 (Cambridge Univ. Press, 1986).
24. C. Avalos-Ramos, J. A. Felix-Algandar and J. A. Nieto, IOSR Journal of Mathematics, 16 (2020) 35-43.
25. J. A. Nieto, J. Mod. Phys. 7 (2016) 2164.
26. J. A. Nieto, Phys. Lett. A 262 (1999) 274.
