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Hadronic contribution to the running QED coupling at the Z-boson mass scale
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An update is described of a model independent method to determine the hadronic contribution to the QED running coupling at the Z-
boson mass scale,∆αHAD(M2

Z). The major source of uncertainty is from the contribution of the light quark vector current correlator at
zero momentum. This uncertainty is substantially reduced using recently improved lattice QCD results for this correlator. The result is
∆αHAD(M2

Z) = 274.13(0.73) × 10−4.
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1. Introduction

The electromagnetic running coupling at the scale of the Z-
boson mass,α(M2

Z), is currently not known precisely. The
main reason being the uncertainty from the hadronic sector,
not fully determined in perturbative QCD (PQCD). This run-
ning coupling can be written as

α(s) =
α(0)

1−∆αL(s)−∆αHAD(s)
, (1)

where ∆αL is the leptonic contribution, known precisely
from perturbation theory, and∆αHAD(s) is the hadronic
counterpart. The interesting quantity is the QED coupling
at the scale of the Z-boson mass,MZ . Denotingα ≡ α(0) in
the sequel,∆αHAD(M2

Z) can be written as

∆αHAD(M2
Z) = 4 π α

{
Π(0)−Re [Π(M2

Z)]
}

, (2)

whereΠ(s) is the electromagnetic current correlator

Πµν(q2) = i

∫
d4x eiqx〈0|T (

j EM
µ (x), j EM

ν (0)
) |0〉

= (qµqν − q2gµν)Π(q2) , (3)

with jEM
µ (x) =

∑
f Qf f̄(x)γµf(x), and the sum is over all

quark flavorsf = {u, d, s, c, b, t}, with chargesQf . Invok-
ing analyticity and unitarity forΠ(s), and using the optical
theorem,i.e. R(s) = 12π Im Π(s), whereR(s) is the nor-
malizede+e− cross-section, one can write Eq. (2) as a dis-
persion integral [1]

∆αHAD(M2
Z) =

α M2
Z

3 π
P

4m2
π∫

∞

R(s)
s(M2

Z − s)
ds , (4)

whereP denotes the principal part of the integral. This ex-
pression only requires knowledge ofR(s), which is accessi-
ble experimentally in the resonance region, followed by per-
turbative QCD in the continuum. However, given the current
uncertainties in theR(s) data, of diverse magnitudes depend-
ing on the energy region, several approaches have been pro-
posed to circumvent this issue.

The standard approach to determining∆αHAD(M2
Z) is to

evaluate Eq. (4) making use ofe+e− annihilation data for
R(s) in the resonance regions, and either use the PQCD pre-
diction for R(s) above these regions (seee.g. [2]), or make
use of all the availablee+e− data and fill in the gaps using
the PQCD prediction (seee.g.[3,4]). An alternative approach
was proposed in Ref. [5], based entirely on perturbative QCD
in the heavy-quark (charm and bottom) region, and Lattice
QCD (LQCD) determinations of the light-quark vector cur-
rent correlator at zero-momentum. The latter was only known
at the time with a large uncertainty. Recent LQCD determina-
tions of this parameter [6] allow for a considerable improve-
ment in precision, as to be described here. We are reporting
an update, where we consider the most recent values of all in-
puts (quark masses and Z-boson mass) [7], in the perturbative
region we use the running ofαs up to five-loop order [8] and
most importantly it is the first time that the light-quark vector
current correlator at zero-momentum is known and therefore
it is implemented within the method presented in this work.

2. Hadronic contribution

The current correlator for each flavor can be written as fol-
lows

Π(f)(s) = Π(f)
PQCD(s) + Π(f)

NP (s) + Π(f)
QED(s), (5)
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where on thelhs the first contribution corresponds to the per-
turbative part, the second contribution is the non-perturbative
one, determined using the Operator Product Expansion
(OPE), and the last contribution is the lowest QED correc-
tion to the vacuum polarization. The dominant contribution
to Π(f)(s) is the perturbative part.

The six different quark flavors can be organized in two
sets, corresponding to the light and the heavy quarks. For
the light quarks (up, down and strange), and in the massless
limit, the high energy regime ofΠ(f)

PQCD is know up to or-
derO(α3

s), and to orderO(α4
s), up to a real constant. In the

heavy quark sector, it is necessary to express the current cor-
relator using both the low- and the high-energy expansion.

Turning to the heaviest quarks contribution to Eq. (2), the
correlator can be written in terms of the low- and the high-
energy expansion. The former is given by

Πf (s) =
3Q2

f

16π2

∞∑

i=0

Ci

( s

4m2
f

)i

, (6)

wheremf is the quark mass of flavour-f in theMS scheme
at a scaleµ, and the high energy expression is

Π(s) = Q2
f

∞∑
n=0

(αs(µ2)
π

)n

Π(n)(s). (7)

The coefficientsC0, C1, C2 andC3 were determined up
to O(α3

s) in [9–12], and the termsΠ(0), Π(1) andΠ(2) are
given in Refs. [10,13–17].

In order to obtain the bottom quark contribution to
∆αHAD(M2

Z) we use Eq. (2), whereΠ(0) is computed using
Eq. (6), andΠ(M2

Z) comes from Eq. (7). We obtain

∆α
(b)
HAD(M2

Z) = 4πα
(
Π(b)(0)−Π(b)(M2

Z)
)

= (12.88± 0.04)× 10−4, (8)

wherenf = 5 andµ = 10 GeV. It is important to mention
that varyingµ in a range from10 GeV to10Mz the result in
Eq. (8) only changes by0.03× 10−4.

For the contribution of the top-quark it is only necessary
to use the low expansion to the correlator, Eq. (6), in Eq. (2),
which gives

∆α
(t)
HAD(M2

Z) = 4πα
(
Π(t)(0)−Π(t)(M2

Z)
)

= −(0.73± 0.05)× 10−4, (9)

whereµ = mt andnf = 6. We notice that the only uncer-
tainty in this contribution is from the top-quark mass.

The next contribution is from the charm quark. Its pertur-
bative piece follows from the Adler function approach, and
it is chosen so as to minimize the uncertainty. This method
takes into account a high as well as a low energy contribution

∆α
(c)
HAD(M2

Z) =
α

3π

M2
Z∫

s0

D(c)(s)
s

ds

+ 4πα(Π(c)(0)−Π(c)(s0)). (10)

Regardings0 we choose it large enough for PQCD to be
valid, but still withs0 ¿ M2

Z , i.e. s0 = (9.3 GeV)2. In ad-
dition nf = 4 andµ is taken in the rangeµ = (2− 9.3) GeV.
For the low-energy expansion, we use Eq. (6).

The results for these contributions are discussed in detail
in Ref. [5], and are as follows

∆α
(c)
HAD(M2

Z) = 4πα
(
Π(c)(0)− [Π(c)(M2

Z)]
)

= (79.88± 0.59)× 10−4. (11)

Turning to the light-quark sector contribution, we use an
entirely theoretical method involving the Adler function. The
non-perturbative contribution is obtained from LQCD results,
and the perturbative contribution follows from the integration
on a semi-circular contour of radius|s0|, avoiding the origin.
This gives for∆(uds)

HAD (M2
Z)

∆(uds)
HAD (M2

Z) = ∆α
(uds)
HAD (−s0)

+
[
∆α

(uds)
HAD (s0)−∆(uds)

HAD (−s0)
]

+
[
∆(uds)

HAD (M2
Z)−∆(uds)

HAD (s0)
]

= 4πα
[
Π(uds)

LQCD(0)−Πuds
LQCD(−s0)

]

+
α

3π

s0∫

−s0

D
(uds)
PQCD(s)

s
ds

+
α

3π

M2
Z∫

s0

D
(uds)
PQCD(s)

s
ds. (12)

In Eq. (12), we uses0 = −3.5GeV2 to find

α

3π

s0∫

−s0

D
(uds)
PQCD(s)

s
ds = (2.97± 0.14)× 10−4 , (13)

α

3π

M2
Z∫

s0

D
(uds)
PQCD(s)

s
ds = (125.64± 0.07)× 10−4 , (14)

4πα
[
Π(uds)

LQCD(0)−Π(uds)
LQCD(−s0)

]

= (53.49± 0.40)× 10−4, (15)

where we used the LQCD data depicted in Fig. 1, the data is
from up- and down-quark contributions to the vacuum polar-
ization function in the range0 < s ≤ 0.5 GeV2, where blue
filled diamonds correspond to Fourier momenta, open black
circles denote data points computed using twisted boundary
conditions, and red filled square indicates the value of
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FIGURE 1. LQCD computation ofΠ(s) [6] with up- and down-
quark contributions to the vacuum polarization function in the
range0 < s ≤ 0.5 GeV2. Blue filled diamonds correspond to
Fourier momenta, open black circles denote data points computed
using twisted boundary conditions. Red filled square indicates the
value of Π(0) determined from the second time momenta with
mπ = 185 MeV.

Π(0) determined from the second time momenta withmπ =
185 MeV. Finally, we obtain

∆α
(uds)
HAD = (182.10± 0.43)× 10−4, (16)

with this value differing substantially from the approximate
value used previously in Ref. [5], due to the new LQCD result
for Π(s) which is now known at the origin [6].

3. Result

Adding up all the contributions gives the final result

∆αHAD(M2
Z) = (274.13± 0.73)× 10−4, (17)

for nf = 6. This result is obtained entirely from theory, as
a combination of LQCD and PQCD. The main uncertainty
of this approach in the past was from the value of the vector
correlator at the origin. The new value of this quantity allows
now for a precision result.

In order to make a fair comparison, the result of Ref. [5],
using the same technique, is∆α

(uds)
HAD = 181×10−4, with no

uncertainty given, and using the LQCD information available
at that time.

In the literature there is a large number of determinations
of ∆αHAD(M2

Z) from a variety of methods, with results in
the range [19-29]

∆αHAD(M2
Z) = (269− 279)× 10−4, (18)

albeit with tiny individual uncertainties in each determina-
tion.
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