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1. Introduction

Apart from their use in the calculation of some definite in-
tegrals, the complex numbers have numerous applications in
physics, especially in electrodynamics, and they are essen-
tial in the standard formulation of quantum mechanics. By
contrast, one finds very few examples of the application of
the complex numbers in classical mechanics. On the other
hand, there are two additional sets of numbers, somewhat
analogous to the complex ones, called double and dual num-
bers here (though they receive other names in the literature),
that are seldom employed in physics, or even in mathematics
(see, however, Ref. [1]). Nevertheless, in recent works some
examples of the application of the double and the dual num-
bers in the standard equations of mathematical physics have
been given [2–5]. (The double numbers are also employed
in the construction of alternative physical theories, see,e.g.,
Refs. [6–10].)

In some of the applications of the complex numbers (e.g.,
in general relativity), the number of equations can be reduced
by half just because a complex equation is equivalent to two
real equations. In a similar manner, an equation involving
double or dual numbers is equivalent to two real equations
that can be handled simultaneously [1,5].

In classical mechanics, apart from the interest in solv-
ing the equations of motion, a related problem is that of
finding the variational symmetries of a given Lagrangian be-
cause they are associated with conserved quantities (see,e.g.,
Refs. [11–14]).

The aim of this paper is to show that in some problems
of classical mechanics, the use of complex, double or dual
numbers greatly simplifies the search of symmetries of the
equations of motion, by means of an appropriate Lagrangian.
(Any variational symmetry of a Lagrangian leaves invariant
the form of the corresponding equations of motion, but the
converse is not true (see,e.g., Ref. [15]).) Here, again, we

see that the fact that the double and the dual numbers are not
fields in the algebraic sense, does not impede their use in var-
ious ways. Moreover, a great advantage is that these numbers
obey most of the algebraic rules applicable to the real and
complex ones and, therefore, we can perform the computa-
tions in exactly the same manner as if we were dealing with
real variables.

All examples considered in this paper correspond to me-
chanical systems with a number of degrees of freedom equal
to two and their standard Lagrangians are polynomials of
degree two inẋ and ẏ; hence, the partial differential equa-
tion that determines their variational symmetries leads to a
system often differential equations that only involvex, y
and t (which are obtained by considering the coefficients
of ẋ3, ẋ2ẏ, ẋẏ2, ẏ3, ẋ2, ẋẏ, ẏ2, ẋ, ẏ and the terms that do not
containẋ or ẏ). By contrast, the use of a complex, double
or dual variable,z, leads tofour differential equations that
only involvez andt (which are obtained by considering the
coefficients ofż3, ż2, ż and the terms that do not containż).

The examples considered here belong to a special class:
their equations of motion, written in terms of the complex
combinationz ≡ x + iy, amount toz̈ = f(z, ż, t), wheref
is an analytic function ofz andż, and any such equation can
be expressed in the form

0 =
d
dt

∂L

∂ż
− ∂L

∂z
, (1)

whereL(z, ż, t) is a suitable function (again,L is an analytic
function of z and ż). The proof of the existence ofL and
the recipe to construct it is given,e.g., in Refs. [14, 16] for
the case of real variables but, under the present assumptions,
they can be applied without change in the case of complex
functions.

In Sec. 2 we give two examples making use of complex
numbers and in Sec. 3 we give examples that can be conve-
niently treated using complex, double or dual numbers.
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2. Examples with complex numbers

There are two nice examples, closely related to each other,
where the complex numbers are very useful: the problem of
a charged particle moving on a plane in a uniform magnetic
field and the two-dimensional isotropic harmonic oscillator.
In the first case, the equations of motion for a charged par-
ticle of massm and electric chargee moving on a plane in
a magnetic fieldB0 perpendicular to this plane, expressed in
Cartesian coordinates, are

mẍ = mωcẏ, mÿ = −mωcẋ, (2)

where
ωc ≡ eB0

mc
,

is the so-called cyclotron frequency (in Gaussian units).
Then, with the definitionz ≡ x + iy these equations amount
to the single complex equation

mz̈ = −mi ωcż. (3)

Applying the standard procedure to find Lagrangians for a
given second-order ordinary differential equation (see,e.g.,
Refs. [13,14,16]), one readily finds the Lagrangian

L = 1
2meiωctż2, (4)

corresponding to Eq. (3).
It may be noticed that the complex Lagrangian (4), writ-

ten in terms ofẋ andẏ, is

L = 1
2m

[
(ẋ2 − ẏ2) cos(ωct)− 2ẋẏ sin(ωct)

]

+ i 12m
[
(ẋ2 − ẏ2) sin(ωct) + 2ẋẏ cos(ωct)

]
(5)

and one can verify that the real and imaginary parts ofL are
two, essentially equivalent to each other, (real) Lagrangians
leading to Eqs. (2), which depend explicitly on the time and
both coordinates, x and y, are ignorable. (It may be re-
marked that, by contrast, the usual Lagrangian for this prob-
lem is time-independent but the coordinatesx andy cannot
be both ignorable.)

In order to find more symmetries of the Lagrangian (4)
and the corresponding constants of motion, we look for
groups of variational symmetries ofL by copying the equa-
tion for (the infinitesimal generators of) these symmetries ob-
tained in the usual case of real-valued coordinates (see,e.g.,
Refs. [11–14])

∂L

∂z
η +

∂L

∂ż

(
dη

dt
− ż

dξ

dt

)
+

∂L

∂t
ξ + L

dξ

dt
=

dG

dt
, (6)

whereη, ξ andG are functions ofz andt only anddf/dt is
an abbreviation for∂f/∂t + ż ∂f/∂z; at this point the vari-
ablesz, ż and t are independent (we are assuming thatη, ξ
andG areanalytic functions ofz, that is, there is no depen-
dence on the complex conjugate ofz). Equation (6) can also
be expressed in the form

∂L

∂z
η +

∂L

∂ż

dη

dt
−

(
ż
∂L

∂ż
− L

)
dξ

dt
+

∂L

∂t
ξ =

dG

dt
. (7)

As in the usual case of real-valued quantities one can show
that, by virtue of the Lagrange equation (1), Eq. (7) is equiv-
alent to the conservation ofϕ, defined by

ϕ = η
∂L

∂ż
− ξ

(
ż
∂L

∂ż
− L

)
−G. (8)

Substituting (4) into Eq. (7) we get

meiωctż

(
∂η

∂t
+ ż

∂η

∂z

)
− m

2
eiωctż2

(
∂ξ

∂t
+ ż

∂ξ

∂z

)

+
m

2
iωceiωctż2ξ =

∂G

∂t
+ ż

∂G

∂z
, (9)

which has to be satisfied for all values ofz, t and ż. Since
η, ξ andG are functions ofz andt only, the coefficients of
the various powers oḟz on each side of this equation must co-
incide separately. By equating the coefficients ofż3 we find
thatξ must be a function oft only

ξ = A(t), (10)

whereA is a real-valued function of a single variable (on
the other hand,η has complex values; this follows from the
fact that ξ = ∂t′/∂s|s=0 and η = ∂z′/∂s|s=0, consid-
ering a one-parameter family of coordinate transformations
z′ = z′(z, t, s), t′ = t′(z, t, s), such that, fors = 0, z′ = z,
t′ = t [11–14]). From the equality of the coefficients ofż2

we obtain
∂η

∂z
=

1
2

dA

dt
− 1

2
iωcA,

which implies that

η =
z

2

(
dA

dt
− iωcA

)
+ B(t), (11)

whereB is a complex-valued function.
The equality of the terms proportional toż yields

1
m

∂G

∂z
= eiωct ∂η

∂t

= eiωct

[
z

2

(
d2A

dt2
− iωc

dA

dt

)
+

dB

dt

]
, (12)

where we have made use of (11), and from the equality of the
terms independent oḟz we get

1
m

∂G

∂t
= 0. (13)

Then, the equality of the mixed second partial derivatives of
G gives

iωc

[
z

2

(
d2A

dt2
− iωc

dA

dt

)
+

dB

dt

]

+
z

2

(
d3A

dt3
− iωc

d2A

dt2

)
+

d2B

dt2
= 0. (14)

Rev. Mex. Fis.69010702



APPLICATIONS OF THE COMPLEX, DOUBLE AND DUAL NUMBERS IN LAGRANGIAN MECHANICS 3

The fulfillment of this condition for all values ofz (taking
into account thatA andB are functions oft only) implies
that

d3A

dt3
+ ωc

2 dA

dt
= 0,

d2B

dt2
+ iωc

dB

dt
= 0, (15)

and therefore

A(t) = c1 cos(ωct) + c2 sin(ωct) + c3, (16)

wherec1, c2 andc3 are arbitrary real constants, and

B(t) = c4 + ic5 + (c6 + ic7)e−iωct, (17)

wherec4, . . . , c7 are four additional arbitrary real constants.
Hence, from Eqs. (10)–(13), (16) and (17), we find that

the most general solution of Eq. (9) is given by

ξ = c1 cos(ωct) + c2 sin(ωct) + c3,

η = 1
2ωcz

(− c1i e−iωct + c2e−iωct − c3i
)

+ c4 + ic5 + (c6 + ic7)e−iωct, (18)

G = m

[
−(c1 + ic2)

ωc
2z2

4
− (c6 + ic7)iωcz

]
,

wherec1, . . . , c7 are arbitrary real constants. Thus, the La-
grangian (4) possesses a seven-dimensional group of varia-
tional symmetries. Substituting (18) into Eq. (8), using the
fact thatc1, . . . , c7 are arbitrary one obtains seven constants
of motion, which cannot be functionally independent since
for a regular system with a number of degrees of freedom
equal to two there exist four functionally independent con-
stants of motion.

It is interesting to note that the one-parameter group ob-
tained from Eqs. (18) with c3 = 1, and all the other constants
ck equal to zero, is given byt′ = t + s, z′ = z e−iωcs/2, that
is, translations in the time accompanied by specific rotations
in thexy-plane. Such transformations are, separately, sym-
metries of the equations of motion (2), but the Lagrangian
(4) does not possess these symmetries one by one. This is an
example of the fact that the symmetries of the equations of
motion, may not bevariational symmetries of a Lagrangian
leading to such equations (see,e.g., Ref. [15]).

2.1. The two-dimensional isotropic harmonic oscillator

In the case of the two-dimensional isotropic harmonic oscil-
lator, the equations of motion, in Cartesian coordinates, are
given by

mẍ = −mω2x, mÿ = −mω2y, (19)

whereω is a real constant. Also in this case the complex
variablez ≡ x+iy is useful because Eqs. (19) are equivalent
to

mz̈ = −mω2z. (20)

Equation (20) (which has the form of the equation of motion
for a one-dimensional harmonic oscillator) can be obtained
by means of Eq. (1) from the Lagrangian

L = 1
2mż2 − 1

2mω2z2. (21)

Substituting (21) into Eq. (7) we get

−mω2z η + mż

(
∂η

∂t
+ ż

∂η

∂z

)
−

(m

2
ż2 +

m

2
ω2z2

)

×
(

∂ξ

∂t
+ ż

∂ξ

∂z

)
=

∂G

∂t
+ ż

∂G

∂z
, (22)

and following the same steps as in the preceding case one
finds that all the solutions of this last equation are given by

ξ = c1 cos(2ωt) + c2 sin(2ωt) + c3, (23)

η = −ωz
[
c1 sin(2ωt)− c2 cos(2ωt)

]

+ (c4 + ic5) cos(ωt) + (c6 + ic7) sin(ωt), (24)

G = m
{
− ω2z2

[
c1 cos(2ωt) + c2 sin(2ωt)

]

− (c4 + ic5)ωz sin(ωt) + (c6 + ic7) ωz cos(ωt)
}

, (25)

wherec1, . . . , c7 are arbitrary real constants. Hence, the La-
grangian (21) also admits a seven-dimensional group of vari-
ational symmetries.

Another advantage of the use of the complex quantities
introduced above is that with their help we can readily es-
tablish a connection between the sets of equations of motion
(2) and (19). In fact, it is easy to see that ifz is a solution
to Eq. (3) thenw = eiωct/2z satisfies Eq. (20), provided that
ω = ωc/2, and conversely. Furthermore, with this relation,
the Lagrangian (4) becomes

L = 1
2mẇ2 − 1

2mω2w2 + ẇ
∂

∂w

(−i 12mωw2
)
,

which is the Lagrangian (21) up to the “total derivative with
respect to the time” of−i 12mωw2 and, therefore, (4) and (21)
lead to equivalent equations of motion. (Note that, at this
point,w, ẇ, andt, mustbe regarded as independent variables
and therefore it is an abuse to speak of a total derivative with
respect to the time, though this is the standard usage.) In
view of this connection, it is not strange that we end up with
symmetry groups of the same dimension (and it is to be ex-
pected that these two groups are isomorphic, though we are
not dealing with this question here).

Writing the Lagrangian (21) in terms of(x, y, ẋ, ẏ) one
finds

L = 1
2m(ẋ2 − ẏ2)− 1

2mω2(x2 − y2) + i(mẋẏ −mω2xy).

The real and the imaginary parts of this function are accept-
able real Lagrangians for the equations of motion (19), which
differ from the standard one.
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3. Examples with double and dual numbers

In a simplified manner, the double numbers can be defined as
expressions of the forma + jb, with a, b ∈ R, where the unit
j is such thatj2 = 1, but j 6= ±1, while the dual numbers
are expressions of the forma + εb, with a, b ∈ R, where the
unit ε is such thatε2 = 0, but ε 6= 0. The sum and product
of these numbers are commutative and associative, and the
multiplication is distributive over the sum (see also Ref. [1]).

It may be noticed that, by contrast with Eqs. (3) and (4),
Eqs. (20) and (21) do not contain the imaginary uniti and,
actually, Eqs. (20) and (21) remain valid if we employ the
combinationz = x+hy, whereh can be either,i, j or ε. Fur-
thermore, the form of Eq. (22) is unchanged and its solution
is given by

ξ = c1 cos(2ωt) + c2 sin(2ωt) + c3, (26)

η = −ωz
[
c1 sin(2ωt)− c2 cos(2ωt)

]

+ (c4 + hc5) cos(ωt) + (c6 + hc7) sin(ωt), (27)

G = m
{− ω2z2

[
c1 cos(2ωt) + c2 sin(2ωt)

]

−(c4+hc5)ωz sin(ωt)+(c6+hc7) ωz cos(ωt)
}
, (28)

wherec1, . . . , c7 are arbitrary real constants. By decompos-
ing Eqs. (26) and (27) into their real and “imaginary” parts
one obtains the same transformations for the variablesx, y
andt, regardless of the unit chosen (i, j or ε).

3.1. An example with dual numbers

The system of equations

mẍ = 0, mÿ = −mg, (29)

corresponds to a particle of massm in a uniform gravitational
field, where the constantg is the acceleration of gravity. Mak-
ing use of the variablez ≡ x + εy, with values in the dual
numbers, Eqs. (29) amount to the single equation

mz̈ = −εmg, (30)

and one can readily verify that this equation can be obtained
from the Lagrangian

L = 1
2mż2 − εmgz. (31)

(Note thatL also has values in the dual numbers, and it is
not constructed from the standard Lagrangian for the sys-
tem of equations (29); in fact, the imaginary part of (31) is
mẋẏ − mgx, which is a real Lagrangian that leads to Eqs.
(29), but this is not the standard Lagrangian for this prob-
lem.)

Since the Lagrangian (31) does not depend explicitly on
the time, the Jacobi integral,J ≡ ż (∂L/∂ż) − L, is con-
served. In fact, one finds that

J = 1
2mż2 + εmgz

= 1
2m(ẋ2 + 2εẋẏ) + εmg(x + εy)

= 1
2mẋ2 + ε(mẋẏ + mgx).

One can verify that the real and imaginary parts ofJ are sep-
arately conserved as a consequence of Eqs. (29).

Substituting (31) into Eq. (7) we obtain the equation

−εmgη + mż

(
∂η

∂t
+ ż

∂η

∂z

)
−

(m

2
ż2 + εmgz

)

×
(

∂ξ

∂t
+ ż

∂ξ

∂z

)
=

∂G

∂t
+ ż

∂G

∂z
, (32)

which has to be satisfied for all values ofz, t andż. Hence,
the coefficients of the powers ofż on each side of this equa-
tion must coincide separately. By equating the coefficients of
ż3 we find thatξ must be a function oft only

ξ = A(t), (33)

whereA is a real-valued function of a single variable. From
the equality of the coefficients ofż2 we obtain

∂η

∂z
=

1
2

dA

dt
,

which implies that

η =
z

2
dA

dt
+ B(t), (34)

whereB is a function with values in the dual numbers.
The equality of the terms proportional toż and the ones

independent oḟz yields

1
m

∂G

∂z
=

∂η

∂t
=

z

2
d2A

dt2
+

dB

dt
, (35)

and
1
m

∂G

∂t
= −εgη − εgz

dA

dt
, (36)

respectively. Then, the equality of the mixed second partial
derivatives ofG gives

z

2
d3A

dt3
+

d2B

dt2
= −3

2
εg

dA

dt
. (37)

The fulfillment of this condition for all values ofz (taking
into account thatA andB are functions oft only) implies
thatd3A/dt3 = 0 and therefore

A(t) = c8t
2 + c7t + c3, (38)

wherec3, c7 andc8 are arbitrary real constants (the labeling
of the constants is chosen to get agreement with that em-
ployed in Sec. 3.1 of Ref. [13]); then, Eq. (37) gives

d2B

dt2
= −εg(3c8t + 3

2c7),

which leads to

B(t) = −εg
(

1
2c8t

3+ 3
4c7t

2
)
+(c4+εc5)t+(c1+εc2), (39)
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wherec1, c2, c4 andc5 are four additional arbitrary real con-
stants. Substituting (38) and (39) into Eqs. (35) and (36) one
gets

G = m
[− c1εgt + c4(z − 1

2εgt2) + c5εz

− 3
2c7εgtz + c8( 1

2z2 − 3
2εgt2z)

]
. (40)

In this way we obtain a seven-dimensional group of varia-
tional symmetries of the Lagrangian (31), which is a symme-
try group of the equations of motion (29). By contrast, the
standard (real) Lagrangian for the equations (29) possesses
an eight-dimensional group of variational symmetries [13],
which does not represent a big difference taking into account
the simplification achieved with the use of the dual numbers.

4. Concluding remarks

In the examples considered here, we started by expressing
the equations of motion as a single second-order differential
equation for a complex, double or dual variable,z, for which
a suitable Lagrangian was constructed, from scratch, and, as
a byproduct, we have found real Lagrangians for the systems
under consideration, which differ from the standard ones.

As we can see, a successful use of the complex, double or
dual numbers depends on the choice of the coordinates and
on their convenient pairing.

It is important to stress the fact that a complex, double
or dual number is not simply a pair of real numbers because,
apart from having the usual algebraic operations ofR2, these
sets of numbers are closed under the multiplication.

1. V.K. Kisil, Geometry of M̈obius Transformations, Elliptic,
Parabolic and Hyperbolic Actions of SL2(R) (Imperial Col-
lege Press, London, 2012), chap. 3,https://doi.org/
10.1142/p835 .

2. G.F. Torres del Castillo, Some applications in classical me-
chanics of the double and the dual numbers,Rev. Mex.
Fı́s. E 65 (2019) 152, https://doi.org/10.31349/
RevMexFisE.65.152 .

3. G.F. Torres del Castillo, Applications of the double
and the dual numbers. The Bianchi models,Rev. Mex.
Fı́s. E 17 (2020) 146, https://doi.org/10.31349/
RevMexFisE.17.146 .

4. G.F. Torres del Castillo and K.C. Gutiérrez-Herrera, Double
and dual numbers.SU(2) groups, two-component spinors and
generating functions,Rev. Mex. F́ıs. 66 (2020) 418,https:
//doi.org/10.31349/RevMexFis.66.418 .

5. G.F. Torres del Castillo,Differentiable Manifolds: A Theoreti-
cal Physics Approach, 2nd ed. (Birkḧauser, New York, 2020),
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