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It is shown that in some examples of classical mechanics, the complex, double and dual numbers are useful in the search of symmetries ¢
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1. Introduction see that the fact that the double and the dual numbers are not
fields in the algebraic sense, does not impede their use in var-

Apart from their use in the calculation of some definite in-jgys ways. Moreover, a great advantage is that these numbers
tegrals, the complex numbers have numerous applications ifhey most of the algebraic rules applicable to the real and
physics, especially in electrodynamics, and they are esse@pmplex ones and, therefore, we can perform the computa-
tial in the standard formulation of quantum mechanics. Bytions in exactly the same manner as if we were dealing with
contrast, one finds very few examples of the application ofeg| variables.
the complex numbers in classical mechanics. On the other p examples considered in this paper correspond to me-
hand, there are two additional sets of numbers, somewhahanical systems with a number of degrees of freedom equal
analogous to the complex ones, called double and dual nuMg two and their standard Lagrangians are polynomials of
bers here (though they receive other names in the literaturegegree two ini: andy; hence, the partial differential equa-
that are seldom employed in physics, or even in mathematicgon that determines their variational symmetries leads to a
(see, however, Ref. [1]). Nevertheless, in recent works somgystem often differential equations that only involve, y
examples of the application of the double and the dual numgngd ¢+ (which are obtained by considering the coefficients
bers in the standard equations of mathematical physics hayg i3, @2y, iy2, 03, i2, iy, 92, &, y and the terms that do not
been given [2-5]. (The double numbers are also employegontainz or 7). By contrast, the use of a complex, double
in the construction of alternative physical theories, €8,  or dual variablez, leads tofour differential equations that
Refs. [6-10].) only involve z andt (which are obtained by considering the

In some of the applications of the complex numberg{  coefficients of:3, 22, z and the terms that do not contaip
in general relativity), the number of equations can be reduced The examples considered here belong to a special class:
by half just because a complex equation is equivalent to tWehejr equations of motion, written in terms of the complex
real equations. In a similar manner, an equation involvingcombpinationz = = + iy, amount tof = f(z, 2,t), wheref

double or dual numbers is equivalent to two real equationgs an analytic function of andz, and any such equation can
that can be handled Simultaneously [1, 5] be expressed in the form

In classical mechanics, apart from the interest in solv-

ing the equations of motion, a related problem is that of - d0L %’ (1)

finding the variational symmetries of a given Lagrangian be- dt 9z 0z

cause they are associated with conserved quantitiesfgge, whereL(z, Z,t) is a suitable function (agaitd; is an analytic
Refs. [11-14]). function of z and 2). The proof of the existence af and

The aim of this paper is to show that in some problemghe recipe to construct it is givee,g, in Refs. [14, 16] for
of classical mechanics, the use of complex, double or duahe case of real variables but, under the present assumptions,
numbers greatly simplifies the search of symmetries of théhey can be applied without change in the case of complex
equations of motion, by means of an appropriate Lagrangiarfunctions.
(Any variational symmetry of a Lagrangian leaves invariant  In Sec. 2 we give two examples making use of complex
the form of the corresponding equations of motion, but thenumbers and in Sec. 3 we give examples that can be conve-
converse is not true (see,g, Ref. [15]).) Here, again, we niently treated using complex, double or dual numbers.
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2. Examples with complex numbers As in the usual case of real-valued quantities one can show

. that, by virtue of the Lagrange equatid),(Eq. [7) is equiv-
There are two nice examples, closely related to each othegjent to the conservation gf, defined by

where the complex numbers are very useful: the problem of

a charged particle moving on a plane in a uniform magnetic oL .OL
field and the two-dimensional isotropic harmonic oscillator. =15 —¢ (Zaz B L> -G (®)
In the first case, the equations of motion for a charged par-
ticle of massm and electric charge moving on a plane in Substituting 4) into Eq. [7) we get
a magnetic field3, perpendicular to this plane, expressed in on an m o€ o€
i i iwet 3 iwet 22 .
Cartesian coordinates, are melwet 2 (c’)t + Z&z) - et ((% + z(%)
mi = mwcly, mij = —muwed, (2) M. 0 oG
where T lwee I = T s ©)
o GBO
We =" which has to be satisfied for all values aft andz. Since

is the so-called cyclotron frequency (in Gaussian units)?,¢ andG are functions of: and¢ only, the coefficients of
Then, with the definition = = + iy these equations amount the various powers of on each side of this equation must co-
to the single complex equation incide separately. By equating the coefficientsdfve find

that¢ must be a function of only
mz = —miwcz. 3)

Applying the standard procedure to find Lagrangians for a ¢ =A), (10)
given second-order ordinary differential equation (seg,

Refs. [13. 14, 16]), one readily finds the Lagrangian where A is a real-valued function of a single variable (on

the other handy has complex values; this follows from the

L = Lmelwet:2, (4) fact that{ = 0t'/0s|s=o andn = 02'/0s|s=o, consid-
ering a one-parameter family of coordinate transformations
corresponding to Eq3J. ' =2'(z,t,8),t =t'(z,t,s), such that, fos = 0, 2’ = 2,
It may be noticed that the complex Lagrangi#j (vrit- 4/ — ¢ [11-14]). From the equality of the coefficients oF
ten in terms oft andy, is we obtain
L = im[(#* — §°) cos(wet) — 2@y sin(w,t)] % = %% - %iwcA,

+idm[(i* — 9?) sin(wet) + 2@y cos(wet)]  (5)  which implies that
and one can verify that the real and imaginary parts efe 2 (dA |
two, essentially equivalent to each other, (real) Lagrangians =3 (dt - WCA> +B(t), (11)

leading to Egs.2), which depend explicitly on the time and

both coordinatesz andy, are ignorable (It may be re- whereB is a complex-valued function.

marked that, by contrast, the usual Lagrangian for this prob- The equality of the terms proportional toyields
lem is time-independent but the coordinateandy cannot

be both ignorable.) 109G — iwet O
In order to find more symmetries of the Lagrangidh ( m 0z ot
and the corresponding constants of motion, we look for wt |z (2A . dA dB
groups of variational symmetries @f by copying the equa- =e [2 <dt? - Mcdt> dt] ’ (12)

tion for (the infinitesimal generators of) these symmetries ob- .
tained in the usual case of real-valued coordinates ¢sge, Where we have made use @flf, and from the equality of the

Refs. [11-14]) terms independent afwe get
oL 9L (dn .d¢\ 0L ¢ dG 1 9CG
5:" " 53 (dt Zdt)+ at g T w © o = (13)

wheren, £ andG are functions ot andt only anddf/dtis  Then, the equality of the mixed second partial derivatives of
an abbreviation fot f /0t + 2 0f /0z; at this point the vari- G gives

ablesz, z andt are independent (we are assuming that

andG areanalyticfunctions ofz, that is, there is no depen- |z /a2A . dA dB
dence on the qomplex conjugatez)f Equation|6) can also Wel g ( a2z cht) at
be expressed in the form

L (dPA | d?A\  &°B
Sl (R i I e A | G 1
7 ol e ) g 70 (4

oL OL dn .OL d¢ oL, dG
3277 0%z dt

Zﬁ_L dt "ot dt
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The fulfillment of this condition for all values of (taking  Equation/20) (which has the form of the equation of motion
into account thatd and B are functions oft only) implies  for a one-dimensional harmonic oscillator) can be obtained

that by means of Eq.1) from the Lagrangian
d3A ,dA d’B dB 1,22 1, 22
palliak 2 =0 iWe— =10 15 L=:smz*— smw”z”. (22)
as e T g Tlwegy =00 (19 ? ?
and therefore Substituting21) into Eq. [7) we get
. 0
A(t) = ¢1 cos(wet) + ¢ sin(wct) + cs, (16) —mw?zn +mz an + z@ _ (@22 + @w222>
ot 0z 2 2
wherecy, co andces are arbitrary real constants, and o€ o€ oG oG
. z
B(t) =4+ 165 + (CG + 167)671‘0&7 (17)
- . and following the same steps as in the preceding case one
wherecy, ..., c7 are four additional arbitrary real constants. fings that all the solutions of this last equation are given by
Hence, from Eqs/20)—(13), (16) and (L7), we find that
the most general solution of E@®)(is given by & = ¢ cos(2wt) + co sin(2wt) + c3, (23)
& = ¢1 cos(wct) + co sin(wct) + cs, 1 = —wz[cr sin(2wt) — cg cos(2wt)]
N = twez(—erie et + el — i) + (¢4 +ics) cos(wt) + (¢ + icr) sin(wt), (24)
+ ¢4 +ics + (cg +icy)e et (18) G= m{ — w?2?[e; cos(2wt) + co sin(2wt)]
2,2
G=m|—(c; +icy)—= S (c6 + icy)iwez| , — (c4 +ics) wzsin(wt) + (¢ +icr) wz cos(wt)}, (25)
wherec,, ..., c; are arbitrary real constants. Thus, the Lg-Wherecy, ..., c7 are arbitrary real constants. Hence, the La-

grangian 4) possesses a seven-dimensional group of Variagr_angian 21) aIS(_) admits a seven-dimensional group of vari-

tional symmetries. Substitutind®) into Eq. ), using the ational symmetries. N

fact thatcy, . . ., c; are arbitrary one obtains seven constants Another advantage of the use of the complex quantities

of motion, which cannot be functionally independent sincelNtroduced above is that with their help we can readily es-

for a regular system with a number of degrees of freedont@blish a connection pe_tween the sets of equations of_ motion

equal to two there exist four functionally independent con-(9) and @S). In fact, it is easy to see that if is a solution

stants of motion. to Eq. B) thenw = elw:*/2; satisfies EqJ/20), provided that

It is interesting to note that the one-parameter group ob® = we/2, @nd conversely. Furthermore, with this relation,

tained from Eqs/A8) with ¢; = 1, and all the other constants the Lagrangian4) becomes

¢ equal to zero, is given b = t + s, 2/ = ze wes/2 that o

is, translations in the time accompanied by specific rotations L = $mai® — imw’w” + o (—igmww?),

in the zy-plane. Such transformations are, separately, sym- v

metries of the equations of motio)( but the Lagrangian which is the Lagrangian2() up to the “total derivative with

(4) does not possess these symmetries one by one. This is egspect to the time” o#i%mwa and, thereforeld) and 21)

example of the fact that the symmetries of the equations ofead to equivalent equations of motion. (Note that, at this

motion, may not bevariational symmetries of a Lagrangian point,w, w, and¢, mustbe regarded as independent variables

leading to such equations (seeg, Ref. [15]). and therefore it is an abuse to speak of a total derivative with
respect to the time, though this is the standard usage.) In

2.1. The two-dimensional isotropic harmonic oscillator ~ View of this connection, it is not strange that we end up with
symmetry groups of the same dimension (and it is to be ex-

In the case of the two-dimensional isotropic harmonic oscil-pected that these two groups are isomorphic, though we are

lator, the equations of motion, in Cartesian coordinates, araot dealing with this question here).

given by Writing the Lagrangianl) in terms of(x, y, 4,9) one

finds
mi = —mw?z, mij = —mw?y, (29)

L=1im(i®—9?) — tmw?(2® — v°) +i(mig — mw’zy).
wherew is a real constant. Also in this case the complex
variablez = = +iy is useful because Eq4.9) are equivalent  The real and the imaginary parts of this function are accept-

to able real Lagrangians for the equations of motib@) (which

mi = —mw?z. (20)  differ from the standard one.
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3. Examples with double and dual numbers One can verify that the real and imaginary parts @fre sep-

S ] arately conserved as a consequence of E283. (
In a simplified manner, the double numbers can be defined as Substituting/81) into Eq. [7) we obtain the equation

expressions of the forma + jb, with a, b € R, where the unit

j is such that? = 1, butj # +1, while the dual numbers (On .On m .,

are expressions of the form+ eb, with a, b € R, where the —emgn +mz e + Sl (52 + Emgz)
unit ¢ is such that? = 0, bute # 0. The sum and product

of these numbers are commutative and associative, and the % (35 + 265> - 9G + 28£7 (32)
multiplication is distributive over the sum (see also Ref. [1]). ot 0z ot 0z

It may be noticed that, by contrast with Ec3) and @),
Egs. 20) and 21) do not contain the imaginary unitand,
actually, Egs.20) and 21) remain valid if we employ the
combinationz = x + hy, whereh can be eithei, j ore. Fur-
thermore, the form of Eq20Q) is unchanged and its solution

is given by £=A(), (33)
§ = c1 cos(2wt) + o sin(2wt) + cs, (26)

which has to be satisfied for all values aft andz. Hence,

the coefficients of the powers éfon each side of this equa-
tion must coincide separately. By equating the coefficients of
23 we find that¢ must be a function of only

whereA is a real-valued function of a single variable. From

n = —wz ey sin(2wt) — e cos(2wt)] the equality of the coefficients 6f we obtain

+ (¢4 + hes) cos(wt) + (¢6 + her) sin(wt), 27) oy 1d4
G =m{ — w?2?[e cos(2wt) + ¢y sin(2wt)] 0z 2dt’
—(ca+hes) wz sin(wt)+(cg+her) wz cos(wt) },  (28)  which implies that
wherecy, . .., c; are arbitrary real constants. By decompos- 2 dA
ing Egs. I26) and 27) into their real and “imaginary” parts n=5q; T B, (34)
one obtains the same transformations for the variables
andt, regardless of the unit choseinj(or ¢). whereB is a function with values in the dual numbers.
The equality of the terms proportional foand the ones
3.1. An example with dual numbers independent of yields
The system of equations 190G on zd%2A dB (35)
corresponds to a particle of massin a uniform gravitational and 4
field, where the constaptis the acceleration of gravity. Mak- 106 = —egn — ggzi7 (36)
ing use of the variable = z + ey, with values in the dual m ot dt
numbers, Eqsi29) amount to the single equation respectively. Then, the equality of the mixed second partial
. derivatives ofG gives
mz = —emg, (30)
and one can readily verify that this equation can be obtained gd?’iA n d’B B 7§5 dA 37)
from the Lagrangian 2ar Tae T 2 ar
L =imz* —emgz. (31)  The fulfillment of this condition for all values of (taking

(Note thatZ also has values in the dual numbers, and it is"© a3cc0ur;t thatd and B are functions of only) implies
not constructed from the standard Lagrangian for the systhatd”A4/d¢* = 0 and therefore
tem of equations29); in fact, the imaginary part 031) is

may — mgzx, Which is a real Lagrangian that leads to Egs.
(29), but this is not the standard Lagrangian for this prob-

lem.)

A(t) = cgt? + ert + c3, (38)

wherecs, ¢; andcg are arbitrary real constants (the labeling
. , . f the constants is chosen to get agreement with that em-
Since the Lagrangiar8l) does not depend explicitly on ° . .
the time, the Jagobigi]nteg‘r;lf, =z (6L/8pz') — L,pis coyn- ployed in Sec. 3.1 of Ref. [13]); then, E@4) gives
served. In fact, one finds that A2B

- = 3
J = imz® + emgz dt? e9(3est + 5e7),

= Im(i® + 2eig) + emg(z + ey) which leads to

1, 2 . .
= gmi” + e(miy + myz). B(t) = —eg(3est®+3c7t?) +(catecs)t+(ci+ecs), (39)
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wherecy, co, ¢4 andes are four additional arbitrary real con-
stants. Substituting8g8) and B9) into Egs. [85) and [36) one
gets
G = m[ —c1egt + ca(z — %ath) + c5ez
— 3cregtz + cg(32° — Segt®z)]. (40)

4. Concluding remarks

In the examples considered here, we started by expressing
the equations of motion as a single second-order differential

equation for a complex, double or dual variabigfor which

a suitable Lagrangian was constructed, from scratch, and, as
a byproduct, we have found real Lagrangians for the systems
under consideration, which differ from the standard ones.

In this way we obtain a seven-dimensional group of varia- As we can see, a successful use of the complex, double or

tional symmetries of the LagrangiaBlj, which is a symme-
try group of the equations of motio29). By contrast, the
standard (real) Lagrangian for the equaticg8) (possesses

dual numbers depends on the choice of the coordinates and
on their convenient pairing.
It is important to stress the fact that a complex, double

an eight-dimensional group of variational symmetries [13],or dual number is not simply a pair of real numbers because,
which does not represent a big difference taking into accourspart from having the usual algebraic operationRffthese
the simplification achieved with the use of the dual numberssets of numbers are closed under the multiplication.
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