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The bound state solutions of the deformed Klien-Gordon equation (DKGE) have been determined in the extended relativistic quantum
mechanics ERQM symmetries using the improved spatially-dependent mass Coulomb potential with mixed scalar-vector Coulomb potentials
(ISDM-SVCPs) model. The spatially-dependent mass Coulomb potential, as well as a combinatigr®adr(d 1/+*), are included in

the ISDM-SVCPs model, which is coupled with the couplih@, which explains the interaction of the physical features of the system

with the topological deformations of space-time. The new relativistic energy eigenvalues for the ISDM-CP have been derived using the
parametric Bopp's shift method and standard perturbation theory. Quantum numbgessr), mixed potential depthg(s., mo, m1), and
noncommutativity parameter®(r,x) seemed to affect the new values we obtained. Within the framework of relativistic extended quantum
mechanics, we have addressed certain significant particular instances that we hope will be valuable to the specialized researcher. In DKGE
symmetries, we've also looked at the improved pure scalar Coulomb-like potential. The formulation of total energy was also discovered in
the context of extended symmetries, which unified the energies of bosonic particles and antiparticles into a single mathematical formula.
When the three simultaneous limit®, , x) were applied, we recovered the normal results of relativistic in the literaiye ).
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1. Introduction the Kratzer potential in the spherical polar coordinate in non-
commutative space and obtained the energy shift due to non-

It is important to obtain the bound state energy spectrun$OMmutativity via the perturbation theory [5]. On the per-
of the Klein-Gordon (KG), Dirac or Duffin-Kemmer-Petiau sonal level, we have had recent contributions regarding the
(DKP) equations in order to successfully examine relativis-Study of the Coulomb potential combined with other poten-
tic effects in many area of physics, such as nuclear physicdials within the framework of the KG [6-10], Satutinger
high energy physics, and so on. Recently, many authors hadé1—-13] and Dirac [14] equations, but so far we have not
focused on solving these equations with physical potentiai§tudied this potential singlet within the framework of non-
the scalar potential is not equal to but greater than the veccommutative quantum mechanics symmetries With the help
tor potential. By inserting the scalar potential as a modifi-Of the Bopp’s shift method and standard perturbation theory.
cation in the mass component of the KG equation, Bakkdvlany works in the framework of usual-symmetric quantum
and Furtado explored the effect of a Coulomb type potenMechanics have investigated the bound states of the KG and
tial on the KG oscillator [1]. Vibria et al. studied the rel- Dirac equations in arbitrary dimensions with Coulomb-like
ativistic quantum dynamics of an electrically charged parti-Scalar plus vector potentials of constant massetal. found

cle in the presence of the KG oscillator and the CoulombeXact solutions for DE using a Coulomb potential and showed
potential, as well as the behavior of a relativistic position-the energy levels and fine structure in the generalized (D+1)
dependent mass particle in the presence of the KG oscillssPace-time [15]. Dong used the Tricomi equation approach
tor and the Coulomb potential [2]. The influence of a spa-0 study the (D+1)-dimensional DE with the Coulomb poten-
tially variable mass on the solution of the KG equation intial and expressed the eigenfunctions using the confluent hy-
(1+1) dimensions for inversely linear scalar potentials wag*ergeometric function [16]. In higher-dimensional field the-
studied by Dutra and Jia [3]he energy shift due to non- OrY; Ma examined the D-dimensional Klein—Gordon equation
commutativity was obtained by Motavalli and Akbarieh us- (D-KGE) with a Coulomb plus scalar potential and found
ing the stationary KG equation for the Coulomb potentialthe eigenfunctions that appear as a function to the conflu-
in noncommutative space using the perturbation theory, an@nt hypergeometric functions [17]. The eigenfunctions of
showed that the degeneracy of the initial spectral line is brothe D-KGE with a Coulomb potential were derived and de-
ken in the transition from commutative to noncommutativescribed analytically by the confluent hypergeometric function
space [4]. Darroodeét al. investigated the KG equation for by Donget al. [18]. In the context of spatially-dependent



2 A. MAIRECHE

mass within the framework of relativistic quantum mechan-improved spatially-dependent mass Coulomb potential with
ics, we have three studies of interest related to Coulomb panixed scalar-vector Coulomb potentials (ISDM-SVCPS) in
tentials. Hamzavet al. (2010) solved the Dirac equation the DKGT symmetries was motivated by the fact that it had
(DE) for spatially-dependent mass Coulomb potentials, innot been reported in the literature for bosonic particles and
cluding a Coulomb-like tensor potentiéll(r) = —H/r, us-  antiparticles. The following are the vector and scalar ISDM-
ing an asymptotic iteration method with an arbitrary spin-SVCPs models that will be used in this study,{(7) and
orbit coupling numbetk, and obtained the energy eigenval- S;. (7)) as follows:

ues and corresponding eigenfunctions in the pseudospin sym-

metry limit [19]. Ikhdair and Ramazan investigated the ef- Vie (F) = Vie (1) — 2 25010 4 0 (6?)
fect of a spatially-dependent mass function on the solution of R | 98.(r) o 1)
the DE with the Coulomb potential in the (3+1)-dimensions, Ssc () = Ssc (1) = 5, =52~ LO + 0 (67?)

and found the analytic bound state energy eigenvalues a’]ﬂ addition to the new spatially-dependent bosonic mass
corresponding upper and lower two-component spinors o;ngc (7), in DKGT, which is expressed as:

the two Dirac particles in closed form using the Nikiforov-

Uvarov (NU) approach in the context of spin and pseudospin N 1 Omyge (1)
symmetry for any arbitrary spin-orbit state [20]. Ikhdair Mise (7) = m(r) = % or
found the exact bound-state energy eigenvalues by analyzinvg

the effect of spatially dependent mass functions on the SO hf.rel(v“ (T)(’j.SSC ir)t’hm (7.')) ar(? tRhe,\\/llelc(:tor an(_:J St%aléll.rt po-
lution of the KG equation in the (3+1) dimensions for spin- entials according to the view of RQM known in the litera-

LOe+0 (0%, (2

less bosonic particles with mixed scalar-vector Coulomb—liketure [21):

field potentials and masses that are directly proportional an Vie (1) = Vo + BSse (r) andSs, (r) = _ heqs
inversely proportional to the distanee (r) = mo + my/r ! )
from the force center. The NU approach is also used to ob{ m (r) = mq (1 + %) withr £ 0and)\g = mr;c

tain the KG’s related wave functions for mixed scalar-vector
and pure scalar Coulomb-like field potentials [21]. The studywhere my is the integration constant (rest mass of the
of quantum theories in deformed spaces with noncommutgfermionic particle),m; is the perturbed mass and, is
tive coordinates has recently been revived as a topic of intethe Compton-like wavelength in fm units. The constant
est [22—25]. In addition to the postulates that we know withinmassb is a dimensionless real constant that should be set
the framework of quantum mechanics known in the literatureto zero. (7andr) is the distance between the two parti-
the non-commutative formula depends on two new postulategles in the DKGT symmetries and QM symmetries, respec-
iff’h’i) « D o glahd) f&&hﬂ andﬁff’h’i) «pu) £ tively. The coupling(L® = L.©) is the scalar product of
ﬁs’}L’i)*ﬁs’}L’i), here ) stands for the Weyl-Moyal star prod- the usual components of thg. angular momentym operators
uct. Despite quantum mechanics’ brilliant successes in treal (Lz; Ly, L-) and the modified noncommutativity vector
ing physical and chemical systems in various research field (012, 023, 013) /2 which present as is the noncommutativ-
significant physical problems have arisen, such as the staffy €léments parameter. In the case(®fc, the noncentral
dard model's divergence problem, gravity quantization, and/€nerators can( Sb}?i;suﬁ(asb}%reahzed as self-adjoint differen-
the problem of unifying it with the rest of the fundamental in- tial operators ., p,”""") appear in n three varieties.
teractions, and so on [26—37]. It should be noted that HeisenLhe first one is the canonical structure (CS), the second is
berg in 1930 suggested the idea of extended noncommutatife Lie structure (LS), while the last corresponds to the quan-
ity to the coordinates as a possible solution for removing thdum plane (QP) in the representations of Stinger, Heisen-
infinite quantities of field theories before the renormalizationP€rg, and interactions pictures, satisfying a deformed algebra
method was developed and had gained attention. In an eff the form (For simplicity, we have used the natural units
fort to standardize QFT, Snyder published the first paper ot = ¢ = 1): [43-51]:
its history in 1947 [38], and Connes introduced its geometric (s.hd) - (5.0 )

L . . oS p S — GRS, —>
analysis in 1991 and 1994 [39, 40]. Seiberg and Witten ob- { I Py } nv
tain a new version of gauge fields in noncommutative gauge
theory [41] by extending earlier ideas on the advent of NC
geometry in string theory with a nonzero B-field. One of the
potential goals of NC deformation of space-space and phas@—n
phase [42] is to eliminate the observed undesired divergences
or infinities that appear to cause short-range in field theories {x(s,h,i) x(s,h,i)] — 0 — {E(s,h,i)*f(s,h,i) _
such as gravitational theory by generating new quantum fluc- oo " v

{/"L‘\Ef’h’i)f]/?\f,s’h”i)} — iheffé;u/a (4)

tuations. In addition, the emergence of NC-QFT in string i0,, 0,, c IC For CS,
theory gives more credibility to their work. | believe that this ife i‘fs,h,i)‘f o ¢ IO ForLS (5)
research will contribute to further subatomic scale investiga- pye oY ' '

. . L . : aﬁ/\(s,h,i)/\(s,h,i)_ af
tions and scientific knowledge of elementary particles. The WO Ta” T O € IC For QP
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In the DKGT symmetries, the generalized coordinates
E,(f’h’z)and the generalizing momenturﬁés’h’l) are equal

(z3, 2k, 7,,) and(p;, 5%, p,) while the corresponding co-  ( * g) (x) = exp (i"*09},07) (hg) (x)
ordinatesz( " andp;"™" are equal (3, ", %) and ¢, iy
pli, p.) in the RQM symmetries are, respectively. Hé(& ~ (hg) (x) — 9 Ophdgglor—av + 0 (07) . (10)

denotes the complex number field. Furthermore, the usual o _
uncertainty relation corresponding to the LHS of Eq. (5) will Every sum indices( or ») can be equal to 1,2,3 if? = 3.
be extended to become two uncertainties the following for-The effects of space-space noncommutativity are represented

mula in the new form symmetries is as follows: physically by the second term in Eq. (10). The following
is a summary of the current paper’s structure. The scope
’A:cff’h”)ApffM) > o, )2 = and objective of our investigation are presented in the first
section, and the remainder of the paper is organized as fol-
’Agﬁ,h,i)Aﬁf’s,}m > he O /2, (6) lows: Section 2 presents an overview of the KGE under the
ISDM-SVCPs model. Section 3 is devoted to investigating
and the DKGE using the well-known Bopp’s shift method to ob-
10,.,| /2 For CS, tain the ISDM-SVCPs model’s effective potential. Further-
‘A’x\ﬁvhvi)A’x\E/&hJ) > F,,/2 For LS, (7)  more, using standard perturbation theory, we find the expec-
G,./2 For QP, tation values of the radial termg (® and 1/r%) to calcu-

_ late the corrected relativistic energy generated by the effect
with F,, and Gy, are equal to the average values of the perturbed effective potentialss, (r) of the ISDM-
L<fﬁﬁz(f’h’l)>‘ and ‘<Cﬁfﬁ(xs’h’z)f(ﬂs’h’l?’, respectively.  SVCPs model, and we derive the global corrected energies

he second uncertainty relation in Eq. (7) is the consequend®r bosonic particles and antiparticles whose spin quantum
of the deformation of space-space that arises from the RH8umber has an integer valug (, 2...) and satisfies the Bose-
of Eqg. (5) that is divided into three varieties, while the first Einstein statistics under the ISDM-SVCPs model. Section 4
uncertainty relation in Eq. (6) is the result of the generalizadis reserved to study important relativistic particular cases in
tion of LHS Eq. (4) to RHS form. There is no equivalent DKGT. The improved pure scalar Coulomb-like potential in
in the literature for the novel incertitude relation in Eqg. (6) DKG symmetries will be studied in the next section. The
in the framework of quantum mechanics. Under the Lorentsixth section is devoted to the conclusions.
transformation, which includes boosts and/or rotations of the
observer’s inertial frame, Egs. (4) and (5) are covariant equa- ) i
tions (have the same behaviorisfﬁ’h’”). The MASCCCRs 2. Anoverview of KGE under SDM-SVCPs in
were extended in DKGT to include Heisenberg and interac- ~ RQM symmetry
tion pictures. When compared to the energy values and el- i o )
ements of antisymmetric3(x 3) real matricesfi.;; = h In order to cons_,truct a phys_,lcal model_descrlbmg a physi-
is the effective Planck constartt,, = ¢,,0 (6 is the non- cal system that !ntergcteq with the spatially-dependent mass
commutative parameter, and is just an antisymmetric num&oulomb potential with mixed scalar-vector Coulomb poten-
ber € = —€, = 1for u # vande. = 0) which tials ('SDM—SVCPS) model in the DKQE, |t.|s useful 'to recall
is an infinitesimal parameter, and is the Kronecker symbolthe eigenvalues and the corresponding eigenfunctions under

The Weyl-Moyals-product is generalized to define the new the influence of this system within the framework of relativis-
deformed scalar produdi(z)  g(z) in three varieties as tic quantum mechanics, RQM, known in the literature. In this

[52-57,59, 78]: gzlsjz,tit:rﬁ system is governed by the following Klien-Gordon
hw) * g(x) = , ,
exp (ie"”00%02) (hg) (x) For CS, (V + [(E"l = Vae (1))
i (s,h,i cor Az
exp (3l 0. (107.107) ) (ho) (@) For LS, (@) — () = See (1)) W (.0, 0) =0, 1)
iq@ (2000 b (u, v) g (u,0") |4/ =8 For QP,

herep = —iAV is the momentum. The repulsive vector

with potential V. (r) and space-time attractive scalar potential
g (k,p) = —k.p, fr” Sse (r) are produced from the four-vector linear momentum

) operatorA* (V. (r), A = 0) and the massn (r), respec-

+ —kupy (pr — ka) fU 4 (9) tively wh|I§ E,.Ll is the rellat|V|st.|c elgepvalue$n, l) repre-
6 sent the principal and spin-orbit coupling terms. It should be

The first variety is used in this research, allowing us to rewritenoted that the scalar potentigl. (r) describes a situation in
(h * g) (x) at the first order of the noncommutativity param- which the difference in potential energies of an object in two
etere*¥ ¢ as follows [60—68]: different positions is determined solely by the positions and

Rev. Mex. Fis69030801



4 A. MAIRECHE

not by the particle path taken in displacement from one point to another, whereas the vector pdteftialk a vector field

whose curl is a given vector field. Since the spatially-dependent mass Coulomb including a Coulomb-like tensor interaction has
spherical symmetry, allowing the wave function solutibyy (r, 6, ) of the known form(u,,; (r)/7)Y!, (8, ) while Y;L (6, ¢)

is spherical harmonics and is the projections on the z-axis. The radial compongpt(r) satisfies the differential equation

as below:

(14 1) 2

2
{d— + (E% Vi (1) = 2B Vie (1) —m ()2 ¢4 — Sue (1) — 2¢2m (1) Sae () — )}un, (r)=0. (12)

dr? r2
Ikhdair in Ref. [21] rewrite the above equation as follows:
d2 V2 1 2
(d tnt (1) =0 (13)
with
eil = m(% - E7211771 =2 (b - Q) m002 - QQﬁEnlv

(14)
Yo=bb—2¢)+¢* (1 -6 +1(1+1).

The author of Ref. [21] used the NU method to obtain the expressiop;@f) as a function of generalized Laguerre polyno-
mial L2+ (2¢,,;r) in usual RQM symmetries as,

! (2€nl)2L+3 (1+vTF472) /2 2L+1
n = 2 _ n L 2 N 7 15
o (T) \/2 (TL+L+1) r (TH-QL—I—Q)T eXp( € 17”) n ( € lr) (15)

here

LZ\/(H;) +b(b—2q) +¢* (1-52) +i (l+1)—%.

Allowing the spinor solutionl,,; (r, 6, ¢) as follows:

n! (26nl)2L+3 (141473 /2~
v - 72)/271 exp (—enir) L2EH (2e,7) Y . 1
nl (7"79799) \/2 (n+L+ 1)F(n+2L+2)r eXp( Gnﬂ") n ( enlr) m(97g0) ( 6)

The corresponding equation of energy for a bosonic parti€fesand antiparticlest, are given by [21]:

qb—q)BE(m+1+L)\/(n+1+L)° - (1— ) —b(b—29)

Ei_*VOJr 5
%+ (n+1+1L)

nl —

. (17)

3. The new solutions of DKGE under the ISDM-SVCPs in the DKGT symmetries:
3.1. Review of BS method

Let us begin in this subsection by finding the relativistic DKGE in the symmetries of extended relativistic quantum mechanics
ERQM or noncommutative quantum mechanics NCQM under ISDM-SVCPs. Our objective is achieved by applying the new
principles which we have seen in the introduction, Egs. (5), (6) and (10), summarized in new relationships MASCCCRs and
the notion of the Weyl-Moyal star product. These data allow us to rewrite the usual radial KG equations in Eq. (11) in the
DKGT symmetries as follows:
2
<;i2 — :—; — % — eil) * Up (1) = 0. (18)

Among the possible paths to finding the solution to Eqg. (18) is the application of the Connes method [39, 40], or the Seiberg
and Witten map [41]. It is known to specialists that the star product can be translated into the ordinary product known in the
literature using what is called Bopp’s shift method. F. Bopp was the first to consider pseudo-differential operators obtained
from a symbol by the quantization rules:

~ 1, i
(f,p) - <l =T — iapvp :p+ 2ar) )

Rev. Mex. Fis69030801
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instead of ordinary correspondence:
- . )
(l’,p)*) rT=z,p=p+ 581 3

respectively. This procedure is known as Bopp’s shifts (BS) method and this quantization procedure is known as Bopp quan-
tization [69—-72]. This method has been widely successful in the last two decades. At the nonrelativistic level, within the
framework of solving the deformed Sduinger equation DSE, the exact and approximate solutions for many typical poten-
tials that are applied to many fields of physics and chemistry have been successfully found (See for example [73, 74]). This
success is not only limited to the DSE but also goes beyond that to the relativistic case in the framework of the three equations.
Within the framework of the deformed Klein-Gordon equation DKGE, approximate or exact solutions were found for several
central potentials of wide application(See typical refs. [75-80]). As for the deformed Dirac equation DDE, many typical po-
tentials were successfully processed, despite the complexity of the calculations (See some refs. [81-84]) while the relativistic
deformed Duffin-Kemmer-Petiau equation DDKPE for particles with spin-(1,2,...) [85, 86]. Thus, Bopp’s shift method BS
method is based on reducing second-order linear differential equations of the DSE, DKGE, DDE, and DDKPE with Weyl-
Moyal star product to second-order linear differential equations of SE, KGE, DE, and DKPE without Weyl-Moyal star product
with simultaneous translation in the space-space. It is worth motioning that the BS method permutes us to reduce the Eq. (18
to the simplest form:

d? T2 N 2
(dr2 2 €nt | Unt (1) = 0. (19)

The modified algebraic structure of covariant canonical commutation relations with the notion of Weyl-Moyal star product in
Egs. (5) and (6) become new MASCCCRs with ordinary known products in literature as follows.(sd@&0—73]):

[fﬁs,h,i)’ﬁgls,h,i)}:iheff(;lw and {fﬁs,m)’@&s,h,i) — 0. (20)

The generalized positions and momentum coordinéIEsh(") andﬁff By Z)) in the symmetries of DKGT, are defined as [70—

73]:
. Vi
E/(Ls,h,z):xis,h,z)izl éu/p(s hyi) and“s h.i) p(s i) 1)
This allows us to find the operato? , in the DKGT symmetries, equal [76—78, 78-81]:
7 =r"-LO+0 (07 (22)
Thus, after straightforward calculations, we obtain the new operatgsgr? and—-~; /7 in the DKGT symmetries, as:

_:%:_l_’)/?,,,zx +O(®2)

T

(23)
—F=-F-m 27«3 JFO(@Q)
Substituting Egs. (23) into Eq. (19), we obtain the following like $climger equations:
(f - G- Do <r>> i () = 0, (24)
with
() = (5 + 505 ) LO+0(7). (25)

By comparing Eq. (24) and Eqg. (13) , we observe an additive pot@ﬂfﬁl(r) dependent on two radial termk/¢3 and1/r%)

which is coupled with the couplin® that explains the interaction of the physical features of the system with the topological
deformations of space-time. From a physical point of view, this means that the spontaneously generaﬁ&“l(emas a

result of the topological properties of deformation space-space can be considered very small compared to the fundamental terr

Zsc (T) - 6nl + B + % (26)

Rev. Mex. Fis69030801



6 A. MAIRECHE

Furthermore, using the unit step function (also known as the Heaviside step fué¢tipror simply the theta function) to
rewrite the global induced two potentidl$®" (r) for bosonic particles and bosonic antiparticles in DKG symmetries as:

o t - t - »P"(r) for bosonic particles
S (r) =SB (r) 0 (| Be) — SES(r) 0 (— | Bl = o (27)
35" (r) for bosonic antiparticles

where the step functiofi(y) is given by:

1fory>0
0(y) = : (28)
Ofory <0

The spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction is extended by including new
additive potential=?e" (r) expressed to the radial termigr3 and1/r* to become the improved spatially-dependent mass
Coulomb potential in DKGT symmetries. The global induced two potenﬁ&fﬁ (r) represent the physical interaction be-
tween the system’s physical properties that correspond to bosonic particles and bosonic antiparticles in DKG symmetries with
topological deformations of space-space characterized by noncommutativity @ecidre generated new effective potential
223”(7») is also proportional to the infinitesimal couplilfi@. This allows us to consider the new additive parts of the effective
potentialEEE”(r) as perturbation potential compared with the main potetial(r) which is also known as the parent poten-

tial operator in the symmetries of DKGT, that is, the inequd]ﬁﬁrt (r) << X, (r) has become achieved. That is all physical
justifications for applying the time-independent perturbation theory become satisfied to calculate the expectation values of pre-
vious radial terms. If we considél”¢ (r), the global potential in DKG symmetries that equ@ts /2] + [y1/7] + €2,) which

presents the corresponding potential in KG theory, and the new additive pote?ifigr). Looking at the previous data, we

find that the physical inequalitgbe” (r) << ([y2/7%] + [v1/7] + €2,) is fully satisfied with its conditions. This allows us to

give a complete prescription for determining the energy level of the generz@hzedn)th excited states.

3.2. The expectation values under the ISDM-SVCPs in the DKGT for spin symmetry

In this subsection, we want to apply the perturbative theory, in the case of DKGT symmetries, we find the expectation values:

1 sc 1 sc

sc J— sc —

L(nlm) = <> and 2(nlm) = <4> )
ré (nlm) r (nlm)

for bosonic particles taking into account the unperturled (r, 6, ) which we have seen previously in Eq. (15). After
straightforward calculations, we obtain the two expectation vallmgglm) andMg(Cnlm by applying the standard perturbation
theory in first-order as follows:

e n! (2e,)* 13 ’ (14+vIF472)—2-1 (=2enr) [L2EH (2 )]2 d (29.1)
— X —4€, m ) "
Wntm) = 9+ L+ )T (n+2L+2) ) exp (—2emr) | L enT)| ar
0
and
n! (2e,)*" 3 " 1+4/1F47; ) —3—1 2
Snim) = /7”( +VIF5z) -3 exp (—2er) [L2F (2eu7)] dr. (29.2)

2(n+L+1)T(n+2L+2)
0

We have used useful abbreviatio®)(,;,»" = (n,l,m |R| n,1,m) to avoid the extra burden of writing , with = (5 or ).

Furthermore, we have applied the property of the spherical harmonics, which has the form:

2w

/ / Y™ (0, ") Y (0, ) sin (8) dOdp = 66 mm: - (30)
0 0

Comparing Eqg. (29. 1,2) with the integral of the form [87]:
+oo
/ t" Lexp (—at) L) (at) LP (at) dt =
0

a(n-—n+B+1)I(m+A+1)
mnT(1—n+B)T(A+1)

X 3Fy (=m,m,n — B;—n+n, A+ 1,1), (31)

Rev. Mex. Fis69030801



THE INFLUENCE OF NONCOMMUTATIVITY ON THE ENERGY SPECTRA OF BOSONIC... 7

with Rel(n))0 ands F» (—m,n,n — 3; —n + 1, A + 1, 1) is obtained from the generalized hypergeometric functii( a1, ...,
ap; B, ..., B9, 1) for p = 3 andg = 2 while T (x) denoting the usual Gamma function. After straightforward calculations we
find:

v Qe T (n42L 43— T D)
L(nim) 2(n+L+1) T (2L+3— 1+ 47) T (2L +2)

x 3Fy (—n, VIt dys — 1,\/T+ 47 — 2L — 2 —n+ /T + 47g — 1,2L+2,1> , (32.1)

sc — (25nl)2L_\/m+5 r (n t2L+4-yi+ 472)
2(nim) 2(n+L+1) nll (2L +4—/T+47) T (2L +2)

X 3 Fy (—n,\/1+472 2, \/T+dys — 2L —3;—n+ /1 + 47 —2,2L+2,1) . (32.2)

3.3. The corrected energy for the ISDM-SVCPs in DKGT symmetries

The main objective underlined in this subsection is to find the contribution resulting from topological properties based on our
strategy that we have successfully applied in previous works and which we try to develop in every new work. We can say that the
global relativistic energy in the perspective of deformation KG theory produced with ISDM-SVCPs model as a result of a major
contribution to relativistic energy known in the literature under DM-SVCPs model in usual KG theory and which we paved for
through a quick look for the bosonic particles and antiparticles in Egs. (17), while the new contribution is produced from the
topological properties under space-space deformation, which can be evaluated through several contributions, we will addres:
three of them. The first one is generated from the effect of the perturbed spin-orbit effective po%ﬁ@lf} corresponding to

the bosonic particles and antiparticles with spin-s. This perturbed effective potential is obtained by replacing the coupling of the
angular momenturh operator and the NC vect6érwith the new equivalent couplir@L.S (with ©% = ©2,+03%,+62,). This

degree of freedom comes considering that the infinitesimal NC vextsarbitrary. We have oriented the sgimsf the bosonic

particles (or antiparticles) to become parallels to the ve®tarhich interacted with the ISDM-SVCPs model. Moreover, we
replace the new spin-orbit coupligL.S with the corresponding new physical fori®/2) G, with G* = J* — L? — S for

the bosonic particles (or antiparticles). Furthermore, in RQM, the operadigfs (J2, L?, S? andJ , ) form a complete set of
conserved physics quantities, and the eigenvalues of the op€&tatare equal to the values:

with |l — s] < j < |l + s| for the bosonic particles (or antiparticles) in DKGT symmetry. As a direct consequence, the
square partially corrected energi@€5°2 (n, q,, mo,m1, 0, j,1, s) = AE9? due to the perturbed effective potentils" (r)

sc

produced for thén, [, m)th excited state, in deformation Klien-Gordon theory symmetries as follows:

ABSE = OF (j,1,s) (Z){5 (n.q.m0,m1) | (33)
The global expectation valu$§>‘(“;lm) (n, q, mg, my) for the bosonic particles (or antiparticles), which were created from the
effect of the ISDM-SVCPs model, are determined from the following expressions:

<Z>Z:le) (’I’L, 4, Mo, ml) =72 <TL4>(91(1.lm) +n <T%>(9:le) ! (34)

The second main part is obtained from the magnetic effect of the perturbative effective po@ﬁﬁ‘abs) under the ISDM-

SVCPs model in the DKGT symmetries. These effective potentials are achieved when we replak® lzobly 7R L., and

012 by TR, here R andr) are present the intensity of the magnetic field induced by the effect of the deformation of space-
space geometry and a new infinitesimal noncommutativity parameter, so that the physical unit of the original noncommutativity
parameteP;,(lengthy is the same unit of}, we have also need to apply:

(' U, m" |L.| n,1,m) = MmOy 10nm With: — 1] <m < +1].

for the bosonic particles (or antiparticles). All of these data allow for the discovery of the new square enedy¥éit(n, ¢,
mg, m1, T, m) due to the perturbed Zeeman effect created by the influence of the ISDM-SVCPs model (fmll;h&)th’
excited state in deformation Klien-Gordon theory symmetries as follows:

AE;,CLQQ (na qs, Mo, M1, T, m) =7R <Z>?Zlm) (’I’L, q,mo, ml) m. (35)

Rev. Mex. Fis69030801



8 A. MAIRECHE

After we have completed the first and second stages of self-production of energy, we are heading to another very important case
under the ISDM-SVCPs model in DKGT symmetries. This physical phenomenon is produced automatically from the influence
of perturbed effective potenti&l??”(r) which we have seen in Eq. (25). We consider the bosonic particles (or antiparticles)
under going rotation with angular velociy. The features of this subjective phenomenon are determined through the replace
the arbitrary vecto® with x€2. Allowing us to replace the coupling® with LS, as following:

LO — yLO. (36)

Here y is just an infinitesimal real proportional constant. The effective poterﬁlﬁs“’t (s), which induced the rotational
movements of the bosonic particles, can be expressed as follows:

SR (r) — Sper " (1) = XAZ) (i (15 4 M0, M) L. (37)

We chose a rotational velocity parallel to the Qz) axis 2= Qe.) to simplify the calculations; this, of course, does not
change the physical characteristics of the examined problem as much as it simplifies the calculations. The spin-orbit coupling
is then transformed into new physical phenomena as follows:

Egg;’“ot (r)LQ = XQZSE;T“ (r) L. (38)

All of this data allows for the discovery of the new corrected square en&#g§f*? (n, ¢, mo, m1, x, m) due to the perturbed
effective potentialzgg;“’t (r) which is generated automatically by the influence of the improved spatially-dependent mass

Coulomb potential for thén, I, m)™" excited state in DKGT symmetries as follows:
AE? = xQ <Z>f7c,,zm) (n, g, mo, m1) m. (39)

It's worth noting that the authors of Ref. [88] investigated rotating isotropic and anisotropic harmonically confined ultra-cold
Fermi gases in two and three-dimensional space at zero temperature, but in this case, the rotational term was a DKGE to the
Hamiltonian operator, whereas in our case, the rotation opei@@qr”’t (r) L) appears automatically due to them from the
deformation of space-space under the improved spatially-dependent mass Coulomb potential model. The eigenvalues of the
operationsG? for a bosonic particles and antiparticles (negative energy) with spin (1,2..) are equal to the following

values:

F@Gls)=[0+1)—1l+1)—s(s+1)]/2,
the possible values gfare:
J={ll=s|,ll=s|+1,..,|l+s|}.

In the symmetries of the DKGT symmetries, the total relativistic enétffy(n, qs, mo, m1, ©, 7, X, 7, [, s, m) for the case

of the bosonic particles (or antiparticles) with spin quantum number has an integer ¥alu2..() and satisfies the Bose-
Einstein statistics such as{ andz®) with improved spatially-dependent mass Coulomb potential model, corresponding to
the generalizedn, [, m)th excited states are expressed as:

1/2
E*(n,qs,mg,m1,0,7,%x,7,1,8,m) = Efl + <Z>f§lm) (n,q,mg,m1) (TR + xQ)m+ OF (4,1,9)) / . (40)
WhereEffl are usual relativistic energies under spatially-dependent mass Coulomb potential model obtained from equations
of energy in Eq.(17). It should be noted that the positive sighin the principal (first) and corrector (second) terms denotes

the energy of the bosonic particles which corresponds to the positive energy, while the negative) sigthe principal and

corrector terms denotes the energy of the bosonic antiparticles which correspond the negative energy. We can now generalize
our obtained energiek; ", in a unified formula, under the improved spatially-dependent mass Coulomb potential model
which was produced with the global induced poternfif{". () for bosonic particles (or antiparticles) as:

—nc?

Byt = Bio (1Esel) — B0 (- |Esel) = (41)

g—nc

E:¢~¢ for bosonic particles
—E3¢~* for bosonic antiparticles'
It is important to note that applying perturbation theory to find corrections of the second order is not useful because we have

only adopted corrections of the first order of infinitesimal paraméters, x) .
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4. Study of important relativistic particular cases in DKGT

We will look at some specific examples involving the new bound state energy eigenvalues in Eq. (40) in this section. By
adjusting relevant parameters of the ISDM-SVCPs model in the deformation of the KG theory symmetries, we could derive
some specific potentials useful for other physical systems for much concern the specialisttratamhld be noted that these
special cases were treated within the framework of relativistic quantum mechanics known in the literature in Ref. [21], and we
are now in the process of generalizing them to include extended relativistic quantum mechanics symmetries.

(1) When the scalar potential is equal to the vector potential in magnitddér) = S, (), and signj.e., V, = 0 andj
=1, Eq. (40) can be reduced to the following forms:

b— Bs,\/B2 —b(b—2
q(b—q)+ By, ( q)m

nl

Eﬁc(n,q,mo,ml,@,T,X,j,l7s7m) = 0

¢* + By
sc . 1/2
+ [(2) Gy (0,0, m0) (PR + X2 m+ OF (L s)] (42)
and
. q(b—q) = Bu/Ba = b(b—2q)
Eap — n
nc(naqamOamlae7T7X7]7l757m> q2 +B,,83 mo
sc . 1/2
- |:<Z> (nlm) (n, q,Mmo, ml) ((TN + XQ) m+ OF (Ja la S))} ) (43)
with

B?, :n+1/2+\/(l+1/2)2+b(b72q).

The first two parts in RHS of Egs. (42) and (43) describe the relativistic energy of a bosonic particles and anti-bosonic
particles within the framework of relativistic quantum mechanics known in the literature while the rest terms are present
the topological effect of the deformation space-space on the theses main energies.

(2) When the scalar potential is equal to the vector potential in magnitadéry) = Ss. (), and sign, i.e.Vp = 0,m; =0
andg = 1, Eq. (40) can be reduced to the following forms:

(n+1+1)* - ¢

E?P . (n,q,m0,0,7,x,4,1,s,m) = m
(154, m0 X ) TRl
Sc . 1/2
+ [<Z>(nlm) (na q, Mo, ml) ((TN + XQ) m+©F (]vla S))} ) (44)
and
. sc . 1/2
E;2(n,q,m0,0,7,X,7,1,s,m) = —mgy — {(Z}Wm) (n,q,mg,m1) (TR + xQ)m + OF (4,1, s))} . (45)

The first two parts in RHS of Egs. (44) and (45) describe the relativistic energy of a bosonic particles and its antiparticles
within the framework of relativistic quantum mechanics known in the literature while the rest terms are present the
topological effect of the deformation space-space on the theses main energies. For the s-wave which cofresponds
toorm = 0, Egs. (44) reduce to:

. (TL + 1)2 - q2 sc . 1/2
Eﬁa(n7qam07657_7X7]51757m) = 7277104’\/6 <Z>(7Ll’m) (naqva;ml)F(]vlas) . (46)
(n+1)" —¢?
The first part in RHS of Eq. (69) describes the relativistic energy of particle for the s-wave within the framework of rela-
tivistic quantum mechanics known in the literature while the rest term presents the topological effect of the deformation

space-space on the main energy.
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When the scalar potential is equal to the vector potential in magnitddér) = —S,. (), and signj.e., Vo = 0 andg
=1, Eg. (40) can be reduced to the following forms:

—q(b—q)+ BL\/Bh —b(b—2g)

nl

Egc(na q,mo,mi, 97 T, X7j7 l7 S7m> =

2
¢+ By
sc . 1/2
(@0 (e emom) (R - x@m+or Gito)] @)
and
~q(b—q) = \/Bh —b(b—2q)
ap . _ ]
Enc(naQ7m05m1a@7T7Xa]7la87m)_ q2+Bgl2
se ) 1/2
- |:<Z>(nlm) (n,q,mo,ml) ((TN+XQ)7TL+@F (],Z,S)) . (48)

The first two parts in RHS of Egs. (47) and (48) describe the relativistic energy of a bosonic particles and its antiparticles
within the framework of relativistic quantum mechanics known in the literature while the rest terms are present the
topological effect of the deformation space-space on the theses main energies.

If we consider the case whén, (r) = —S,. (r), i.e, ¢s = —¢, and sign,i.e, (Vp, m1)=(0,0), then Eq. (40) can be
reduced to the following forms:
0> — ¢
Eﬁc(nvqam07mla@aTaX7jal7S7m) = 2 mo
n+1)" —q?
se . 1/2
+ [<Z> (nlm) (nﬂ q, Mo, ml) ((TN + XQ) m+ @F (]a lv 5))i| ) (49)
and
’ . sc . 1/2
EP(n,q,mg,m1,0,7,X,4,1,8,m) = —mg — [<Z>(nlm) (n,q,mo,m1) ((TR + xQ)m + OF (4,1, s))} . (50)

The first two parts in RHS of Egs. (49) and (50) describe the relativistic energy of a bosonic particles and its antiparticles
within the framework of relativistic quantum mechanics known in the literature while the rest terms are present the
topological effect of deformation space-space on the theses main energies. For the s-wave which coirespaiads

m = 0, Eq. (49) reduced to:

n+1)%—¢2 sc . 1/2
%mo%@ (Z) (nimy (@, mo,m1) F (5,1,8)| . (51)

Efw(”anmOv@7T7X>j7las7m) = - nlm
(n+1)" —gq fm)

The first part in RHS of Eq. (51) describes the relativistic energy of a bosonic particles femthee within the
framework of relativistic quantum mechanics known in the literature while the rest term is present the topological effect
of deformation space-space on the main energy.

5. The improved pure scalar Coulomb-like potential in DKG symmetries

Ikhdair in Ref. [21] used a pure scalar repulsive Coulomb-like field potential and the spatially dependent mass function having
a linear form in the context of usual relativistic KG symmetries:

Sse(r)=2 and Vi (r)=0
{ (52)

m(r)=Ar with A=120
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wherem, is the rest mass andis a constant with space dimension. Ikhdair in Ref. [21] inserting Egs. (52) into the radial part
un (), and obtained:

d? «
<dr2 + eil —ayr? — 7"22> Ung (r) =0, (53)

with €,;, a1 anday are equals,/(2mos./L) — E2,, a1 = mo/L ands? + [ (I + 1), respectively. The author of Ref. [21]

3

used the NU method to obtain the expression for the radiakpait-) of the wave function?,,; (r, 6, ¢) as a function of the
generalized Laguerre ponnomiEfA“)/2 (alrQ) in RQM symmetries. Allowing the wave function solution as follows:

\I/nl (Ta 07 90) = NT(AJFI)/Q €xp (70417’2/2) L$L2A+1)/2 (0117"2) Y;iz (97 90) ’ (54)

the parameteA and the normalization constait are given by:

243V (21+1)2+4s2+1

("nl )r(é (21+1)2+4s§+1>

(nnl ) _ (n;!l)!

is a generalized binomial coefficient. The corresponding equation of energy of a bosonic paifjdes antiparticles, is
given by:

1
A:2< (21+1)2+432—1) andN =

while

2s m 1/2
Ef =+ {mo LC + TO <2n+ 1+4/(20+1)° +453>} : (55)
Now, we apply the Weyl-Moyal star product to Eq. (53), in the context of DKGT symmetries, we obtain:
d? «
<dr2 + €2, —agr? — 7“22> * Uy (1) = 0. (56)

It is worth motioning that the BS method permutes us to reduce the above equation to the simplest form without a star product
as follows:

d? 2 2~ Q2
o2 T = air — = Jun (r)y=0. (57)

Thus, after straightforward calculations using Eq. (22), the new operétar§r2) and (—22) that appear in the above
equation, in the DKGT symmetries, are expressed as:

—a3? = —a21? + afLO + O (92)
(58)
5 =% ;32 10 (67)
Substituting Egs. (58) into Eq. (57), we obtain the following like the Shrodinger equation:
d? @
<dr2 +e2, —aqr? — 722 - UEf”(r)) Uny (r) = 0. (59)
The generated effective potentlﬂ!’f”(r) that appears in Eq. (59) is expressed as:
Qe

UPeT () = (74 - af) LO + 0 (8?). (60)

The inequalityU%" (r) << U.. (r) has become achieved (helig. (r) equale?, — a1r® — [az/r?]). Thus, we need to
calculate the expectation valué%flm) = (1 /T4>1()Z;m) taking into account the unperturbed wave function (r, 6, ¢) which
we have seen previously in Eq. (54). Thus after straightforward calculations, we obtain the following integral:

—+oo

2
Xg(sﬁlm) = N? /r(A+1)_4 exp (—a1r2) [L%QA‘H)/2 (a1r2)} dr. (61)

0
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Introducing the variable change= 2 € [0, +oc], then the above equation takes a new form:

“+o0
sc N2 —3/2— 2
Xg(nlm) — 7 / Z(A+1)/2 3/2—1 exp (7OL12) |:L5L2A+1)/2 (OélZ) dz. (62)

0
Comparing Eq. (62) with the integral in Eq. (31), thus after straightforward calculations we find:
e _ N2 NPT (£ A/2 4 5/2)T (n 4 A+ 3/2)
2(nlm) = 9 n12T (A/2 +5/2)T (A +3/2)
X 3Fy (—n,A/2 —1,-1/2 = A/2;—n+ A/2 —1,A +3/2,1). (63)

To avoid repeating the calculations, we will follow the same physical strategy that we saw in the previous section to find,the
total energyEr5¢(n, s., mo, ©, 7, X, 7, [, s, m) for the case of the bosonic particles (or antiparticles) for bosonic particles with
spin-s sunder improved pure scalar Coulomb-like potential model, corresponding to the gen(ana[izvezdthexcited states:

Epsc(n’ Se¢, Mo, 6777Xaj7 lv s,m) =

nc

}1/2

(nlm)

1/2
o2 (D as2) | 4 (200 00 sem) (R@) mbOr (1.9

for bosonic particles with spin-s
(64)

1/2 12
_ {mOQZC"‘WiO <2n+1+ (21+1) —l—483>:| — [(Z)Z(”Zlcm) (n, Seymo) ((TR4XQ) m+OF (jJ,S))]

for bosonic antiparticles with spin-s

psc

The global expectation valuds’) nlm) (n, s, mg) for the bosonic particles (or antiparticles), which were created from the
effect of the ISDM-SVCPs modeﬁ, are determined from the following expressions:

sc 1 pee mo 2
D (rvem0) = (2 10+ 0) () () .
At the end of this section, we apply the physical two limits achieved for the validity of the results for the improved spatially-
dependent mass Coulomb potential with mixed scalar-vector Coulomb potentials and the improved pure scalar Coulomb-like
potential in DKG symmetries:

(@’Tyxl)ig(O’O’O)Eﬁc(n, 4 m0,0,7, X, j,1,8,m) = EF,(n, ¢, mp)

1)° — ¢
_ V= 6

(n+1)" —¢?

and
1. Epsc (3] ’97 b b .7 l7 b - Epsc 9 Cs
(emx)lgl(o,o,o) ne’ (1 5e,m0, 0,7, x5, 1, 5,m) wi (1, 8c,m0)
280 mo 5 1/2

= |mo— +T 2n+1414/(2014+1)7 + 452 ) (67)

As itis known in the literature that the KG equation describes particles with zero spins, but in our case in which we studied both
the improved spatially-dependent mass Coulomb potential and the improved pure scalar Coulomb-like potential, in the DKGT
symmetries, we found that the DKGE equation can play another role, which is to describe the bosonic particles and antiparticles
whose spin quantum number has an integer value (0,1,2...) and satisfies the Bose-Einstein statistics, which in this case is
similar to the Duffin-Kemmer-Petiau equation. Furthermore, we have found the expression of total energy in the framework
of extended symmetries that unified the energies of the bosonic particles and antiparticles in a single mathematical formula
instead of two separate expressions for the two energy values. Worthwhile it is better to mention that for the three-simultaneous
limits (6, 7, x) — (0,0, 0), we recover the equations of energy for the spatially-dependent mass Coulomb potential with mixed
scalar-vector Coulomb potentials and the pure scalar Coulomb-like potential in the KG symmetries in Ref. [21].
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6. Summary and Conclusions all cases, to make the three simultaneous lifffisr, x) —
(0,0,0), the ordinary physical quantities are recovered in

In summary, this work presents an approximate analytical soR€f- [21]. Finally, a feature of a noncommutative geome-
lution of the 3-dimensional deformed Klein-Gordon equationtry on the 3-dimensional deformed Klien-Gordon equation
with the improved spatially dependent mass Coulomb potenith the improved spatially-dependent mass Coulomb poten-
tial and the improved pure scalar Coulomb-like potential. Wefial with mixed scalar-vector Coulomb-like field potentials
have obtained the new approximate bound-state energies th4puld be the presence of many physics phonemes which usu-
appeared sensitive to the quantum numlfgrs , s, m), the aIIy_appea_r _automancally such as spin-orbit and pseudospin-
potential depthsi{, ¢/s., mo, m1) of the studied potentials, Ol’bllt, modified deman effe_ct and others and cause the be-
and noncommutativity parametef®, 7, x). As we know, havior of topological properties of deformed space-space.
we derived some specific potentials useful for other physi-

cal systems. We also ended our research with this treatmep{cknowledgement

of the nonrelativistic limit of the spatially-dependent mass

Coulomb potential in ENRQM symmetries. Among the mostThis work was supported by the Research Fund of the Lab-
important results of our research is the unification of the eneoratory of Physics and Material Chemistry, University of
ergy equation of the boson particles and antiparticles withirM'sila, and DGRSDT in Algeria with the project number
the framework of extended relativistic symmetries, where weBOOLO2UN280120180001. We are grateful to the anony-
have one formula describing the two states together insteashous referee for the careful reading of the manuscript and
of two separate equations. It is worth mentioning that, foruseful remarks.
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