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The bound state solutions of the deformed Klien-Gordon equation (DKGE) have been determined in the extended relativistic quantum
mechanics ERQM symmetries using the improved spatially-dependent mass Coulomb potential with mixed scalar-vector Coulomb potentials
(ISDM-SVCPs) model. The spatially-dependent mass Coulomb potential, as well as a combination of (1/r3 and1/r4), are included in
the ISDM-SVCPs model, which is coupled with the couplingLΘ, which explains the interaction of the physical features of the system
with the topological deformations of space-time. The new relativistic energy eigenvalues for the ISDM-CP have been derived using the
parametric Bopp’s shift method and standard perturbation theory. Quantum numbers (j, l, s, m), mixed potential depths (q/sc, m0, m1), and
noncommutativity parameters (Θ,τ ,χ) seemed to affect the new values we obtained. Within the framework of relativistic extended quantum
mechanics, we have addressed certain significant particular instances that we hope will be valuable to the specialized researcher. In DKGE
symmetries, we’ve also looked at the improved pure scalar Coulomb-like potential. The formulation of total energy was also discovered in
the context of extended symmetries, which unified the energies of bosonic particles and antiparticles into a single mathematical formula.
When the three simultaneous limits(Θ, τ, χ) were applied, we recovered the normal results of relativistic in the literature (0, 0, 0).
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1. Introduction

It is important to obtain the bound state energy spectrum
of the Klein-Gordon (KG), Dirac or Duffin-Kemmer-Petiau
(DKP) equations in order to successfully examine relativis-
tic effects in many area of physics, such as nuclear physics,
high energy physics, and so on. Recently, many authors have
focused on solving these equations with physical potentials
the scalar potential is not equal to but greater than the vec-
tor potential. By inserting the scalar potential as a modifi-
cation in the mass component of the KG equation, Bakke
and Furtado explored the effect of a Coulomb type poten-
tial on the KG oscillator [1]. Vit́oria et al. studied the rel-
ativistic quantum dynamics of an electrically charged parti-
cle in the presence of the KG oscillator and the Coulomb
potential, as well as the behavior of a relativistic position-
dependent mass particle in the presence of the KG oscilla-
tor and the Coulomb potential [2]. The influence of a spa-
tially variable mass on the solution of the KG equation in
(1+1) dimensions for inversely linear scalar potentials was
studied by Dutra and Jia [3].The energy shift due to non-
commutativity was obtained by Motavalli and Akbarieh us-
ing the stationary KG equation for the Coulomb potential
in noncommutative space using the perturbation theory, and
showed that the degeneracy of the initial spectral line is bro-
ken in the transition from commutative to noncommutative
space [4]. Darroodiet al. investigated the KG equation for

the Kratzer potential in the spherical polar coordinate in non-
commutative space and obtained the energy shift due to non-
commutativity via the perturbation theory [5]. On the per-
sonal level, we have had recent contributions regarding the
study of the Coulomb potential combined with other poten-
tials within the framework of the KG [6–10], Schrödinger
[11–13] and Dirac [14] equations, but so far we have not
studied this potential singlet within the framework of non-
commutative quantum mechanics symmetries With the help
of the Bopp’s shift method and standard perturbation theory.
Many works in the framework of usual-symmetric quantum
mechanics have investigated the bound states of the KG and
Dirac equations in arbitrary dimensions with Coulomb-like
scalar plus vector potentials of constant mass. Guet al. found
exact solutions for DE using a Coulomb potential and showed
the energy levels and fine structure in the generalized (D+1)
space-time [15]. Dong used the Tricomi equation approach
to study the (D+1)-dimensional DE with the Coulomb poten-
tial and expressed the eigenfunctions using the confluent hy-
pergeometric function [16]. In higher-dimensional field the-
ory, Ma examined the D-dimensional Klein–Gordon equation
(D-KGE) with a Coulomb plus scalar potential and found
the eigenfunctions that appear as a function to the conflu-
ent hypergeometric functions [17]. The eigenfunctions of
the D-KGE with a Coulomb potential were derived and de-
scribed analytically by the confluent hypergeometric function
by Dong et al. [18]. In the context of spatially-dependent
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mass within the framework of relativistic quantum mechan-
ics, we have three studies of interest related to Coulomb po-
tentials. Hamzaviet al. (2010) solved the Dirac equation
(DE) for spatially-dependent mass Coulomb potentials, in-
cluding a Coulomb-like tensor potentialU(r) = −H/r, us-
ing an asymptotic iteration method with an arbitrary spin-
orbit coupling numberk, and obtained the energy eigenval-
ues and corresponding eigenfunctions in the pseudospin sym-
metry limit [19]. Ikhdair and Ramazan investigated the ef-
fect of a spatially-dependent mass function on the solution of
the DE with the Coulomb potential in the (3+1)-dimensions,
and found the analytic bound state energy eigenvalues and
corresponding upper and lower two-component spinors of
the two Dirac particles in closed form using the Nikiforov-
Uvarov (NU) approach in the context of spin and pseudospin
symmetry for any arbitrary spin-orbitj state [20]. Ikhdair
found the exact bound-state energy eigenvalues by analyzing
the effect of spatially dependent mass functions on the so-
lution of the KG equation in the (3+1) dimensions for spin-
less bosonic particles with mixed scalar-vector Coulomb-like
field potentials and masses that are directly proportional and
inversely proportional to the distancem (r) = m0 + m1/r
from the force center. The NU approach is also used to ob-
tain the KG’s related wave functions for mixed scalar-vector
and pure scalar Coulomb-like field potentials [21]. The study
of quantum theories in deformed spaces with noncommuta-
tive coordinates has recently been revived as a topic of inter-
est [22–25]. In addition to the postulates that we know within
the framework of quantum mechanics known in the literature,
the non-commutative formula depends on two new postulates
x̂

(s,h,i)
µ ∗ x̂

(s,h,i)
ν 6= x̂

(s,h,i)
ν ∗ x̂

(s,h,i)
µ andp̂

(s,h,i)
µ ∗ p̂

(s,h,i)
ν 6=

p̂
(s,h,i)
ν ∗p̂(s,h,i)

µ , here (∗) stands for the Weyl-Moyal star prod-
uct. Despite quantum mechanics’ brilliant successes in treat-
ing physical and chemical systems in various research fields,
significant physical problems have arisen, such as the stan-
dard model’s divergence problem, gravity quantization, and
the problem of unifying it with the rest of the fundamental in-
teractions, and so on [26–37]. It should be noted that Heisen-
berg in 1930 suggested the idea of extended noncommutativ-
ity to the coordinates as a possible solution for removing the
infinite quantities of field theories before the renormalization
method was developed and had gained attention. In an ef-
fort to standardize QFT, Snyder published the first paper on
its history in 1947 [38], and Connes introduced its geometric
analysis in 1991 and 1994 [39, 40]. Seiberg and Witten ob-
tain a new version of gauge fields in noncommutative gauge
theory [41] by extending earlier ideas on the advent of NC
geometry in string theory with a nonzero B-field. One of the
potential goals of NC deformation of space-space and phase-
phase [42] is to eliminate the observed undesired divergences
or infinities that appear to cause short-range in field theories
such as gravitational theory by generating new quantum fluc-
tuations. In addition, the emergence of NC-QFT in string
theory gives more credibility to their work. I believe that this
research will contribute to further subatomic scale investiga-
tions and scientific knowledge of elementary particles. The

improved spatially-dependent mass Coulomb potential with
mixed scalar-vector Coulomb potentials (ISDM-SVCPs) in
the DKGT symmetries was motivated by the fact that it had
not been reported in the literature for bosonic particles and
antiparticles. The following are the vector and scalar ISDM-
SVCPs models that will be used in this study (Vsc (r̂) and
Ssc (r̂)) as follows:





Vsc (r̂) = Vsc (r)− 1
2r

∂Vsc(r)
∂r LΘ + O

(
Θ2

)

Ssc (r̂) = Ssc (r)− 1
2r

∂Ssc(r)
∂r LΘ + O

(
Θ2

) , (1)

In addition to the new spatially-dependent bosonic mass
msc (r̂), in DKGT, which is expressed as:

msc (r̂) = m (r)− 1
2r

∂msc (r)
∂r

LΘ + O
(
Θ2

)
, (2)

where(Vsc (r) , Ssc (r) ,m (r)) are the vector and scalar po-
tentials according to the view of RQM known in the litera-
ture [21]:




Vsc (r) = V0 + βSsc (r) andSsc (r) = −~cqs

r

m (r) = m0

(
1 + λ0b

r

)
with r 6= 0 andλ0 = ~

m0c

, (3)

where m0 is the integration constant (rest mass of the
fermionic particle),m1 is the perturbed mass and,λ0 is
the Compton-like wavelength in fm units. The constant
massb is a dimensionless real constant that should be set
to zero. (r̂ andr) is the distance between the two parti-
cles in the DKGT symmetries and QM symmetries, respec-
tively. The coupling(LΘ ≡ L.Θ) is the scalar product of
the usual components of the angular momentum operators
L (Lx, Ly, Lz) and the modified noncommutativity vector
Θ (θ12, θ23, θ13) /2 which present as is the noncommutativ-
ity elements parameter. In the case ofGNC , the noncentral
generators can be suitably realized as self-adjoint differen-
tial operators (̂x(s,h,i)

µ , p̂
(s,h,i)
ν ) appear in n three varieties.

The first one is the canonical structure (CS), the second is
the Lie structure (LS), while the last corresponds to the quan-
tum plane (QP) in the representations of Schrödinger, Heisen-
berg, and interactions pictures, satisfying a deformed algebra
of the form (For simplicity, we have used the natural units
~ = c = 1): [43–51]:

[
x(s,h,i)

µ , p(s,h,i)
ν

]
= i~δµν =⇒

[
x̂(s,h,i)

µ
∗,p̂(s,h,i)

ν

]
= i~effδµν , (4)

and

[
x(s,h,i)

µ , x(s,h,i)
ν

]
= 0 =⇒

[
x̂(s,h,i)

µ
∗,x̂(s,h,i)

ν

]
=





iθµν : θµν ∈ IC For CS,

ifα
µν x̂

(s,h,i)
α : fα

µν ∈ IC For LS,

iCαβ
µν x̂

(s,h,i)
α x̂

(s,h,i)
β : Cαβ

µν ∈ IC For QP
. (5)
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In the DKGT symmetries, the generalized coordinates
x̂

(s,h,i)
µ and the generalizing momentumŝp(s,h,i)

µ are equal(
x̂s

µ, x̂h
µ, x̂i

ncµ

)
and

(
p̂s

µ, p̂h
µ, p̂i

µ

)
while the corresponding co-

ordinatesx(s,h,i)
µ andp

(s,h,i)
µ are equal

(
xs

µ, xh
µ, xi

µ

)
and (ps

µ,
ph

µ, pi
µ) in the RQM symmetries are, respectively. HereIC

denotes the complex number field. Furthermore, the usual
uncertainty relation corresponding to the LHS of Eq. (5) will
be extended to become two uncertainties the following for-
mula in the new form symmetries is as follows:

∣∣∣∆x(s,h,i)
µ ∆p(s,h,i)

ν

∣∣∣ > ~δµν/2 =⇒
∣∣∣∆x̂(s,h,i)

µ ∆p̂(s,h,i)
ν

∣∣∣ > ~effδµν/2 , (6)

and

∣∣∣∆x̂(s,h,i)
µ ∆x̂(s,h,i)

ν

∣∣∣ >




|θµν | /2 For CS,
Fµν/2 For LS,
Gµν/2 For QP,

(7)

with Fµν and Gµν are equal to the average values∣∣∣
〈
fα

µν x̂
(s,h,i)
α

〉∣∣∣ and
∣∣∣
〈
Cαβ

µν x̂
(s,h,i)
α x̂

(s,h,i)
β

〉∣∣∣, respectively.
The second uncertainty relation in Eq. (7) is the consequence
of the deformation of space-space that arises from the RHS
of Eq. (5) that is divided into three varieties, while the first
uncertainty relation in Eq. (6) is the result of the generaliza-
tion of LHS Eq. (4) to RHS form. There is no equivalent
in the literature for the novel incertitude relation in Eq. (6)
in the framework of quantum mechanics. Under the Lorentz
transformation, which includes boosts and/or rotations of the
observer’s inertial frame, Eqs. (4) and (5) are covariant equa-
tions (have the same behavior asx̂

(s,h,i)
µ ). The MASCCCRs

were extended in DKGT to include Heisenberg and interac-
tion pictures. When compared to the energy values and el-
ements of antisymmetric (3 × 3) real matrices,~eff

∼= ~
is the effective Planck constant,θµν = εµνθ (θ is the non-
commutative parameter, and is just an antisymmetric num-
ber (εµν = −ενµ = 1 for µ 6= ν and εεε = 0) which
is an infinitesimal parameter, and is the Kronecker symbol.
The Weyl-Moyal∗-product is generalized to define the new
deformed scalar producth(x) ∗ g(x) in three varieties as
[52–57,59,78]:

h(x) ∗ g(x) =




exp
(
iεµνθ∂x

µ∂x
ν

)
(hg) (x) For CS,

exp
(

i
2x

(s,h,i)
ncµ gk

(
i∂x

µ, i∂x
ν

))
(hg) (x) For LS,

iqG(u,v,∂u
µ ,∂v

ν )h (u, v) g (u′, v′)cv′→v
u′→u For QP,

(8)

with

gH (k, p) = −kµpνfνν
k

+
1
6
kµpν (pH − kH) fνν

l f lH
m + .... (9)

The first variety is used in this research, allowing us to rewrite
(h ∗ g) (x) at the first order of the noncommutativity param-
eterεµνθ as follows [60–68]:

(h ∗ g) (x) = exp
(
iεµνθ∂x

µ∂x
ν

)
(hg) (x)

≈ (hg) (x)− iεµνθ

2
∂x

µh∂x
ν gcxµ=xν + O

(
θ2

)
. (10)

Every sum indices (µ or ν) can be equal to 1,2,3 inD = 3.
The effects of space-space noncommutativity are represented
physically by the second term in Eq. (10). The following
is a summary of the current paper’s structure. The scope
and objective of our investigation are presented in the first
section, and the remainder of the paper is organized as fol-
lows: Section 2 presents an overview of the KGE under the
ISDM-SVCPs model. Section 3 is devoted to investigating
the DKGE using the well-known Bopp’s shift method to ob-
tain the ISDM-SVCPs model’s effective potential. Further-
more, using standard perturbation theory, we find the expec-
tation values of the radial terms (1/r3 and 1/r4) to calcu-
late the corrected relativistic energy generated by the effect
of the perturbed effective potentialΣsc

pert(r) of the ISDM-
SVCPs model, and we derive the global corrected energies
for bosonic particles and antiparticles whose spin quantum
number has an integer value (0, 1, 2...) and satisfies the Bose-
Einstein statistics under the ISDM-SVCPs model. Section 4
is reserved to study important relativistic particular cases in
DKGT. The improved pure scalar Coulomb-like potential in
DKG symmetries will be studied in the next section. The
sixth section is devoted to the conclusions.

2. An overview of KGE under SDM-SVCPs in
RQM symmetry

In order to construct a physical model describing a physi-
cal system that interacted with the spatially-dependent mass
Coulomb potential with mixed scalar-vector Coulomb poten-
tials (SDM-SVCPs) model in the DKGE, it is useful to recall
the eigenvalues and the corresponding eigenfunctions under
the influence of this system within the framework of relativis-
tic quantum mechanics, RQM, known in the literature. In this
case, the system is governed by the following Klien-Gordon
equation:

(
∇2 +

[
(Enl − Vsc (r))2

− (m (r)− Ssc (r))2
])

Ψnl (r, θ, ϕ) = 0, (11)

herep = −i~∇ is the momentum. The repulsive vector
potential Vsc (r) and space-time attractive scalar potential
Ssc (r) are produced from the four-vector linear momentum
operatorAµ (Vsc (r), A = 0) and the massm (r), respec-
tively while Enl is the relativistic eigenvalues,(n, l) repre-
sent the principal and spin-orbit coupling terms. It should be
noted that the scalar potentialSsc (r) describes a situation in
which the difference in potential energies of an object in two
different positions is determined solely by the positions and
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not by the particle path taken in displacement from one point to another, whereas the vector potentialVsc (r) is a vector field
whose curl is a given vector field. Since the spatially-dependent mass Coulomb including a Coulomb-like tensor interaction has
spherical symmetry, allowing the wave function solutionΨnl (r, θ, ϕ) of the known form(unl (r)/r)Y l

m (θ, ϕ) while Y l
m (θ, ϕ)

is spherical harmonics andm is the projections on the z-axis. The radial componentunl (r) satisfies the differential equation
as below:

{ d2

dr2
+

(
E2

nl + Vsc (r)2 − 2EnlVsc (r)−m (r)2 c4 − Ssc (r)2 − 2c2m (r)Ssc (r)− l (l + 1) ~2c2

r2

)}
unl (r) = 0. (12)

Ikhdair in Ref. [21] rewrite the above equation as follows:
(

d2

dr2
− γ2

r2
− γ1

r
− ε2nl

)
unl (r) = 0 (13)

with 



ε2nl =
√

m2
0 − E2

nl, γ1 = 2 (b− q)m0c
2 − 2qβEnl,

γ2 = b (b− 2q) + q2
(
1− β2

)
+ l (l + 1) .

(14)

The author of Ref. [21] used the NU method to obtain the expression ofunl (r) as a function of generalized Laguerre polyno-
mial L2L+1

n (2εnlr) in usual RQM symmetries as,

unl (r) =

√
n! (2εnl)

2L+3

2 (n+L+1)Γ (n+2L+2)
r(1+

√
1+4γ2)/2 exp (−εnlr)L2L+1

n (2εnlr) , (15)

here

L=

√(
l+

1
2

)2

+b (b− 2q)+q2 (1−β2) +l (l+1)−1
2
.

Allowing the spinor solutionΨnl (r, θ, ϕ) as follows:

Ψnl (r, θ, ϕ) =

√
n! (2εnl)

2L+3

2 (n + L + 1) Γ (n + 2L + 2)
r(1+

√
1+4γ2)/2−1 exp (−εnlr)L2L+1

n (2εnlr) Y l
m (θ, ϕ) . (16)

The corresponding equation of energy for a bosonic particlesE+
nl and antiparticlesE−

nl are given by [21]:

E±
nl = −V0 +

q (b− q)β ± (n + 1 + L)
√

(n + 1 + L)2 − q2 (1− β2)− b (b− 2q)

q2β2 + (n + 1 + L)2
. (17)

3. The new solutions of DKGE under the ISDM-SVCPs in the DKGT symmetries:

3.1. Review of BS method

Let us begin in this subsection by finding the relativistic DKGE in the symmetries of extended relativistic quantum mechanics
ERQM or noncommutative quantum mechanics NCQM under ISDM-SVCPs. Our objective is achieved by applying the new
principles which we have seen in the introduction, Eqs. (5), (6) and (10), summarized in new relationships MASCCCRs and
the notion of the Weyl-Moyal star product. These data allow us to rewrite the usual radial KG equations in Eq. (11) in the
DKGT symmetries as follows:

(
d2

dr2
− γ2

r2
− γ1

r
− ε2nl

)
∗ unl (r) = 0. (18)

Among the possible paths to finding the solution to Eq. (18) is the application of the Connes method [39, 40], or the Seiberg
and Witten map [41]. It is known to specialists that the star product can be translated into the ordinary product known in the
literature using what is called Bopp’s shift method. F. Bopp was the first to consider pseudo-differential operators obtained
from a symbol by the quantization rules:

(x, p) →
(

x̂ = x− i

2
∂p, p̂ = p +

i

2
∂x

)
,
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instead of ordinary correspondence:

(x, p) →
(

x̂ = x, p̂ = p +
i

2
∂x

)
,

respectively. This procedure is known as Bopp’s shifts (BS) method and this quantization procedure is known as Bopp quan-
tization [69–72]. This method has been widely successful in the last two decades. At the nonrelativistic level, within the
framework of solving the deformed Schrödinger equation DSE, the exact and approximate solutions for many typical poten-
tials that are applied to many fields of physics and chemistry have been successfully found (See for example [73, 74]). This
success is not only limited to the DSE but also goes beyond that to the relativistic case in the framework of the three equations.
Within the framework of the deformed Klein-Gordon equation DKGE, approximate or exact solutions were found for several
central potentials of wide application(See typical refs. [75–80]). As for the deformed Dirac equation DDE, many typical po-
tentials were successfully processed, despite the complexity of the calculations (See some refs. [81–84]) while the relativistic
deformed Duffin-Kemmer-Petiau equation DDKPE for particles with spin-(1,2,...) [85, 86]. Thus, Bopp’s shift method BS
method is based on reducing second-order linear differential equations of the DSE, DKGE, DDE, and DDKPE with Weyl-
Moyal star product to second-order linear differential equations of SE, KGE, DE, and DKPE without Weyl-Moyal star product
with simultaneous translation in the space-space. It is worth motioning that the BS method permutes us to reduce the Eq. (18)
to the simplest form:

(
d2

dr2
− γ2

r̂2
− γ1

r̂
− ε2nl

)
unl (r) = 0. (19)

The modified algebraic structure of covariant canonical commutation relations with the notion of Weyl-Moyal star product in
Eqs. (5) and (6) become new MASCCCRs with ordinary known products in literature as follows (see,e.g., [70–73]):

[
x̂(s,h,i)

µ , p̂(s,h,i)
ν

]
= i~effδµν and

[
x̂(s,h,i)

µ , x̂(s,h,i)
ν

]
= iθµν . (20)

The generalized positions and momentum coordinates (x̂
(s,h,i)
µ andp̂

(s,h,i)
µ ), in the symmetries of DKGT, are defined as [70–

73]:

x̂(s,h,i)
µ =x(s,h,i)

µ −
3∑

ν=1

iθµν

2
p(s,h,i)

ν andp̂(s,h,i)
µ =p(s,h,i)

µ . (21)

This allows us to find the operatorr̂2 , in the DKGT symmetries, equal [76–78,78–81]:

r̂2 = r2 − LΘ + O
(
Θ2

)
(22)

Thus, after straightforward calculations, we obtain the new operators−γ2/r̂2 and−γ1/r̂ in the DKGT symmetries, as:



−γ2

r̂2 = −γ2
r2 − γ2

LΘ
r4 + O

(
Θ2

)

−γ1
r̂ = −γ1

r − γ1
LΘ
2r3 + O

(
Θ2

) . (23)

Substituting Eqs. (23) into Eq. (19), we obtain the following like Schrödinger equations:
(

d2

dr2
− γ2

r2
− γ1

r
− ε2nl − Σpert

sc (r)
)

unl (r) = 0, (24)

with

Σpert
sc (r) =

(γ2

r4
+

γ1

2r3

)
LΘ + O

(
Θ2

)
. (25)

By comparing Eq. (24) and Eq. (13) , we observe an additive potentialΣpert
sc (r) dependent on two radial terms (1/r3 and1/r4)

which is coupled with the couplingLΘ that explains the interaction of the physical features of the system with the topological
deformations of space-time. From a physical point of view, this means that the spontaneously generated termΣpert

sc (r) as a
result of the topological properties of deformation space-space can be considered very small compared to the fundamental term

Σsc (r) = ε2nl +
γ2

r2
+

γ1

r
. (26)
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Furthermore, using the unit step function (also known as the Heaviside step functionθ (x) or simply the theta function) to
rewrite the global induced two potentialsΣpert

t sc (r) for bosonic particles and bosonic antiparticles in DKG symmetries as:

Σpert
t sc (r) = Σpert

sc (r) θ (|Esc
nc|)− Σpert

sc (r) θ (− |Esc
nc|)=





Σpert
sc (r) for bosonic particles

−Σpert
sc (r) for bosonic antiparticles

, (27)

where the step functionθ (y) is given by:

θ (y) =

{
1 for y > 0

0 for y < 0
. (28)

The spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction is extended by including new
additive potentialΣpert

sc (r) expressed to the radial terms1/r3 and1/r4 to become the improved spatially-dependent mass
Coulomb potential in DKGT symmetries. The global induced two potentialsΣpert

t sc (r) represent the physical interaction be-
tween the system’s physical properties that correspond to bosonic particles and bosonic antiparticles in DKG symmetries with
topological deformations of space-space characterized by noncommutativity vectorΘ. The generated new effective potential
Σpert

sc (r) is also proportional to the infinitesimal couplingLΘ. This allows us to consider the new additive parts of the effective
potentialΣpert

sc (r) as perturbation potential compared with the main potentialΣsc (r) which is also known as the parent poten-
tial operator in the symmetries of DKGT, that is, the inequalityΣpert

sc (r) << Σsc (r) has become achieved. That is all physical
justifications for applying the time-independent perturbation theory become satisfied to calculate the expectation values of pre-
vious radial terms. If we considerΣnc

sc (r), the global potential in DKG symmetries that equals
(
[γ2/r2] + [γ1/r] + ε2nl

)
which

presents the corresponding potential in KG theory, and the new additive potentialΣpert
sc (r). Looking at the previous data, we

find that the physical inequalityΣpert
sc (r) <<

(
[γ2/r2] + [γ1/r] + ε2nl

)
is fully satisfied with its conditions. This allows us to

give a complete prescription for determining the energy level of the generalized(n, l, m)th excited states.

3.2. The expectation values under the ISDM-SVCPs in the DKGT for spin symmetry

In this subsection, we want to apply the perturbative theory, in the case of DKGT symmetries, we find the expectation values:

Msc
1(nlm) ≡

〈
1
r3

〉sc

(nlm)

and Msc
2(nlm) ≡

〈
1
r4

〉sc

(nlm)

,

for bosonic particles taking into account the unperturbedΨnl (r, θ, ϕ) which we have seen previously in Eq. (15). After
straightforward calculations, we obtain the two expectation valuesMsc

1(nlm) andMsc
2(nlm) by applying the standard perturbation

theory in first-order as follows:

Msc
1(nlm) =

n! (2εnl)
2L+3

2 (n + L + 1) Γ (n + 2L + 2)

+∞∫

0

r(1+
√

1+4γ2)−2−1 exp (−2εnlr)
[
L2L+1

n (2εnlr)
]2

dr, (29.1)

and

Msc
2(nlm) =

n! (2εnl)
2L+3

2 (n + L + 1) Γ (n + 2L + 2)

+∞∫

0

r(1+
√

1+4γ2)−3−1 exp (−2εnlr)
[
L2L+1

n (2εnlr)
]2

dr. (29.2)

We have used useful abbreviations〈R〉sp−sc
(nlm) = 〈n, l,m |R| n, l, m〉 to avoid the extra burden of writing , withR =

(
1
r3 or 1

r4

)
.

Furthermore, we have applied the property of the spherical harmonics, which has the form:

2π∫

0

π∫

0

Y m
l (θ′, ϕ′)Y m′

l′ (θ, ϕ) sin (θ) dθdϕ = δll′δmm′ . (30)

Comparing Eq. (29. 1,2) with the integral of the form [87]:

+∞∫

0

tη−1 exp (−αt)Lλ
m (αt)Lβ

n (αt) dt =
α−ηΓ (n− η + β + 1)Γ (m + λ + 1)

m!n!Γ (1− η + β) Γ (λ + 1)

× 3F2 (−m, η, η − β;−n + η, λ + 1, 1) , (31)
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with Rel(η)〉0 and3F2 (−m, η, η − β;−n + η, λ + 1, 1) is obtained from the generalized hypergeometric functionpFq

(
α1, ...,

αp;β1, ..., βq, 1
)

for p = 3 andq = 2 while Γ (x) denoting the usual Gamma function. After straightforward calculations we
find:

Msc
1(nlm) =

(2εnl)
2L−√1+4γ2+4

2 (n + L + 1)
Γ

(
n + 2L + 3−√1 + 4γ2

)

n!Γ
(
2L + 3−√1 + 4γ2

)
Γ (2L + 2)

× 3F2

(
−n,

√
1 + 4γ2 − 1,

√
1 + 4γ2 − 2L− 2;−n +

√
1 + 4γ2 − 1, 2L + 2, 1

)
, (32.1)

Msc
2(nlm) =

(2εnl)
2L−√1+4γ2+5

2 (n + L + 1)
Γ

(
n + 2L + 4−√1 + 4γ2

)

n!Γ
(
2L + 4−√1 + 4γ2

)
Γ (2L + 2)

× 3F2

(
−n,

√
1 + 4γ2 − 2,

√
1 + 4γ2 − 2L− 3;−n +

√
1 + 4γ2 − 2, 2L + 2, 1

)
. (32.2)

3.3. The corrected energy for the ISDM-SVCPs in DKGT symmetries

The main objective underlined in this subsection is to find the contribution resulting from topological properties based on our
strategy that we have successfully applied in previous works and which we try to develop in every new work. We can say that the
global relativistic energy in the perspective of deformation KG theory produced with ISDM-SVCPs model as a result of a major
contribution to relativistic energy known in the literature under DM-SVCPs model in usual KG theory and which we paved for
through a quick look for the bosonic particles and antiparticles in Eqs. (17), while the new contribution is produced from the
topological properties under space-space deformation, which can be evaluated through several contributions, we will address
three of them. The first one is generated from the effect of the perturbed spin-orbit effective potentialsΣpert

sc (r) corresponding to
the bosonic particles and antiparticles with spin-s. This perturbed effective potential is obtained by replacing the coupling of the
angular momentumL operator and the NC vectorΘ with the new equivalent couplingΘLS (with Θ2 = Θ2

12+Θ2
23+Θ2

13). This
degree of freedom comes considering that the infinitesimal NC vectorΘ is arbitrary. We have oriented the spin-S of the bosonic
particles (or antiparticles) to become parallels to the vectorΘ which interacted with the ISDM-SVCPs model. Moreover, we
replace the new spin-orbit couplingΘLS with the corresponding new physical form(Θ/2)G2, with G2 = J2 − L2 − S2 for
the bosonic particles (or antiparticles). Furthermore, in RQM, the operators (Ĥsc

rnc, J2, L2, S2 andJz ) form a complete set of
conserved physics quantities, and the eigenvalues of the operatorG2 are equal to the values:

2z (j, l, s) = j(j + 1)− l(l + 1)− s(s + 1),

with |l − s| ≤ j ≤ |l + s| for the bosonic particles (or antiparticles) in DKGT symmetry. As a direct consequence, the
square partially corrected energies∆Eso2

sc (n, qs,m0,m1, Θ, j, l, s) ≡ ∆Eso2
sc due to the perturbed effective potentialΣpert

sc (r)
produced for the(n, l,m)th excited state, in deformation Klien-Gordon theory symmetries as follows:

∆Eso2
sc = Θz (j, l, s) 〈Z〉sc

(nlm) (n, q, m0,m1) , (33)

The global expectation values〈Z〉sc
(nlm) (n, q,m0, m1) for the bosonic particles (or antiparticles), which were created from the

effect of the ISDM-SVCPs model, are determined from the following expressions:

〈Z〉sc
(nlm) (n, q, m0,m1) = γ2

〈
1
r4

〉sc

(nlm)
+ γ1

〈
1
r3

〉sc

(nlm)
. (34)

The second main part is obtained from the magnetic effect of the perturbative effective potentialsΣpert
sc (r) under the ISDM-

SVCPs model in the DKGT symmetries. These effective potentials are achieved when we replace bothLΘ a by τℵLz, and
Θ12 by τℵ, here (ℵ andτ ) are present the intensity of the magnetic field induced by the effect of the deformation of space-
space geometry and a new infinitesimal noncommutativity parameter, so that the physical unit of the original noncommutativity
parameterΘ12(length)2 is the same unit ofτℵ, we have also need to apply:

〈n′, l′,m′ |Lz| n, l, m〉 = mδm′mδl′lδn′n with: − |l| ≤ m ≤ + |l| .

for the bosonic particles (or antiparticles). All of these data allow for the discovery of the new square energy shift∆Emg2
sc (n, q,

m0, m1, τ , m) due to the perturbed Zeeman effect created by the influence of the ISDM-SVCPs model for the(n, l, m)th

excited state in deformation Klien-Gordon theory symmetries as follows:

∆Emg2
sc (n, qs,m0,m1, τ,m) = τℵ 〈Z〉sc

(nlm) (n, q, m0,m1)m. (35)
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After we have completed the first and second stages of self-production of energy, we are heading to another very important case
under the ISDM-SVCPs model in DKGT symmetries. This physical phenomenon is produced automatically from the influence
of perturbed effective potentialΣpert

sc (r) which we have seen in Eq. (25). We consider the bosonic particles (or antiparticles)
under going rotation with angular velocityΩ. The features of this subjective phenomenon are determined through the replace
the arbitrary vectorΘ with χΩ. Allowing us to replace the couplingLΘ with χLΩ , as following:

LΘ → χLΩ. (36)

Hereχ is just an infinitesimal real proportional constant. The effective potentialsΣsc−rot
pert (s), which induced the rotational

movements of the bosonic particles, can be expressed as follows:

Σpert
sc (r) −→ Σsc−rot

pert (r) = χ 〈Z〉sc
(nlm) (n, q,m0,m1)LΩ. (37)

We chose a rotational velocityΩ parallel to the (Oz) axis (Ω= Ωez) to simplify the calculations; this, of course, does not
change the physical characteristics of the examined problem as much as it simplifies the calculations. The spin-orbit coupling
is then transformed into new physical phenomena as follows:

Σsc−rot
pert (r)LΩ = χΩΣsc−rot

pert (r) Lz. (38)

All of this data allows for the discovery of the new corrected square energy∆Erot2
sc (n, q, m0,m1, χ, m) due to the perturbed

effective potentialΣsc−rot
pert (r) which is generated automatically by the influence of the improved spatially-dependent mass

Coulomb potential for the(n, l, m)th excited state in DKGT symmetries as follows:

∆Erot2
sc = χΩ 〈Z〉sc

(nlm) (n, q, m0,m1)m. (39)

It’s worth noting that the authors of Ref. [88] investigated rotating isotropic and anisotropic harmonically confined ultra-cold
Fermi gases in two and three-dimensional space at zero temperature, but in this case, the rotational term was a DKGE to the
Hamiltonian operator, whereas in our case, the rotation operatorΣsc−rot

pert (r)LΩ appears automatically due to them from the
deformation of space-space under the improved spatially-dependent mass Coulomb potential model. The eigenvalues of the
operationsG2 for a bosonic particles and antiparticles (negative energy) with spins = (1, 2..) are equal to the following
values:

z (j, l, s) = [j(j + 1)− l(l + 1)− s(s + 1)] /2,

the possible values ofj are:

j = {|l − s| , |l − s|+ 1, ..., |l + s|} .

In the symmetries of the DKGT symmetries, the total relativistic energyEsp
nc (n, qs, m0, m1, Θ, τ , χ, j, l, s, m) for the case

of the bosonic particles (or antiparticles) with spin quantum number has an integer value (0, 1, 2...) and satisfies the Bose-
Einstein statistics such as (π± andπ0) with improved spatially-dependent mass Coulomb potential model, corresponding to
the generalized(n, l,m)th excited states are expressed as:

Esp
nc(n, qs,m0,m1,Θ, τ, χ, j, l, s, m) = E±

nl ±
[
〈Z〉sc

(nlm) (n, q,m0, m1) ((τℵ+ χΩ)m + Θz (j, l, s))
]1/2

. (40)

WhereE±
nl are usual relativistic energies under spatially-dependent mass Coulomb potential model obtained from equations

of energy in Eq.(17). It should be noted that the positive sign(+) in the principal (first) and corrector (second) terms denotes
the energy of the bosonic particles which corresponds to the positive energy, while the negative sign(−) in the principal and
corrector terms denotes the energy of the bosonic antiparticles which correspond the negative energy. We can now generalize
our obtained energiesEsc−s

g−nc, in a unified formula, under the improved spatially-dependent mass Coulomb potential model
which was produced with the global induced potentialΣpert

t sc (r) for bosonic particles (or antiparticles) as:

Esc−s
g−nc = Esc

ncθ (|Esc
nc|)− Esc−s

nc θ (− |Esc
nc|) =

{
Esc−s

nc for bosonic particles

−Esc−s
nc for bosonic antiparticles

. (41)

It is important to note that applying perturbation theory to find corrections of the second order is not useful because we have
only adopted corrections of the first order of infinitesimal parameters(Θ, τ, χ) .
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4. Study of important relativistic particular cases in DKGT

We will look at some specific examples involving the new bound state energy eigenvalues in Eq. (40) in this section. By
adjusting relevant parameters of the ISDM-SVCPs model in the deformation of the KG theory symmetries, we could derive
some specific potentials useful for other physical systems for much concern the specialist reach. It should be noted that these
special cases were treated within the framework of relativistic quantum mechanics known in the literature in Ref. [21], and we
are now in the process of generalizing them to include extended relativistic quantum mechanics symmetries.

(1) When the scalar potential is equal to the vector potential in magnitude,Vsc (r) = Ssc (r), and sign,i.e., V0 = 0 andβ
= 1, Eq. (40) can be reduced to the following forms:

Ep
nc(n, q, m0,m1,Θ, τ, χ, j, l, s, m) =

q (b− q) + Bs
nl

√
Bs2

nl − b (b− 2q)
q2 + Bs2

nl

m0

+
[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

, (42)

and

Eap
nc(n, q,m0,m1,Θ, τ, χ, j, l, s,m) =

q (b− q)−Bnl

√
B2

nl − b (b− 2q)
q2 + Bs2

nl

m0

−
[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

, (43)

with

Bs
nl = n + 1/2 +

√
(l + 1/2)2 + b (b− 2q).

The first two parts in RHS of Eqs. (42) and (43) describe the relativistic energy of a bosonic particles and anti-bosonic
particles within the framework of relativistic quantum mechanics known in the literature while the rest terms are present
the topological effect of the deformation space-space on the theses main energies.

(2) When the scalar potential is equal to the vector potential in magnitude,Vsc (r) = Ssc (r), and sign, i.e.,V0 = 0, m1 = 0
andβ = 1, Eq. (40) can be reduced to the following forms:

Ep
nc(n, q, m0,Θ, τ, χ, j, l, s, m) =

(n + l + 1)2 − q2

(n + l + 1)2 − q2
m0

+
[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ)m + Θz (j, l, s))
]1/2

, (44)

and

Eap
nc(n, q, m0,Θ, τ, χ, j, l, s,m) = −m0 −

[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

. (45)

The first two parts in RHS of Eqs. (44) and (45) describe the relativistic energy of a bosonic particles and its antiparticles
within the framework of relativistic quantum mechanics known in the literature while the rest terms are present the
topological effect of the deformation space-space on the theses main energies. For the s-wave which correspondsl = 0
to orm = 0, Eqs. (44) reduce to:

Ep
nc(n, q, m0, Θ, τ, χ, j, l, s, m) =

(n + 1)2 − q2

(n + 1)2 − q2
m0 +

√
Θ

[
〈Z〉sc

(nlm) (n, q,m0, m1)z (j, l, s)
]1/2

. (46)

The first part in RHS of Eq. (69) describes the relativistic energy of particle for the s-wave within the framework of rela-
tivistic quantum mechanics known in the literature while the rest term presents the topological effect of the deformation
space-space on the main energy.
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(3) When the scalar potential is equal to the vector potential in magnitude,Vsc (r) = −Ssc (r), and sign,i.e., V0 = 0 andβ
= 1, Eq. (40) can be reduced to the following forms:

Ep
nc(n, q,m0, m1, Θ, τ, χ, j, l, s,m) =

−q (b− q) + Bp
nl

√
Bp2

nl − b (b− 2q)

q2 + Bp2
nl

+
[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

, (47)

and

Eap
nc(n, q,m0,m1, Θ, τ, χ, j, l, s, m) =

−q (b− q)−
√

Bp2
nl − b (b− 2q)

q2 + Bp2
nl

−
[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

. (48)

The first two parts in RHS of Eqs. (47) and (48) describe the relativistic energy of a bosonic particles and its antiparticles
within the framework of relativistic quantum mechanics known in the literature while the rest terms are present the
topological effect of the deformation space-space on the theses main energies.

(4) If we consider the case whenVsc (r) = −Ssc (r), i.e., qs = −qv and sign,i.e., (V0,m1)= (0, 0), then Eq. (40) can be
reduced to the following forms:

Ep
nc(n, q,m0, m1, Θ, τ, χ, j, l, s,m) =

(n + l)2 − q2

(n + l)2 − q2
m0

+
[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

, (49)

and

Eap
nc(n, q, m0,m1,Θ, τ, χ, j, l, s,m) = −m0 −

[
〈Z〉sc

(nlm) (n, q, m0,m1) ((τℵ+ χΩ) m + Θz (j, l, s))
]1/2

. (50)

The first two parts in RHS of Eqs. (49) and (50) describe the relativistic energy of a bosonic particles and its antiparticles
within the framework of relativistic quantum mechanics known in the literature while the rest terms are present the
topological effect of deformation space-space on the theses main energies. For the s-wave which correspondsl = 0 to
m = 0, Eq. (49) reduced to:

Ep
nc(n, q, m0, Θ, τ, χ, j, l, s, m) = − (n + 1)2 − q2

(n + 1)2 − q2
m0 +

√
Θ

[
〈Z〉sc

(nlm) (n, q,m0, m1)z (j, l, s)
]1/2

. (51)

The first part in RHS of Eq. (51) describes the relativistic energy of a bosonic particles for thes-wave within the
framework of relativistic quantum mechanics known in the literature while the rest term is present the topological effect
of deformation space-space on the main energy.

5. The improved pure scalar Coulomb-like potential in DKG symmetries

Ikhdair in Ref. [21] used a pure scalar repulsive Coulomb-like field potential and the spatially dependent mass function having
a linear form in the context of usual relativistic KG symmetries:

{
Ssc (r) = sc

r and Vsc (r) = 0

m (r) = Ar with A = m0
L

, (52)
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wherem0 is the rest mass andL is a constant with space dimension. Ikhdair in Ref. [21] inserting Eqs. (52) into the radial part
unl (r), and obtained:

(
d2

dr2
+ ε2nl − α1r

2 − α2

r2

)
unl (r) = 0, (53)

with εnl, α1 andα2 are equals
√

(2m0sc/L)− E2
nl, α1 = m0/L ands2

c + l (l + 1), respectively. The author of Ref. [21]
used the NU method to obtain the expression for the radial partunl (r) of the wave functionΨnl (r, θ, ϕ) as a function of the
generalized Laguerre polynomialL

(2Λ+1)/2
n

(
α1r

2
)

in RQM symmetries. Allowing the wave function solution as follows:

Ψnl (r, θ, ϕ) = Nr(Λ+1)/2 exp
(−α1r

2/2
)
L(2Λ+1)/2

n

(
α1r

2
)
Y l

m (θ, ϕ) , (54)

the parameterΛ and the normalization constantN are given by:

Λ =
1
2

(√
(2l + 1)2 + 4s2

c − 1
)

andN =

√√√√√√
2A

1
2

√
(2l+1)2+4s2

c+1

(
n− 1

n

)
Γ

(
1
2

√
(2l + 1)2 + 4s2

c + 1
) .

while (
n− 1

n

)
=

(n− 1)!
n!

is a generalized binomial coefficient. The corresponding equation of energy of a bosonic particlesE+
nl and antiparticlesE−

nl is
given by:

E±
nl = ±

[
m0

2sc

L
+

m0

L

(
2n + 1 +

√
(2l + 1)2 + 4s2

c

)]1/2

. (55)

Now, we apply the Weyl-Moyal star product to Eq. (53), in the context of DKGT symmetries, we obtain:
(

d2

dr2
+ ε2nl − α1r

2 − α2

r2

)
∗ unl (r) = 0. (56)

It is worth motioning that the BS method permutes us to reduce the above equation to the simplest form without a star product
as follows:

(
d2

dr2
+ ε2nl − α2

1r̂
2 − α2

r̂2

)
unl (r) = 0. (57)

Thus, after straightforward calculations using Eq. (22), the new operators
(−α2

1r̂
2
)

and
(−α2

r̂2

)
that appear in the above

equation, in the DKGT symmetries, are expressed as:
{ −α2

1r̂
2 = −α2

1r
2 + α2

1LΘ + O
(
Θ2

)

−α2
r̂2 = −α2

r2 − α2
LΘ
r4 + O

(
Θ2

) . (58)

Substituting Eqs. (58) into Eq. (57), we obtain the following like the Shrodinger equation:
(

d2

dr2
+ ε2nl − α1r

2 − α2

r2
− Upert

sc (r)
)

unl (r) = 0. (59)

The generated effective potentialUpert
sc (r) that appears in Eq. (59) is expressed as:

Upert
sc (r) =

(α2

r4
− α2

1

)
LΘ + O

(
Θ2

)
. (60)

The inequalityUpert
sc (r) << Usc (r) has become achieved (hereUsc (r) equalε2nl − α1r

2 − [α2/r2]). Thus, we need to
calculate the expectation valueXpsc

2(nlm) ≡
〈
1/r4

〉psc

(nlm)
taking into account the unperturbed wave functionΨnl (r, θ, ϕ) which

we have seen previously in Eq. (54). Thus after straightforward calculations, we obtain the following integral:

Xpsc
2(nlm) = N2

+∞∫

0

r(Λ+1)−4 exp
(−α1r

2
) [

L(2Λ+1)/2
n

(
α1r

2
)]2

dr. (61)
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Introducing the variable changez = r2 ∈ [0, +∞], then the above equation takes a new form:

Xpsc
2(nlm) =

N2

2

+∞∫

0

z(Λ+1)/2−3/2−1 exp (−α1z)
[
L(2Λ+1)/2

n (α1z)
]2

dz. (62)

Comparing Eq. (62) with the integral in Eq. (31), thus after straightforward calculations we find:

Xpsc
2(nlm) =

N2

2
α

1−Λ/2
1 Γ (n + Λ/2 + 5/2) Γ (n + Λ + 3/2)

n!2Γ (Λ/2 + 5/2) Γ (Λ + 3/2)

× 3F2 (−n,Λ/2− 1,−1/2− Λ/2;−n + Λ/2− 1, Λ + 3/2, 1) . (63)

To avoid repeating the calculations, we will follow the same physical strategy that we saw in the previous section to find,the
total energyEpsc

nc (n, sc, m0, Θ, τ , χ, j, l, s, m) for the case of the bosonic particles (or antiparticles) for bosonic particles with
spin-s sunder improved pure scalar Coulomb-like potential model, corresponding to the generalized(n, l,m)thexcited states:

Epsc
nc (n, sc,m0, Θ, τ, χ, j, l, s, m) =





[
m0

2sc

L +m0
L

(
2n+1+

√
(2l+1)2 +4s2

c

)]1/2

+
[
〈Z〉psc

(nlm) (n, sc,m0) ((τℵ+χΩ) m+Θz (j, l, s))
]1/2

for bosonic particles with spin-s

−
[
m0

2sc

L +m0
L

(
2n+1+

√
(2l+1)2 +4s2

c

)]1/2

−
[
〈Z〉psc

(nlm) (n, sc,m0) ((τℵ+χΩ) m+Θz (j, l, s))
]1/2

for bosonic antiparticles with spin-s

. (64)

The global expectation values〈Z〉psc
(nlm) (n, sc,m0) for the bosonic particles (or antiparticles), which were created from the

effect of the ISDM-SVCPs model, are determined from the following expressions:

〈Z〉psc
(nlm) (n, sc,m0) =

(
s2

c + l (l + 1)
)〈

1
r4

〉psc

(nlm)

−
(m0

L

)2

. (65)

At the end of this section, we apply the physical two limits achieved for the validity of the results for the improved spatially-
dependent mass Coulomb potential with mixed scalar-vector Coulomb potentials and the improved pure scalar Coulomb-like
potential in DKG symmetries:

lim
(Θ,τ,χ)→(0,0,0)

Ep
nc(n, q, m0, Θ, τ, χ, j, l, s, m) = Ep

nl(n, q, m0)

= − (n + 1)2 − q2

(n + 1)2 − q2
m0, (66)

and

lim
(Θ,τ,χ)→(0,0,0)

Epsc
nc (n, sc, m0, Θ, τ, χ, j, l, s,m) = Epsc

nl (n, sc,m0)

=
[
m0

2sc

L
+

m0

L

(
2n + 1 +

√
(2l + 1)2 + 4s2

c

)]1/2

. (67)

As it is known in the literature that the KG equation describes particles with zero spins, but in our case in which we studied both
the improved spatially-dependent mass Coulomb potential and the improved pure scalar Coulomb-like potential, in the DKGT
symmetries, we found that the DKGE equation can play another role, which is to describe the bosonic particles and antiparticles
whose spin quantum number has an integer value (0,1,2...) and satisfies the Bose-Einstein statistics, which in this case is
similar to the Duffin-Kemmer-Petiau equation. Furthermore, we have found the expression of total energy in the framework
of extended symmetries that unified the energies of the bosonic particles and antiparticles in a single mathematical formula
instead of two separate expressions for the two energy values. Worthwhile it is better to mention that for the three-simultaneous
limits (Θ, τ, χ)→ (0, 0, 0), we recover the equations of energy for the spatially-dependent mass Coulomb potential with mixed
scalar-vector Coulomb potentials and the pure scalar Coulomb-like potential in the KG symmetries in Ref. [21].

Rev. Mex. Fis.69030801



THE INFLUENCE OF NONCOMMUTATIVITY ON THE ENERGY SPECTRA OF BOSONIC. . . 13

6. Summary and Conclusions

In summary, this work presents an approximate analytical so-
lution of the 3-dimensional deformed Klein-Gordon equation
with the improved spatially dependent mass Coulomb poten-
tial and the improved pure scalar Coulomb-like potential. We
have obtained the new approximate bound-state energies that
appeared sensitive to the quantum numbers(j, l, , s, m), the
potential depths (n, q/sc,m0,m1) of the studied potentials,
and noncommutativity parameters(Θ, τ, χ). As we know,
we derived some specific potentials useful for other physi-
cal systems. We also ended our research with this treatment
of the nonrelativistic limit of the spatially-dependent mass
Coulomb potential in ENRQM symmetries. Among the most
important results of our research is the unification of the en-
ergy equation of the boson particles and antiparticles within
the framework of extended relativistic symmetries, where we
have one formula describing the two states together instead
of two separate equations. It is worth mentioning that, for

all cases, to make the three simultaneous limits(Θ, τ, χ) →
(0, 0, 0), the ordinary physical quantities are recovered in
Ref. [21]. Finally, a feature of a noncommutative geome-
try on the 3-dimensional deformed Klien-Gordon equation
with the improved spatially-dependent mass Coulomb poten-
tial with mixed scalar-vector Coulomb-like field potentials
would be the presence of many physics phonemes which usu-
ally appear automatically such as spin-orbit and pseudospin-
orbit, modified Zeeman effect and others and cause the be-
havior of topological properties of deformed space-space.
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15 (1956) 81, https://www.numdam.org/item?id=
AIHP 1956 15 2 81 0.

72. J. Gamboa, M. Loewe and J.C. Rojas,Noncommutative quan-
tum mechanics,Phys. Rev. D.64 (2001) 067901,https:
//doi.org/10.1103/PhysRevD.64.067901 .

73. A. Maireche,Extended of the Schrödinger Equation with New
Coulomb Potentials plus Linear and Harmonic Radial Terms
in the Symmetries of Noncommutative Quantum Mechanics,J.
Nano- Electron. Phys.10 (2018) 06015-1,https://doi.
org/10.21272/jnep.10(6).06015 .

74. A. Maireche, A Recent Study of Excited Energy Levels Di-
atomics for Modified more General Exponential Screened
Coulomb Potential: Extended Quantum Mechanics,J. Nano-
Electron. Phys.9 (2017) 03021,https://doi.org/10.
21272/jnep.9(3).03021 .

75. A. Maireche,Solutions of Klein-Gordon equation for the modi-
fied central complex potential in the symmetries of noncommu-
tative quantum mechanics,Sri Lankan J. of Phys.22 (2021) 1,
https://doi.org/10.4038/sljp.v22i1.8079 .

76. A. Maireche, Theoretical Investigation of the Modified
Screened cosine Kratzer potential via Relativistic and Nonrel-
ativistic treatment in the NCQM symmetries,Lat. Am. J. Phys.
Educ.14 (2020) 3310-1.

77. H. Motavalli and A.R. Akbarieh,Klein-Gordon equation for
the Coulomb potential in noncommutative space,Mod. Phys.
Lett. A 25 (2010) 2523,https://doi.org/10.1142/
s0217732310033529 .

78. B. Mirza and M. Mohadesi,The Klein-Gordon and the Dirac
Oscillators in a Noncommutative Space,Commun. Theor.
Phys. (Beijing, China)42 (2004) 664,https://doi.org/
10.1088/0253-6102/42/5/664 .

79. A. Maireche,A new theoretical study of the deformed unequal
scalar and vector Hellmann plus modified Kratzer potentials
within the deformed Klein-Gordon equation in RNCQM sym-
metries, Mod. Phys. Lett. A36 (2021) 2150232,https:
//doi.org/10.1142/S0217732321502321 .

80. A. Maireche,Diatomic Molecules with the Improved Deformed
Generalized Deng–Fan Potential Plus Deformed Eckart Poten-
tial Model through the Solutions of the Modified Klein-Gordon
and Schr̈odinger Equations within NCQM Symmetries,Ukr.

J. Phys.67 (2022) 183,https://doi.org/10.15407/
ujpe67.3.183 .

81. A. Maireche,New relativistic and nonrelativistic model of di-
atomic molecules and fermionic particles interacting with im-
proved modified Mobius potential in the framework of non-
commutative quantum mechanics symmetries,Yanbu J. Eng.
Sc.18 (2021) 10,https://doi.org/10.53370/001c.
28090 .

82. A. Maireche,Approximate k-state solutions of the deformed
Dirac equation in spatially dependent mass for the improved
Eckart potential including the improved Yukawa tensor in-
teraction in ERQM symmetries,Int. J. Geo. Met. Mod.
Phys.19 (2022) 2250085,https://doi.org/10.1142/
S0219887822500852 .

83. A. Maireche, Diatomic Molecules and Fermionic Particles
With Improved Hellmann-Generalized Morse Potential through
the Solutions of the Deformed Klein-Gordon, Dirac and
Schr̈odinger Equations in Extended Relativistic Quantum Me-
chanics and Extended Nonrelativistic Quantum Mechanics
Symmetries,Rev. Mex. Fis.68 (2022) 020801,https://
doi.org/10.31349/RevMexFis.68.020801 .

84. A. Maireche, Approximate Arbitrary k State Solutions of
Dirac Equation with Improved Inversely Quadratic Yukawa
Potential within Improved Coulomb-like Tensor Interac-
tion in Deformation Quantum Mechanics Symmetries, Few-
Body Syst.63 (2022) 54,https://doi.org/10.1007/
s00601-022-01755-z .

85. A. Saidi and M. B. Sedra,Spin-one (1+3)-dimensional
DKP equation with modified Kratzer potential in the non-
commutative space, Mod. Phys. Lett. A35 (2020) 2050014,
https://doi.org/10.1142/s0217732320500145 .

86. A. Houcine and B. Abdelmalek,Solutions of the Duffin-
Kemmer Equation in Non-Commutative Space of Cosmic String
and Magnetic Monopole with Allowance for the Aharonov-
Bohm and Coulomb Potentials, Phys. Part. Nuc. Lett.16 (2019)
195,

87. Wolfram Research: https://functions.wolfram.
com/ .

88. K. Bencheikh, S. Medjedel and G. Vignale,Current rever-
sals in rapidly rotating ultracold Fermi gases,Phys. Lett.
A 89 (2014) 063620-1,https://doi.org/10.1103/
physreva.89.063620 .

Rev. Mex. Fis.69030801

https://www.numdam.org/item?id=AIHP_1956__15_2_81_0�
https://www.numdam.org/item?id=AIHP_1956__15_2_81_0�
https://doi.org/10.1103/PhysRevD.64.067901�
https://doi.org/10.1103/PhysRevD.64.067901�
https://doi.org/10.21272/jnep.10(6).06015�
https://doi.org/10.21272/jnep.10(6).06015�
https://doi.org/10.21272/jnep.9(3).03021�
https://doi.org/10.21272/jnep.9(3).03021�
https://doi.org/10.4038/sljp.v22i1.8079�
https://doi.org/10.1142/s0217732310033529�
https://doi.org/10.1142/s0217732310033529�
https://doi.org/10.1088/0253-6102/42/5/664�
https://doi.org/10.1088/0253-6102/42/5/664�
https://doi.org/10.1142/S0217732321502321�
https://doi.org/10.1142/S0217732321502321�
https://doi.org/10.15407/ujpe67.3.183�
https://doi.org/10.15407/ujpe67.3.183�
https://doi.org/10.53370/001c.28090�
https://doi.org/10.53370/001c.28090�
https://doi.org/10.1142/S0219887822500852�
https://doi.org/10.1142/S0219887822500852�
https://doi.org/10.31349/RevMexFis.68.020801�
https://doi.org/10.31349/RevMexFis.68.020801�
https://doi.org/10.1007/s00601-022-01755-z�
https://doi.org/10.1007/s00601-022-01755-z�
https://doi.org/10.1142/s0217732320500145�
https://functions.wolfram.com/ �
https://functions.wolfram.com/ �
https://doi.org/10.1103/physreva.89.063620�
https://doi.org/10.1103/physreva.89.063620�

