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Edge effects on the electromagnetic response
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From a macroscopic point of view, the edges of a type II superconductor are degraded non-homogeneous regions compared with the bulk
of the sample. This paper presents numerical simulations of a long superconducting bar with square cross section subjected to an axial
external magnetic field, the edges effect on its electromagnetic properties is studied. The edges of the sample are modeled as finite width
regions with lower critical current density than the rest of the material. The simulations are based on a continuum electrodynamics model
which describes the magnetic induction dynamics of partially penetrated states. Unlike a simpler homogeneous superconductor, in an
inhomogeneous material rough flux fronts are formed. It was established that the stochastic profile of the current density produces jets of
magnetic flux near a macrodefect.
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1. Introduction

Macroscopic inhomogeneities influence strongly the super-
conducting properties, they can promote a glass transition of
the disorder flux-line lattice [1, 2] or produce a negative dif-
ferential conductivity [3]. In non-homogeneous regions oc-
curs an exchange of flow between adjacent pinning regions,
draining the lower pinning region [4], they stimulate a non-
linear response to microwave radiation [5, 6]. Moreover, in-
tricate and spectacular magnetic manifestations are hidden at
the transient regime due to its short duration [7–9], as the ex-
ternal magnetic field becomes stable, the system approaches
the stationary regime (critical state). Furthermore, various
technologies that use superconducting materials work in the
non-stationary regime, where the inhomogeneities have a no-
table influence on vortex dynamics. Defects are inevitable
in the manufacture of monolithic superconducting materials,
they modify their superconducting properties and represent a
problem for its potential technological applications [10–13].
In particular, the edges of a superconducting sample are con-
sidered as regions with magnetic properties different from the
bulk. In this study, an inhomogeneous superconducting ma-
terial is modeled assuming lower current-carrying capacity
at the edges than in the rest of the material, in other words,
the material has an inhomogeneous critical current density
jc [14–16]. The superconducting material is under a time-
varying external field, due to the lower quality of the edges,

the incursion of the field into the material is promoted and a
rough flux front is created. It is desirable to understand the
changes of the electromagnetic properties of the supercon-
ducting sample as the flux front is propagated.

The paper is organized as follows: Section 2 presents the
equations that describe the magnetodynamics in the contin-
uum electrodynamics framework; the model for the inhomo-
geneities is described in Sec. 3; the numerical methodology
is explained in Sec. 4; the results for the time-depedent distri-
butions of the magnetic induction and current density are pre-
sented in Sec. 5; in Sec. 6 the main conclusions are pointed
out.

2. Macroscopic electrodynamic approach

We consider a type-II superconducting bar of square cross
sectiona×a and lengthl À a, aligned with thez−axis. The
bar is subjected to an homogeneous and time varying external
magnetic fieldHa = Haẑ, with magnitudeHa = RRt and
ramp rateRR. In this configurationH ‖ B ‖ ẑ, the electro-
magnetic fields depend onx andy, andj = jxx̂ + jyŷ. The
lower critical field is consideredHc1 ¿ Ha, thus the linear
relationBz = µ0Hz is valid. The magnetic flux entering or
leaving the superconducting material is mediated by the geo-
metric barriers, Bean-Levingston barriers and Meissner cur-
rents, its influence is appreciable when the external field is
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close toHc1. Even when they were not taken into account in
this work, one way to incorporate their effects is employing a
nonlinearB(H) relation [17]. In the macroscopic approach,
the magnetodynamics is described by the Ampere and Fara-
day laws, both laws can be written in the single equation:
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here, it is used a material lawE = ρj with a resistivity
ρ = ρ(B, j). Equation (1) is a partial differential equation
subjected to the initial (IC) and boundary (BC) conditions,

IC:Bz(x, y, t=0)=f(x, y),

BC:Bz(x=0, y, t)=Bz(x=a, y, t)=µ0Ha, (2)

Bz(x, y=0, t)=Bz(x, y=a, t)=µ0Ha.

We model the resistivity through the equation

ρ = ξρn
jc0

jc

(j/jc)m

1 + (j/jc)m
, (3)

whereρn is the resistivity atT = Tc, jc0 is the maximum
critical current supported by the material,jc is the critical
current density andξ a dimensionless parameter. This func-
tion includes both the flux creep regime and the thermally-
assisted flux-flow (TAFF). Indeed, in the flux creep regime,
observed at small values of the current densityj (j ¿ jc),
the resistivityρ increases withj as the power law:

ρ = ξρn
jc0

jc

(
j

jc

)m

, (4)

wherem is the creep exponent. On the other hand, at large
values ofj (j À jc), i.e. in the TAFF regime, the resistivity

ρ ≈ ξρn

(
jc0

jc

)
, (5)

and the relation between the electric fieldE and the current
density j has the Omh’s law form [18–20]. Furthermore,
function (3) is also valid for the critical state if the critical
electric field is defined asEc = ξρnjc0/2. To close the set of
equations a critical current model is required, we chose the
Kim-Anderson model:

jc =
jc0

1 +
B

B∗

, (6)

whereB∗ is a parameter.

3. Model for the inhomogeneous borders

The inhomogeneous borders are defined as a virtual square
hollow bar of lengthl À a and wall thickness∆a embedded
in the bar. The borders have superconducting properties dif-
ferent from the bulk (see the sketch at the inset of panel (a)
of Fig. 1).

FIGURE 1. a) Pseudocolor plot of the magnetic induction, the in-
homogeneous edges created a rough flux front (white line). Inset.
Sketch of the zonesΓ1 andΓ2. b) Evolution of the flux front (white
lines) forB̄a ≤ B̄max. A “macrodefect” located at the left edge of
both figures had been included. From the colormap, the yellow
intensity indicates a higher field value, while the green intensity
indicates a lower field value.

Because of the magnetic field is axial, the electromag-
netic quantities are independent ofz and the problem is two-
dimensional (2D), with every z−plane equivalent to each
other. We denote the bar cross section asΓ = Γ1∪Γ2, where
Γ1 is the edge region andΓ2 is the bulk region. It is assumed
a completely homogeneousΓ2 region, with maximum critical
current densityjc0(Γ2) = j0, however, this is not completely
true in real superconducting monoliths. For the purposes of
this study, homogeneity in the bulk is required since we are
interested on the flux front propagation.
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We consider a constant magnetic permeabilityµ =
µrµ0 = µ0 and a variable resisitivity inΓ. Every change
on the current-carrying properties of the inhomogeneous su-
perconductor is through the critical current densityjc =
jc0(Γ)/(1 + B/B∗). In our study,jc0(Γ1) < jc0(Γ2) is
chosen, that is, the areaΓ1 is a degraded area. This is reason-
able since superconducting samples are susceptible to physi-
cal changes, either by handling in the laboratory, continuous
interaction with an external magnetic field or due the manu-
facturing process.

We introduce a mathematical model of the inhomoge-
neous zone whose equation is:

jc0(Γ1)=(1−∆)j0ξ(Γ1) cos(8πy) cos(8πx)+∆,

whereξ(Γ1) is a random number uniformly distributed be-
tween zero and one, the parameter0 < ∆ ≤ 1 is a measure
of the degradation of the superconducting properties at the
edges.

4. For the numerical performance

To solve the set of Eqs. (1)–(6) numerically, it is convenient
to write them in a dimensionless form. Four basic quantities
are chosen and written in terms of characteristic quantities:

x = ax̄, y = aȳ, t = t0t̄, Bz = B0B̄z.

where the characteristic magnetic inductionB0 = µ0aj0 is
constructed fromj0 = jc0(Γ2), which is the maximum cur-
rent that the superconducting material supports without dis-
sipation;t0 is a characteristic time. We write the resistivity
as ρ = ρnρ̄ whereρn is the normal state resistivity. The
dimensionless dynamical equation is written as follows:

∂B̄z

∂t̄
=

t0
t1

{
∂

∂x̄

(
ρ̄
∂B̄z

∂x̄

)
+

∂

∂ȳ
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wheret1 = µ0d
2/ρn. The respective dimensionless initial

and boundary conditions are:

IC:B̄z(x̄, ȳ, t̄=0)=f(x̄, ȳ),

BC:B̄z(x̄=0, ȳ, t̄)=B̄z(x̄=1, ȳ, t̄)=B̄a, (8)

B̄z(x̄, ȳ=0, t̄)=B̄z(x̄, ȳ=1, t̄)=B̄a.

hereB̄a = H̄a = R̄R t̄ andR̄R = RRt0/B0 . Finally, the
resistivity is written as

ρ̄ = ξ
j̄c0

j̄c
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j̄c

)m
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(
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)m , (9)

wherej̄c0 = jc0/j0 andj̄ = j/j0.
To solve the system of Eqs. (7)–(9) numerically we use

the method of lines (MOL, [21]), next, we explain briefly
in what such a methodology consists. Consider a mesh of

N × M nodes denoted by(xi, yj). Each node will have a
time-varying magnetic inductionBij

z = Bz(xi, yj , t). Fara-
day’s law of induction can be written as:

∂Bz

∂t
= {∇ ×E}z.

Using the defined mesh, we denote the spatial discretization
of {∇×E}z asF ij(t). As we can see, it is built a system of
NM ordinary differential equations with the form:

dBij
z

dt
= F ij(t), (10)

subjected to the initial conditionBij
z (tini) = f(tini) (in our

casef(tini = 0) = 0). The boundary conditions must be in-
corporated into the ODE system, this is done by substituting
∂Bkl

z /∂t = ∂Ba/∂t into (10), where(xk, yl) are the nodes
located at the boundaries.

5. Results

Numerical simulations were performed to obtain the mag-
netic induction and current density distributions in the super-
conducting bar. To present the electromagnetic quantities we
used a pseudocolor plot. According to the colormap, the yel-
low intensity indicates the larger values, the green intensity
indicates intermediate values and the darker the lower values.
All color maps are normalized since in this work we are not
interested in the magnitude of the electromagnetic quantities,
but how they are spatially distributed in the superconducting
sample.

The numerical simulations were performed in Matlab
R2015a on a mobile workstation with Intel(R) Core(TM)
i5-2520M CPU @ 2.50 GHz, 8 GB RAM, Windows 10
(64 bit). A mesh of100 × 100 nodes(xi, yj) was used,
B0 = 1T, a = 2.65× 10−3m, ρn = 10−6 Ω·m, t1 = 10−5s,
jc0(Γ2) = j0 = 2.5× 108A/m2, B∗ = 1T andt0 = 1s. The
external magnetic fieldµ0Ha = RRt varied linearly with
time at a ramp rate ofRR = 0.01T/s. The numerical exper-
iment was performed as follows:

1. The inhomogeneous edges were generated byjc0(Γ1).
A “macrodefect” was included at the left edge of the
sample.

2. The applied field was increased linearly with a ramp
rateR̄R = 0.01 until the maximum valuēBmax = 0.3
was reached.

3. Starting fromB̄max, the intensity of the applied field
was decreased linearly down to zero.

According to the mesh size, we chose the nodes contained
in the regionΓ1, they were the set(x1,2, yj), (x99,100, yj),
(xi, y1,2) and(xi, y99,100), with i, j = 1, 2, . . . , 99, 100.

A square “macrodefect” was built selecting the nodes
(xm, yn) wherem = 1, 2, 3, 4 and n = 21, 22, 23, 24, in
this site the maximum current density wasj̄c0 = 0.25.
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4 O. A. HERNÁNDEZ-FLORESet al.,

FIGURE 2. B̄z(with) − B̄z(without), here B̄z(with) is the
magnetic induction in a sample with inhomogeneous edges and
B̄z(without) is the magnetic induction of a complete homoge-
neous sample.

The four inhomogeneous edges were constructed with
∆ = 0.25 and

j̄c0(x2, yj) =0.75ξ1
j cos(8πyj) + 0.25,

j̄c0(x1, yj) =jc0(x2, yj)/2,

j̄c0(x99, yj) =0.75ξ2
j cos(8πyj) + 0.25,

j̄c0(x100, yj) =jc0(x99, yj)/2,

j̄c0(xi, y2) =0.75ξ1
i cos(8πxi) + 0.25,

j̄c0(xi, y1) =jc0(xi, y2)/2,

j̄c0(xi, y99) =0.75ξ2
i cos(8πxi) + 0.25,

j̄c0(xi, y100) =jc0(xi, y99)/2,

where ξ1
i , ξ2

i , ξ1
j , ξ2

j are random numbers uniformly dis-
tributed between zero and one. The inhomogeneous edges
cover around8% of the cross section.

The system (10) is solved using the MATLAB ode113
solver. The average computation time for this numerical ex-
periment was40 min, while for a homogeneous supercon-
ductor the simulation time was2 min. Such discrepancy in
the simulation times is a consequence of the stringent error
tolerance imposed, since high accuracy is required to find the
magnetic induction at the edges.

We show at the panel (a) of Fig. 1 a pseudocolor plot of
the magnetic induction in an early stage of the simulation, at
this point the external field had slightly penetrated. We can

FIGURE 3. Pseudocolor plot of the magnetic inductionBz andjx, jy components of the current density. The external field was switched on
from zero toBmax. The yellow intensity indicates the highest field values while the green one the lowest values.

Rev. Mex. Fis.69040502
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FIGURE 4. Pseudocolor plot of the magnetic inductionBz andjx, jy components of the current density. The external field was decreased
from Bmax to zero. The yellow intensity indicates the highest field values while the green one the lowest values.

see that the degradation of the material caused the field to
penetrate irregularly, and consequently, a rough flux front
was formed (we marked it with a white line). Indeed, the
rough flux front was formed in the regionΓ1 and remains
present even in the homogeneous zoneΓ2. Due to the non
uniform flux front, gradients inevitably arised at the direction
normal to the edges, and as a consequence a current density
in that direction was presented. Now, panel (b) shows a set of
white lines that corresponds to the rough flux front evolution
for B̄a ≤ B̄max, in the region where the traveling flux front is
homogeneous, the roughness was apparently lost as the field
penetrated the superconducting sample. The macrodefect had
been placed to show that the deflections of the current den-
sity, due to inhomogeneous edges, were less pronounced.

Figure 2 compares the distribution of the magnetic in-
duction B̄z(with) of a sample with inhomogeneous edges
(Γ = Γ1 ∪ Γ2) with the magnetic induction distribution
B̄z(without) of a complete homogeneous sample (Γ = Γ2),
both for the applied field̄Ba = B̄max. It is evident how the
inhomogeneous edges and the “macrodefect” influenced the
magnetic induction distribution in the homogeneous zone. It
can be seen how the areas with the greatest degradation of the
edges produced field jets, in contrast to the quadratic distri-
bution generated by the ”macrodefect”. The field jets did not
cross the d-lines marked with yellow dashed lines.

Figures 3 and 4 show the evolution of the magnetic in-
ductionB̄z as well as the componentsj̄x andj̄y of the current
density, as the external field varied with time. In Fig. 3,B̄a

was switched on from zero tōBmax, as can be seen, the inho-
mogeneous edges affected the distributions of the magnetic
induction and the current density, in early stages its influence
was relevant, however they were attenuated as the external
field increased. The current density components present dark
and bright intercalated zones that indicates a change of direc-
tion of the supercurrent lines, these changes tend to disappear
as the external field saturates the superconducting material.
This behavior also occurred at the “macrodefect” although in
a lesser extent. In the Fig. 4̄Ba was decreased from̄Bmax

to zero. The magnetic induction in̄Bmax had not penetrated
completely the superconductor, this can be seen in the first
column of the figure, however, in the rest of the columns the
field had completely penetrated, this effect is associated with
the flux creep. As in the previous figure, in the current den-
sity distribution there are dark and bright areas interspersed
but inverted, that is, bright and dark areas, this is due to the
change of polarity of the field. The process of change of
direction of the supercurrent lines was gradual, there was a
transition applied field where the supercurrent lines did not
undergo changes in their direction, as illustrated the second
column of graphs. Of course, in the “macrodefect” the super-
current lines continued deflecting. In the case of the remanent
field, the reversal of the superconducting currents was partial,
due to a squared “mountain range” formed in the magnetic
induction that limits the effect of the inhomogeneous edges.
This “mountain range” was formed because the maximum
applied field is practically the penetration field.

Rev. Mex. Fis.69040502
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6. Concluding remarks

A computational simulation has been successfully carried out
to describe, in a more realistic way and from a macroscopic
point of view, a bulk superconducting material with degra-
dation of the superconducting properties at the edges of the
sample. Even when there is a clear discrepancy on the simu-
lation time of a homogeneous sample and one with degraded
edges, the simulation time was short, considering the strin-
gent error tolerance, a modest computing capacity and the
interpreted language.

We were able to confirm that theΓ1 zone (degraded bor-
ders) induced a rough flux front (Fig. 1) in the homogeneous
Γ2 zone. The roughness, due to the stochastic profilejc0(Γ1),
produced jets of magnetic flux and the rate of magnetic flux
entering took different values inΓ1, the highest value cor-
responded to the greatest degraded zone. As expected, the
flux front became uniform as the external field was increased,
however, the distribution of magnetic induction maintained
traces of roughness (Figs. 1 and 2).

The pseudocolor plots of the current density components
(Figs. 3 and 4) confirmed the effect of the degraded edges, it
was found that the current density is quite more sensible to
detect the roughness and the inhomogeneity.

The first part of the simulation consisted on the increment
of the magnitude of the external field and, as expected, the
distribution of magnetic induction was homogenized. As the
external field was decreased there was a transition field where
the current changed of direction and the magnetic induction
and current distributions became homogenized.

Finally, when the external field was turned off, the rema-
nent field distribution maintained traces of roughness, caus-
ing the magnetization to be higher compared to the case of a
homogeneous superconductor. This last fact suggests to carry
out studies considering an entirely inhomogeneous material
(such as the YBCO monoliths), since in principle, higher
magnetizations could be achieved if the inhomogeneity in-
creases, thus improving its performance as superconducting
magnets.
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