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We study the quantum-mechanical problem of scattering caused by a localized obstacle that breaks spatial and temporal reversibility. Accord-
ingly, we follow Maxwell’s prescription to achieve a violation of the second law of thermodynamics by means of a momentum-dependent
interaction in the Hamiltonian, resulting in what is known as Maxwell’s demon. We obtain the energy-dependent Green’s function analyti-
cally, as well as its meromorphic structure. The poles lead directly to the solution of the evolution problem, in the spirit of M. Moshinsky’s
work in the 1950s. Symmetric initial conditions are evolved in this way, showing important differences between classical and wave-like
irreversibility in terms of collapses and revivals of wave packets. Our setting can be generalized to other wave operators,e.g. electromagnetic
cavities in a classical regime.
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1. Introduction

Explicit time-dependent solutions of the Schrödinger equa-
tion have been of interest since the advent of quantum me-
chanics. In 1952, M. Moshinsky showed [1] that the evo-
lution of a particle beam emerging from a shutter displays
important details inherent to interference effects. In the same
decade, this study was linked to the poles of the S matrix [2]
in scattering theory, including irreversible problemse.g. res-
onances and nuclear decay [3]. Since then, nuclear, atomic
and molecular beams have been used to demonstrate diffrac-
tion and quantum interference; in our days, matter waves are
best realized by Bose-Einstein condensates [4–7].

In this article, we study a closed dynamical system with
spatial and temporal irreversibility, using similar techniques
but in a modern context: The microscopic test of the second
law of thermodynamics. Our closed system consists of an ar-
bitrarily large ensemble of independent particles described by
the Scḧodinger equation under the influence of a momentum-
dependent potential localized in some small region – an ob-
stacle. In the classical regime, the so-called Maxwell’s de-
mon [8] falls into this class of problems, whereby the pro-
cess of discriminating particles by their velocity is called
Maxwellian irreversibility. With this in mind, it is possible to
study the quantum effects of an interaction potential that de-
pends on the momentum of a wave,i.e. an operator that ad-
dresses its Fourier component. Such momentum-dependent
interactions have been used extensively to model nuclear,
molecular or even relativistic dynamics [9–11]. Thus, we
expect that a point-like defect that operates on a particle ac-
cording to its velocity, should reproduce reasonably well the
classical division of fast and slow components of an ensem-
ble into two compartments, plus interference effects that we
shall discuss carefully in our treatment.

The mathematical goal of this work is to obtain in closed
form the corresponding energy-dependent Green’s function,

thus providing an analytical solution to scattering and time-
dependent evolution via Laplace inversion. It should be noted
that such a function will have broken exchange symmetry
(e.g., G(x, x′) 6= G(x′, x)), as is to be expected for a sys-
tem with Maxwellian irreversibility or broken time reversal
invariance. Explicit Green’s functions with such properties
are scarce in the literature [12, 13], so our results shall in-
clude new formulae for these objects.

In terms of applications, the limitations of the second-law
of thermodynamics have been discussed since the appear-
ance of Maxwell’s demon [14–21], but they have not been
emulated dynamically so far in the quantum realm; instead,
informational treatments have been used which, in general,
are based on measurements and feedback [14–21] in various
types of arrangements, such as photonic setups [27, 28], ul-
tracold atoms [29], superconducting quantum circuits [30],
QED cavities [31], quantum dots [32] and electronic cir-
cuits [33,34]. In view of this, our approach shall be ideal for
applications that involve wave dynamics of a broader type,
without wave collapse mechanisms; electromagnetic cavities
can be considered if one perturbs the Helmholtz operator with
complex terms, as in dielectric media.

In Sec. 2 we introduce a momentum-dependent potential
in a classical Hamiltonian that exerts Maxwellian irreversibil-
ity on the particles involved, and then we generalize it to the
quantum mechanical domain. Subsequently, the formalism of
irreversible non-symmetric Green’s functions is introduced,
obtaining thereby a new closed expression. Lastly, in Sec. 3
we present a dynamical analysis of symmetric initial condi-
tions.

2. Maxwellian Irreversible Problems with Lo-
calized Interactions

We motivate our discussion with a classical problem that con-
sists of an ensemble of particles in an origin-centered con-
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tainer with a length of2xL. In this context, particles are con-
sidered independent, therefore the action of a potential is sep-
arable and a Hamiltonian formulation per particle is possible.
For this system, the Hamiltonian takes the form

H =
p2

2m
+ Vbox(x) + Vint(x, p), (1)

whereVbox represents a pair of impenetrable barriers atx =
±xL, Vint is a momentum-dependent potential with strength
V0 atx = 0, i.e.,

Vint(x, p) = V0δ(x)Vact(p), (2)

andVact(p) is an activation function that determines whether
particles remain on one side of the container or pass to the
other side according to the particle’s momentum. In particu-
lar, we have the following expression

Vact(p) = f−(|p|)sgn(p) + f+(|p|), (3)

with

2f±(|p|) = Θ(PR − |p|)
±Θ(|p| − PR)∓Θ(|p| − PUV), (4)

FIGURE 1. Activation potentialVact(p) defined in (3) with refer-
ence momentumPR and ultraviolet cleavingPUV .

FIGURE 2. Phase space evolution of two particle ensembles
ρ1(|p| < |PR|) & ρ2(|p| > |PR|). The activation potential sepa-
rates particles according to the reference momentum, leaving two
well differentiated zones.

where the reference momentumPR will discern which par-
ticles will be influenced by the perturbation, depending on
their momentum, whereas theδ distribution is a contact in-
teraction depending on particle’s position. In addition, an
ultraviolet cutoffPUV can be introduced in case the potential
does not operate at high frequencies; for instance, in electro-
magnetic realizationsPUV is necessary, as dielectric materials
operate in specific ranges (see Fig. 1).

To appreciate the effect of this potential, suppose two en-
semblesρ1 and ρ2, shown in Fig. 2: ρ1 represents a col-
lection of independent particles in the first quadrant with a
right-directed momentum less thanPR, therefore, when the
system evolves, the phase space corresponding to the zone
−xL < x < 0 and|p| < |PR| will be filled. Conversely,ρ2

represents a collection of independent particles in the third
quadrant with a left-directed momentum greater thanPR, so,
when the system evolves, the phase space corresponding to
the zone0 < x < xL and|p| > |PR| will be filled. It should
also be noted that, after the selection process has taken place,
the system reaches an equilibrium where each compartment
possesses temperaturesT1,2 such that

T2(x > 0) > T1(x < 0). (5)

ThereforeVact(p) effectively separates the particles into two
well differentiated zones according to their momentum.

2.1. Quantum mechanical generalization

Now we can omit the presence ofVbox in the Hamiltonian op-
erator by introducing Dirichlet boundaries. It is also impor-
tant to preserve the hermiticity ofH by defining properly the
irreversible potential. To this end, we first promoteVint(x, p)
in (2) to an operator

V̂int(x̂, p̂) ≡ V0δ(x̂)V̂act(p̂), (6)

which must be symmetrized in order to get a hermitian poten-
tial. First, we note that the action of̂Vact(p̂) on a complete ba-
sis of plane waves iŝVact(p̂) exp(ikx) = Vact(~k) exp(ikx),
whereVact(~k) is just a number as specified by the classical
function (3). Therefore, the action of (6) on any wave given
by ψ(x) = 〈x|ψ〉 can be defined by means of the action of
V̂act(p̂) on the state|ψ〉; we have

V̂act(−i~∇)〈x|ψ〉 = 〈x| V̂act(p̂) |ψ〉

=

∞∫

−∞
dp 〈x| V̂act(p̂) |p〉 〈p|ψ〉

=

∞∫

−∞
dpVact(p)〈x|p〉〈p|ψ〉
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=

∞∫

−∞
dp

∞∫

−∞
dx′Vact(p)〈x|p〉〈p|x′〉〈x′|ψ〉

=

∞∫

−∞
dx′

∞∫

−∞
dpVact(p)

eip(x−x′)/~

2π~
〈x′|ψ〉

=

∞∫

−∞
dx′Ṽact(x′ − x)ψ(x′), (7)

where Ṽact is the Fourier transform ofVact. This proce-
dure is valid even for Dirichlet boundaries, asψ above may
have compact support and its Fourier integral will be re-
duced to the domain−xL < x′ < xL. The symmetriza-
tion of the operator (6) is the following hermitian potential
V̂ = (1/2)(V̂int + V̂ †

int), and it renders the Schrödinger equa-
tion as

− ~
2

2m
∇2Ψ(x, t) +

V0

2
[δ(x̂)V̂ (−i~∇)

+ V̂ (−i~∇)δ(x̂)]Ψ(x, t) = i~∂tΨ(x, t). (8)

The goal is to solve (8) using energy-dependent Green’s func-
tions. We emphasize that the explicit form of the eigenfunc-
tions is not necessary to obtain the spectral decomposition of
Green’s functions in closed form. An example of this can
be seen in Appendix A, where the Green’s function for a
δ(x)-potential is calculated solely using the integrals in the
Lippmann-Schwinger equation.

2.2. A Theorem on Non-Symmetric Green’s Functions

It is known that Green’s functions are not always symmet-
ric: the cases in which symmetry under exchange of spatial
variables is recovered correspond to real Hamiltonians and
time-reversibility. To see this, we present the following ele-
mentary theorem:
Theorem . Let Ĝ(±) be a solution of(Ĥ − E)Ĝ(±) =
I and Ĝ(±)(Ĥ − E) = I, where Ĥ is Hermi-
tian and Ĝ(±) in the position-basis is〈x| Ĝ(±) |x′〉 =
limε→0+ 〈x| 1/Ĥ − E ∓ iε |x′〉 = G(±)(x, x′;E). Then
(G(±)(x, x′; E))∗ = G(∓)(x′, x;E)).
Proof. In the position-basis,̂G(±) must fulfill

(H(x,−i∂x)− E)G(±)(x, x′; E) = δ(x− x′) (9a)

and

(H∗(x′,−i∂x′)− E)G(±)(x, x′; E) = δ(x− x′). (9b)

Taking a Hamiltonian such thatH = H†, it follows that

Ĝ(±)† = Ĝ(∓), (10a)

or, expressed in the position basis

〈x| Ĝ(±)† |x′〉 = 〈x| Ĝ(∓) |x′〉 . (10b)

Note that the left-hand side becomes

〈x| Ĝ(±)† |x′〉 = (〈x′| Ĝ(±) |x〉)∗

after taking out the conjugate transpose. Consequently,

(
G(±)(x′, x;E)

)∗
= G(∓)(x, x′; E). (11)

So the advanced and retarded Green’s function, for this case,
are related to an index exchange and complex conjugation.
¥
Corollary G(±)(x, x′; E) is symmetric if and only if the
Hamiltonian is real.
Proof. ⇒) By taking a Hamiltonian such thatH = H∗, it
follows that

Ĝ(±)∗ = Ĝ(∓) (12a)

or, expressed in the position basis

〈x| Ĝ(±)∗ |x′〉 = 〈x| Ĝ(∓) |x′〉 . (12b)

Note that the left-hand side can be transformed into

〈x| ((Ĝ(±)∗)T)T |x′〉 = 〈x| (Ĝ(±)†)T |x′〉 = 〈x| (Ĝ(∓))T |x′〉 ,

where(10a) was used in the last step. Consequently,

〈x′| (Ĝ(∓)) |x〉 = 〈x| Ĝ(∓) |x′〉 . (13)

Therefore,G(±)(x, x′;E) is symmetric.
⇐) Suppose that

G(±)(x, x′;E) = G(±)(x′, x; E), (14a)

or, expressed in Dirac notation

〈x| Ĝ(±) |x′〉 = 〈x′| Ĝ(±) |x〉 . (14b)

Note that the right-hand side can be transformed into

〈x′| (Ĝ(±)†)† |x〉 = 〈x′| Ĝ(∓)† |x〉 = 〈x| Ĝ(∓)∗ |x′〉

where(10a) was used in the middle step. Consequently,

〈x| Ĝ(±) |x′〉 = 〈x| Ĝ(∓)∗ |x′〉 . (15)

Therefore,Ĝ(±)∗ = Ĝ(∓), and the Hamiltonian is real.¥
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2.3. Exact form of Green’s function

Now we focus on the analysis of a functionGDemon that solves the following problem

(H + V (x, p)− E)GDemon = δ(x− x′), (16)

whereH is any Hamiltonian whose Green’s functionG0 is known andV (x, p) is the Maxwellian interaction in (8). From here
on we work with units~ = 1. We recall that a particle with a Dirac-delta potential gives rise to an equation with a source,
similar to the Lippmann-Schwinger equation. This allows an exact solution for the energy-dependent Green’s function by an
evaluation of the corresponding integrals in the first term of the Born series. Note however that when the potential is affected
by a momentum-dependent activation function (hence irreversible), the integral is more involved, asG is self-contained in the
expressions. For this reason, we must address an integral equation as well as a functional relation. The explicit equation in
operator-form to be solved is

(
Ĥ − E + V (p̂)δ(x̂) + δ(x̂)V (p̂)

)
Ĝp = I. (17)

Inspired by the solution of a delta perturbation that depends only on position (see Appendix A), the following integral equation
is obtained

Gp(x, x′, E) = G0(x, x′, E)−
∫

dy G0(x, y, E)δ(y)V (p̂)Gp(y, x′, E)−
∫

dy G0(x, y, E)V (p̂)δ(y)Gp(y, x′, E), (18)

where the momentum operatorp̂ in the expression above is understood as−i∂y. Prior to the evaluation of (18) we insert
another complete set in each integral in the form

〈y| δ(x̂)V (p̂)Ĝp |x′〉 =
∫

dy′ 〈y| δ(x̂)V (p̂) |〉 〈y′| y′Ĝp |x′〉

=
∫

dy′
δ(y)
2π

∫
dp eip(y−y′)V (p)Gp(y′, x′, E) = δ(y)

∫
dy′ Ṽ (y′)Gp(y′, x′, E), (19a)

where a complete set of plane waves was introduced in the second line, and as before

Ṽ (y′) =
1
2π

∫
dp e−ipy′V (p), (19b)

is the Fourier transform of the potential; whereas, for the second integral, we have

〈y|V (p̂)δ(x̂)Ĝp |x′〉 =
∫

dy′ 〈y|V (p̂)δ(x̂) |〉 〈y′| y′Ĝp |x′〉 =
∫

dy′
δ(y′)
2π

∫
dp eip(y−y′)V (p)Gp(y′, x′, E)

= Ṽ (−y)
∫

dy′ δ(y′)Gp(y′, x′, E) = Ṽ (−y)Gp(0, x′, E). (19c)

Substitution of (19) in (18), leads to

Gp(x, x′, E) = G0(x, x′, E)−G0(x, 0, E)
∫

dy′ Ṽ (y′)Gp(y′, x′, E)−
∫

dy G0(x, y, E)Ṽ (−y)Gp(0, x′, E). (20)

In order to getGp(x, x′, E), we first multiply the last expression bỹV (x) and integrate overx,
∫

dx Ṽ (x)Gp(x, x′, E) =
∫

dx Ṽ (x)G0(x, x′, E)−
∫

dx Ṽ (x)G0(x, 0, E)
∫

dy′ Ṽ (y′)Gp(y′, x′, E)

−
∫

dx Ṽ (x)
∫

dy G0(x, y, E)Ṽ (−y)Gp(0, x′, E), (21)

and recognizing that the integral on the left-hand side is the same as the one in the 2nd term of the right-hand side (with another
integration variable), a consistency condition is obtained:

∫
dy′ Ṽ (y′)Gp(y′, x′, E) =

P1(x′, E)−Q1(E)Gp(0, x′, E)
1 + Q2(E)

, (22)
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where

P1(x′, E) =
∫

dx Ṽ (x)G0(x, x′, E), (23a)

P2(x, E) =
∫

dy G0(x, y, E)Ṽ (−y), (23b)

Q1(E) =
∫

dx

∫
dy Ṽ (x)G0(x, y, E)Ṽ (−y), (23c)

Q2(E) =
∫

dx Ṽ (x)G0(x, 0, E). (23d)

Substituting the above equation again intoGp(x, x′, E) given by (18), leads to the following functional equation

Gp(x, x′, E) = G0(x, x′, E)− P2(x,E)Gp(0, x′, E)−G0(x, 0, E)
P1(x′, E)−Q1(E)Gp(0, x′, E)

1 + Q2(E)
. (24)

The latter is not yet a closed formula forGp, for it depends onGp again. Evaluating atx = 0 provides the reduced functional
equation

Gp(0, x′, E) = G0(0, x′, E)− P2(0, E)Gp(0, x′, E)−G0(0, 0, E)
P1(x′, E)−Q1(E)Gp(0, x′, E)

1 + Q2(E)
, (25)

which can be solved forGp(0, x′, E), leaving

Gp(0, x′, E) =
G0(0, x′, E)−G0(0, 0, E)R1(x′, E)
1 + P2(0, E)−G0(0, 0, E)Q3(E)

, (26a)

where

R1(x′, E) =
P1(x′, E)
1 + Q2(E)

, Q3(E) =
Q1(E)

1 + Q2(E)
. (26b)

The last equation is substituted intoGp(x, x′, E), to obtain its final expression in terms ofG0(x, x′, E)

Gp(x, x′, E) = G0(x, x′, E) +
G0(x, 0, E)G0(0, x′, E)Q3(E)

1 + P2(0, E)−G0(0, 0, E)Q3(E)

− G0(x, 0, E)R1(x′, E) (1 + P2(0, E))
1 + P2(0, E)−G0(0, 0, E)Q3(E)

− P2(x,E) (G0(0, x′, E)−G0(0, 0, E)R1(x′, E))
1 + P2(0, E)−G0(0, 0, E)Q3(E)

. (27)

This is a new formula for our Green’s function. We shall see that (27) can be split into symmetric and antisymmetric contribu-
tions, where the latter are associated with irreversibility, as we have seen from the theorem in the previous section.

3. Application to a particle in a container

We now specialize in the case where particles are in a container with Dirichlet boundary conditions. The Green’s function
and the energies are well known for the unperturbed problem. Our plan is as follows: first we apply our new Green’s function
formula to the case of the container with an irreversible perturbation inside; we give the explicit form of its spectral decompo-
sition, and we analyze its meromorphic structure in order to find its poles. Subsequently, we focus on the evolution problem;
therefore, we shall need an appropriate definition of entropy that accounts for the emergence of disorder in energy space. To
this end, a basis-dependent entropy is suggested. The next subsection is devoted to the use of Shannon’s entropy in our evo-
lution problem. Afterwards, we address the explicit problem of numerical evolution by means of spectral decomposition and
a finite-difference method in space. Efficient numerical evaluations are best achieved if this discretization is restricted to a
region where the dispersion relation is well approximated by a parabola. Thus, we include a careful analysis of the dispersion
relation in the spatially-discretized version of the problem. Lastly, we construct specific initial conditions that are completely
symmetric and analyze how the wave packet propagates inside the container asymmetrically. The reason is obviously the in-
herent broken spatial symmetry of the problem,i.e., the transformationx → −x, p → −p is not a symmetry ofH. Then we
add a special definition of temperature (or effective beta parameter). Therewith we can analyze other types of time-evolving
distributions. In this part, it is important to show how the entropy can indeed decrease as a function of time, resulting in a
special kind of ordering or sorting of fast and slow particles, produced by the non-reversible Maxwellian potential.
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We start with a free Green’s function in a containerGC
0 , i.e.,

GC
0 (x, x′, E) =

2
L

∑
m=1

sin(κ2mx) sin(κ2mx′)
E2m − E

+
2
L

∑
m=1

cos(κ2m−1x) cos(κ2m−1x
′)

E2m−1 − E
(28)

with κn = nπ/L and eigenenergiesEn = (1/2)~2κ2
n. Although this problem does not have asymptotic states, the perturbed

system can be regarded as a scattering problem for waves inside the box. It is important to clarify that our approach using plane
waves in (7) is still valid here. One may as well resort to a basis of box functions for this purpose, but computations would be
more involved. Now let us employ our new result: The Green’s function (28) can be put in terms of Jacobi’s theta function as
reported by [12]. The Green’s function in (27) with the container is

GC
p(x, x′, E) = GC

0 (x, x′, E) +
P C

1 (x, E)GC
0 (0, x′, E)−GC

0 (x, 0, E)P C
1 (x′, E)

1−GC
0 (0, 0, E)QC

1 (E)

+
GC

0 (x, 0, E)GC
0 (0, x′, E)QC

1 (E)
1−GC

0 (0, 0, E)QC
1 (E)

− P C
1 (x,E)GC

0 (0, 0, E)P C
1 (x′, E)

1−GC
0 (0, 0, E)QC

1 (E)
, (29)

whereP C
1 andQC

1 are the integrals evaluated withGC
0 . From the previous expression the identification of the symmetric and

antisymmetric part of the Green’s function is effortless. Note that terms that contribute to the antisymmetric part come from
the Maxwellian perturbation, as the first and third terms are manifestly symmetric.

3.1. Pole structure analysis

The integrals in (27) can be done in terms of sine-integral functions [31] (Si) using in addition the Fourier’s transform of the
potential described in Fig. 1,e.g.

Ṽ (±y) =
±1

2iπy
(1− 2 cos PRy), (30a)

P C
1 (x′, E) = −P C

2 (x′, E) = − 2
iπL

∑
n=1

Si(ξ+)− Si(ξ−)− Si(nπ)
E2n − E

sin(κ2nx′), (30b)

QC
1 (E) =

2
π2L

∑
n=1

(Si(ξ+)− Si(ξ−)− Si(nπ))2

E2n − E
, (30c)

QC
2 (E) = 0, (30d)

with

ξ± = (PR ± κ2n)
L

2
. (30e)

Given the behavior of the Si function inP C
1 andQC

1 (E), the following approximation can be made. The argument is written
as

Si(nπ + a)− Si(nπ − a) ' π

2
− π

2
Θ(n− Ja/πK) +

π

2
Θ(Ja/πK− n) + πε δn,Ja/πK. (31)

wherea = PRL/2, Ja/πK represents the integer part andε the fractional part ofa/π and the step function is zero for the case
n = Ja/πK. (The full procedure is in Appendix B). So the integrals are now approximated by

P C
1 (x, E) ' − 2

iL



Ja/πK−1∑

n=1

sin(κ2nx)
E2n − E

− 1
2

∞∑
n=1

sin(κ2nx)
E2n − E

+
1
2

(1 + 2ε)
E2Ja/πK − E

sin(κ2Ja/πKx)
)

, (32a)

and

QC
1 (E) ' 1

2L

( ∞∑
n=1

1
E2n − E

− 1
E2Ja/πK − E

)
. (32b)

The pole structure of the whole antisymmetric term can be very intricate. According to the transcendental equation

1−GC
0 (0, 0, E)QC

1 (E) = 0, (33)

Rev. Mex. Fis.69050401



EXACT GREEN’S FUNCTIONS FOR LOCALIZED IRREVERSIBLE POTENTIALS 7

where it is straightforward to see that

GC
0 (0, 0, E) =

tan(L
√

2E/2~)
~
√

2E
,

QC
1 (E) =

1
2L

(
1

2E
− L cot(L

√
2E/2~)

2~
√

2E
− 1

E2Ja/πK − E

)
,

and clearlyE2Ja/πK is not a zero of (33), since the productGC
0 (0, 0, E)QC

1 (E) would tend to infinity ifE → E2Ja/πK. However,
it is noted that the numerator

P C
1 (x, E)GC

0 (0, x′, E)−GC
0 (x, 0, E)P C

1 (x′, E) (34)

still contains the poles ofGC
0 ; while the new termP C

1 (x,E), proportional tosin(κ2Ja/πKx)/(E2Ja/πK − E), which in general
(if x 6= x′) does not disappear, contributes to a new pole located atE2Ja/πK. To sum up, the antisymmetry under exchange
x ↔ x′ in both stationary and time-dependent solutions comes predominantly from the harmonic inversion of (34) under the
approximation

∝ sin(κ2Ja/πKx)GC
0 (x′, 0, E)−GC

0 (0, x, E) sin(κ2Ja/πKx′)
E2Ja/πK − E

whose pole producesexp(−iE2Ja/πKt/~) in the spectral decomposition of the wave function, and thus a typical frequency.

3.2. Shannon’s Entropy

The entropy is fundamental in the analysis of asymmetric evolution inasmuch a dynamic effect of apparent ordering is sought.
Since the von–Neumann equation without a source does not capture the irreversibility phenomenon, a notion of entropy that
describes disorder with respect to a specific basis (e.g. energy) is required. Shannon’s definition of entropy is

σSh = −
∑
m

%m log %m. (35)

where the probabilities%m will be given by the overlap (integral) of the wave function with the basis of the free problem,i.e.

%m =
∣∣ 〈m,E(0)

m 〉Ψ, t
∣∣2 =

∣∣∣∣∣
∑

n′
〈m,E(0)

m 〉n′ 〈n′〉Ψ, t

∣∣∣∣∣

2

. (36)

Likewise, the total entropy of the system must be estimated separately, as Shannon’s entropy applies only to the particles
inside the container, but does not contemplate the reaction ofV (x, p) itself, which is not dynamically involved. To this end,
we estimate the work done by the potential on the trapped wave andvice versa. Also, using the principle of extensivity
one can find a lower bound for the total entropy of the systemSt as the linear combination of the particle’s entropySp plus
Maxwellian-potential’s entropySd, i.e.

∆St = ∆Sp + ∆Sd

?≥ 0 (37a)

with ∆Sp ≤ 0 as the entropy of the particles must decrease because of the Maxwellian potential. Furthermore, one can find a
lower bound for the Maxwellian-potential’s entropy change in terms of the work done by the potential as

∆Sd =
∫

δ′Q
T

∼ ∆Q

〈T 〉 ≥
1
〈T 〉∆V = (const.)∆V. (37b)

From this, it follows that

∆St ≥ ∆Sp + (const.)∆V. (37c)

Therefore, when taking into account the work done by the Maxwellian potential, its contribution must compensate for the
partial entropy reduction. Indeed, for a container with two separated compartments with volumeυ, the change in the particle’s
entropy is
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∆Sp = −
(

PR

TR
+

PL

TL

)
υ log 2, (38a)

wherePR,L andTR,L are the pressure and temperature for the
right (R) and left (L) compartment, computed as ideal gases.
Moreover, the internal energyU ∝ Pυ, so

∆Sp ∝ −βB (UR + UL) log 2, (38b)

whereβB is the thermodynamic beta andUR,L the corre-
sponding lateral internal energy. We shall employ these con-
siderations in the numerical treatment of the problem.

3.3. Spatial and spectral decomposition

We proceed to discretize the Hamiltonian on a lattice. This
enable us to treat the problem as a matrix representation on
a basis of point-like functions. Since the treatment is equiv-
alent to a tight binding model in a crystal, it is advisable to
use the first Brillouin zone to calculate the energies. In this
way, the activation potential in (3) will be non-zero in the in-
tervals[−κD,−κR] and[0, κR], resulting in the action zones
of the Maxwellian potential according to the reference mo-
mentumPR ↔ κR. This can be seen in the graph below in
Fig. 3. However, it is necessary to work in the quasi-parabolic
energy regime that is below theDirac point [36] ($D), ob-
taining the upper graph, a parabola with regions where the
Maxwellian potential acts. It is worth mentioning that the re-
gion of the potential forp < −PR is not bounded above as in
the graph below.

FIGURE 3. The graph below shows the energies in a tight binding
model in a crystal, the coloured zones represent the activation po-
tential in (3) with reference momentumPR ↔ κR. Also, using
the quasi-parabolic energy regime below theDirac point ($D), the
upper graph is obtained.

Therefore, the Hamiltonian’s action on a plane wave

|κ〉 =
1√
2π

∑
n

eiκn |n〉 , (39)

is no longer restricted to the unperturbed part plus the defect
at the origin, instead we have a non-local effect that can be
obtained directly by calculating the matrix elements at siten

〈n|H |κ〉 =
~2

ma2
(1− cos κ)

eikn

√
2π

+
1

2iπn
√

2π

(
2 cos (κRn)− 1− e−iκDn

)

−
∑

n′

δn,0

2iπn′
· eiκn′

√
2π

(
2 cos (κRn′)− 1− eiκDn′

)
. (40)

wherea is the scale parameter. Also, the Hamiltonian will be diagonalized using a discretized basis|n〉, as many sites as
frequencies are necessary,i.e.

〈n|H |n′〉 =− ~2

2ma2
(δn−1,n′ − 2δn,n′ + δn+1,n′) +

V0

2
· δn′,0

2iπn

(
2 cos (κRn)− 1− e−iκDn

)

− V0

2
· δn,0

2iπn′

(
2 cos (κRn′)− 1− eiκDn′

)
. (41)

Note that for the central element (the evaluation of the corresponding integrals atn = 0 = n′),

〈0|H |0〉 =
~2

2ma2
· 2 +

V0

2
· κD

π
. (42)

This shows that the potential at its location is finite in a discretized setting, and its intensityV0 can be adjusted at will.
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Finally, the wave functionΨ(t) at siten is

〈n〉Ψ, t=
∑
m

exp (−itEm/~) 〈n〉m,Em 〈m,Em〉Ψ0, (43a)

whereEm are the eigenvalues of the problem,〈n〉m,Em are
stationary functionsi.e. eigenvectors, while〈m, Em〉Ψ0 is
the overlap (integral) of the initial condition with the basis,
i.e.

〈m,Em〉Ψ0 =
∑

n′
〈m, Em〉n′ 〈n′〉Ψ0, (43b)

where〈n′〉Ψ0 is the initial condition.

3.4. Dynamical analysis of symmetric initial conditions

The Shannon analogue of a Boltzmann thermal distribution
[37] (e.g. as understood by superposition of particle’s num-
ber in photonic states) can be used as an appropriate initial
condition for box states. The idea is to monitor its evolution
and its subsequent ordering. We have:

ψB
0 (β, n) =

Nmax∑
q=1

exp
(−β

(
q2 − 1

))
sin

q (n + N)π

2N
, (44)

heren is the site such that−N ≤ n ≤ N (the Maxwellian
potential is atn = 0), Nmax = 2N + 1 is the maximum
number ofq box states that are meaningful in a discretized
system, andβ is an order parameter which would correspond
to

β =
E0

kBT
, with E0 =

π2~2

2mL2
(45)

in thermodynamics. This probability overlaps with the com-
ponents of the eigenvectorsν(n)

m of (41)

ΨB
0 (β, m) =

2N+1∑
n=1

ψB
0 (β, n)ν(n)

m

∗
(46)

obtaining the wave function at the rescaled timeτ (=
~t/2ma2 [adim])

ΨB(β, n, τ) =
2N+1∑
m=1

exp (−iτ Ξm) ΨB
0 (β,m)ν(n)

m , (47)

whereΞ (= 2ma2E/~2 [adim]) are the rescaled eigenener-
gies of (41).

An example of evolution is shown in Fig. 4. The system
size is2N + 1 = 249 sites, with scale parametera = L/2N ,
the rescaled potential intensity isΥ0 = (1/10)(= ma2V0/~2

[adim]), the reference momentum isκR = π/4 and β =
1/100. For relatively short timesτ(×10−3) ' 2, a de-
crease of the entropy in (35) is appreciated. Then, between
τ(×10−3) ' 3 to 9 the entropy increases, which is explained
by the natural wave expansion in each compartment, to de-
crease again atτ(×10−3) ' 12.

FIGURE 4. Entropy withβ = 1/100. A decrease of the entropy is
seen atτ(×10−3) ∼ 2 and 12.

FIGURE 5. Comparative plot of entropies by varying the tempera-
ture valueβ.

Now we turn our attention to Fig. 5 where we show
a comparative plot of entropies by varying the temperature
value. It is found that values1/2 > β > 1/200 produce
significant fluctuations for a potential intensityΥ0 = 1/10.
It should be stressed that for higher values ofΥ0, the over-
all behavior shifts to larger values of beta. For very high
temperatures, a highly disordered system in the energy basis
has a tendency to fluctuate around its original entropic value
(quasi-stationary behaviours), this implies that the effect is
not strong in these cases. We have found, through these nu-
merical results, that the role played byκR is only partially
decisive in the creation of box asymmetries in the evolution,
as the intensityΥ0 is also important for small values of beta.
However, we must stress thatΥ0 cannot be taken as infinite,
since all waves would be trapped in such a case.

In Fig. 6 we can see asymmetries induced as time elapses,
with must drastic effects occurring aroundτ(×10−3) ' 8.5
where the difference between left and right probabilities (oc-
cupation) is large. Note that the effect is recurrent for larger
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FIGURE 6. Lateral probabilities for the left (L, red line) and right
(R, blue line) part of the container withβ = 1/100.

FIGURE 7. Average internal energy for the left (L, red line) and
right (R, blue line) part of the container withβ = 1/100.

FIGURE 8. Average Potential Energy. It contributes significantly
to the energy balance. The blue line indicates the time average
at timeτ . Negative values imply work done by the wave on the
Maxwellian potential.

times. In addition, the entropy has a minimum when the prob-
ability has a maximal rate of change with respect to time, im-
plying that the Maxwellian potential operates until it reaches
a quasi-stationary regime, where there is no exchange of den-
sities but there is entropic rise.

FIGURE 9. Evolution of a Boltzmann distributed wave packet in the
interval−124 ≤ n ≤ 124 (horizontal axis) atτ = 0 (vertical axis),
interacting with a Maxwellian potential located atn = 0, with
β = 1/100, κR = π/4 andΥ0 = 1/10. The colouration exhibits
the probability density, showing that for5 < τ(×10−3) < 10 the
wave packet is predominantly on the right side.

In Fig. 7 we display lateral averages of the total en-
ergy as functions of time. We find asymmetries in both
quantities: initially, the thermal wave is biased to the right.
Then, betweenτ(×10−3) = 0 and 5 there is an expansion
regime where there is thermalization. Forτ(×10−3) > 5 the
Maxwellian-potential’s action enters the game and the waves
are segregated again. These curves are compared with those
of Fig. 8, where indeed the average potential energy becomes
negative forτ(×10−3) > 5, indicating that the particles ex-
ert work on the Maxwellian potential (see a global minimum
of 〈V 〉 at τ(×10−3) ' 9. In this setting, we conclude that
our device operates well until the wave expansion allows an
important interaction withV atτ(×10−3) = 5 and after. For
very large times, a regime with noisy collapse-and-revival be-
haviour can be seen.

In Fig. 9 we show a density plot for (47). The Talbot
effect induces a recurrence time in the quasi-temporal coor-
dinate that will force the system to repeat its behaviour. In
this case,τTalbot ' 10(×103), and forτ < τTalbot there is an
asymmetry that shows the efficient work of the Maxwellian
potential. Subsequently the behaviour is reversed between
the compartments of the box.

Another situation of interest is the uniform distribution,
i.e. ΨI

0 = 1, (this is denoted byβ =IS0). For this case the
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FIGURE 10. Entropy of an isospectral wave packet. A decrease of
the entropy is seen atτ(×10−3) ∼ 8 and 16.

FIGURE 11. Evolution of an isospectral wave packet in the inter-
val −124 ≤ n ≤ 124 (horizontal axis) atτ = 0 (vertical axis),
interacting with a Maxwellian potential located atn = 0, with
κR = π/4 andΥ0 = 1/10.

entropy evolution is shown in Fig. 10. Note that the entropy
value oscillates, again reaching a minimum as the system
evolves. A density plot of the wave functionΨI(x, τ) shown
in Fig. 11, reveals that the wave is distributed asymmetrically
due to terms that break parity explicitly as expected.

4. Conclusions

We have dealt with an irreversible problem in time and space.
In particular, we have reported a new asymmetrical Green’s
function in closed form pertaining to irreversible systems, not
found in standard Refs. [12]. The meromorphic structure of
such a solution has been docile enough to allow proper identi-
fication of energy ranges where a Maxwellian sorting device
is effective. In this way, we have identified how through a
Fourier semi-transform the propagator of a real problem will
be perturbed due to irreversibility. The symmetry breaking
is located in a special term in the Green’s function, whose
pole is related with the reference energy at which a demon
operates.

Afterwards, a dynamical model for a system that splits
an ensemble of waves representing independent particles has
been proposed and successfully studied. Our description has
been possible via a Hamiltonian operator given by (1) and
the irreversible potential in (3). The system works with a
reference momentum that decides how two subsystems, with
different temperatures, are distributed in each compartment
of the cavity. The outcome is reminiscent of the classical
demon’s action shown in Fig. 2, as we have confirmed by an-
alyzing wave dynamics in Fig. 9. As an interesting result,
the undulatory version of Maxwell’s demon contains –in its
evolution– the interference structure of Talbot (quantum) car-
pets in time domain.

The reader familiarized with Jacobi theta functions may
find in our interference patterns the typical trajectories of
constant theta value that appear in many other applications,
including factorization of natural numbers using Gaussian
sums [38]. For long times, a structure of collapses and re-
vivals can be distinguished. This structure displays the ex-
pected spatial asymmetries for limited periods of time associ-
ated with Talbot lengths. There is no true thermalization (as
opposed to the classical process) because of such revivals.
A number of quantities and their time behavior support our
conclusions in connection with irreversibility and the appar-
ent entropy decrease. Indeed, with Shannon’s definition for
a basis-dependent disorder function (in energy states) we ob-
serve regimes where ordered configurations are established
as time elapses. Also, densities and average energies at each
compartment were studied. (Fig. 7 is unmistakable in this
respect.) As mentioned in the introduction, our approach to
irreversibility can be applied to many types of waves. Particu-
lar attention should be paid to electromagnetic cavities, since
non-hermitian wave operators with odd space parity emerge
naturally in dielectric media. Numerical implementations are
left for future work.

Appendix

A. Green’s function for a Dirac-delta potential

For clarity and completeness to the case at hand in (17), we
include the procedure to obtain the Green’s function for the
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case of aδ(x)-potential; such result can also be found at [12, 39, 40]. To our knowledge, there is no prior reference to this,
although the 1Dδ(x)-potential appears in many textbooks. We start with

(
Ĥ − E + V0δ(x̂)

)
Ĝδ = I. (1)

Multiplying from left with Ĝ0 and computing it in the position basisx

Gδ(x, x′, E) + V0 〈x| Ĝ0δ(x̂)Ĝδ |x′〉 = G0(x, x′, E), (2)

where it has been used that
(
Ĥ − E

)
Ĝ0 = I, and 〈x| Ĝ0 |x′〉 = G0(x, x′, E). (3)

Inserting a continuous complete set, obtains

Gδ(x, x′, E) + V0

∫
dx′′G0(x, x′′, E)δ(x′′)Gδ(x′′, x′, E) = G0(x, x′, E). (4)

The above expression is evaluated atx = 0, yielding a functional equation

Gδ(0, x′, E) =
G0(0, x′, E)

1 + V0G0(0, 0, E)
, (5)

which finally, when introduced in (4), yields

Gδ(x, x′, E) = G0(x, x′, E)− V0G0(x, 0, E)G0(0, x′, E)
1 + V0G0(0, 0, E)

. (6)

B. Sine–integral approximation and meromorphic structure

In order to analyze the obtained Green’s function, some integrals can be approximated. In particular, for a container, the terms
to be obtained are

The Fourier transform Ṽ (y)

Ṽ (y) =
1
2π

∫
dp e−ip(y+iε)V (p) =

1
2π



−PR∫

−∞
+

PR∫

0


 dp e−ip(y+iε) ε→0=

1
2iπy

(1− 2 cos PRy) . (B.1)

Integral P C
1 (x′, E)

P C
1 (x′, E) =

L/2∫

−L/2

dx Ṽ (x)GC
0 (x, x′, E) = − 2

iπL

∑
n=1

Si(ξ+)− Si(ξ−)− Si(nπ)
E2n − E

sin(κ2nx′), (B.2)

whereξ± = (PR ± κ2n) (L/2).

Integral QC
1 (E)

QC
1 (E) =

L/2∫

−L/2

dx Ṽ (x)

L/2∫

−L/2

dy GC
0 (x, y, E)Ṽ (−y) =

2
π2L

∑
n=1

(Si(ξ+)− Si(ξ−)− Si(nπ))2

E2n − E
. (B.3)
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Integral P C
2 (x,E)

P C
2 (x, E) =

∫
dy GC

0 (x, y, E)Ṽ (−y) =
2

iπL

∑
n=1

Si(ξ+)− Si(ξ−)− Si(nπ)
E2n − E

sin(κ2nx) = −P C
1 (x,E). (B.4)

Given the behaviour of the function Si, the following approximation can be made: The argument is written in the form

Si(nπ + a)− Si(nπ − a) = Si(π(n + Ja/πK) + πε)− Si(π(n− Ja/πK)− πε) (B.5)

whereJa/πKrepresents the integer part andε the fractional part ofa/π. Expanding aroundε = 0,

Si(nπ + a)−Si(nπ − a)'Si(π(n+Ja/πK))−Si(π(n− Ja/πK))+ε

(
sin (π(n+Ja/πK))

(n+Ja/πK) +
sin (π(n−Ja/πK))

(n−Ja/πK)
)

' π

2
− π

2
Θ (n− Ja/πK) +

π

2
Θ (Ja/πK− n) + πε δn,Ja/πK. (B.6)

(Note: Given the original function, the step function is zero for the casen = Ja/πK.) Thus, it follows that

∞∑
n=1

Si(ξ+)− Si(ξ−)
E2n − E

'
Ja/πK−1∑

n=1

π

E2n − E
+

π

2

∞∑
n=1

δn,Ja/πK
E2n − E

, (B.7)

and

∞∑
n=1

Si(nπ)
E2n − E

' π

2

∞∑
n=1

1
E2n − E

, (B.8)

while

∞∑
n=1

(Si(ξ+)− Si(ξ−)− Si(nπ))2

E2n − E
' π2

4

∞∑
n=1

1
E2n − E

− π2

4

∞∑
n=1

δn,Ja/πK
E2n − E

. (B.9)
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18. S. Lloyd, Quantum-mechanical Maxwell’s demon,Physical
Review A56 (1997) 3374.

19. K. Maruyama, F. Nori, and V. Vedral, Colloquium: The physics
of Maxwell’s demon and information,Reviews of Modern
Physics81 (2009) 1.

20. M. Plesch, O. Dahlsten, J. Goold, and V. Vedral, Maxwell’s
demon: Information vs. particle statistics,Scientific Reports4
(2014) 6995.

21. H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Informa-
tion, Computing (Bonnier Publishing Fiction, 2014).

22. M. O. Scully, Extracting work from a single thermal bath
via quantum negentropy,Physical Review Letters87 (2001)
220601.

23. G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius, and
M. G. Raizen, Single-photon atomic cooling,Physical Review
Letters100(2008) 093004.

24. P. A. Camatiet al., Experimental rectification of entropy pro-
duction by Maxwell’s demon in a quantum system,Physical
Review Letters117(2016) 240502.

25. N. Cottetet al., Observing a quantum Maxwell demon at work,
Proceedings of the National Academy of Sciences114 (2017)
7561.

26. C. Elouard, D. Herrera-Martı́, B. Huard, and A. Auff̀eves, Ex-
tracting work from quantum measurement in Maxwell’s demon
engines,Physical Review Letters118(2017) 260603.

27. A. Ruschhaupt, J. G. Muga, and M. G. Raizen, One-photon
atomic cooling with an optical Maxwell demon valve,Journal
of Physics B39 (2006) 3833.

28. M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Ve-
dral, and I. A. Walmsley, Photonic Maxwell’s demon,Physical
Review Letters116(2016) 050401.

29. A. Kumar, T.-Y.Wu, F. Giraldo, and D. S.Weiss, Sorting ultra-
cold atoms in a three-dimensional optical lattice in a realization
of Maxwell’s demon, Nature 561, (2018) 83-87 .

30. Y. Masuyama et al., Information-to-work conversion by
Maxwell’s demon in a superconducting circuit quantum elec-
trodynamical system,Nature Communications9 (2018) 1291.
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