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In this present paper, we obtain a general version of constant angle surfaces constructed concerning any direction in three dimensional
Euclidean space. This constant angle surface is the special case of developable ruled surfaces whose direction is a spherical circle. Here, we
obtain the constant angle surfaces by taking the circles (small circles) whose radius is less than the radius of the sphere, as the base curve.
Also, the relationship between the isophote curve and this surface and its physical interpretation is mentioned. When we beam from a light
source in a constant direction, the intensity of the light will be the same at every point on this constant angle surface. This study is very
important in terms of associating optics, a branch of physics, with geometry, a branch of mathematics. Finally, we classify the singular points
of these constant angle surfaces.
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1. Introduction

A constant angle surface is a surface whose tangent planes
make a constant angle with a fixed vector field of space. In
another saying, constant angle surfaces whose unit normal
form a constant angle with an assigned direction field in the
Euclidean3−space. This surface is the generalization of a
helical curve. An interesting motivation to study helix sur-
faces or constant angle surfaces arises from physics. The
most basic known application areas of constant angle sur-
faces are for light such as crystal, liquid, shape from shad-
ing problems. In recent years, many authors have studied
these special surfaces to take advantage of their applications
in mathematics and physics. Cermelli and Scala discuss
some properties of constant angel surfaces in terms of the
Hamilton-Jacobi equation. They investigate the properties of
a constant angle surface when the direction field is singular
along a line or a point, [1]. Munteanu and Nistor obtain a
classification for which the unit normal makes a constant an-
gle with a fixed vector direction being the tangent direction to
R in Euclidean3−space, [2]. Many studies have been done
on constant angle surfaces and developable surfaces [3, 4].
In [5], the author investigates the constant angle ruled sur-
faces generated by Frenet frame vectors. Recently the the-
ory of constant angle surfaces are extended to other ambi-
ent spaces. For example; in [6, 7], they study these surfaces
in Minkowski 3−space. In [8], the authors extend the con-
cept of constant angle surfaces to a Lorentzian ambient space.
Also, in product spacesS2×R [9,10], inH2×R [11] and in
Heisenberg group [12,13].

On the other hand, an isophote curve is defined as the
locus of surface points whose normal vectors make a con-
stant angle with a given constant vector as seen in Fig. 1.

So, we can say that the curves on the constant angle surface
are isophote curves. The isophote curve is a nice corollary
to Lambert’s law of cosines in the optics branch of physics.
This law states that the illuminance intensity on a diffused
surface is proportional to the cosine of the angle formed be-
tween the normal vector of the surface and the light vector.
So, we can say the geometric description of isophote curves
on surfaces which are the surface normal vectors in points
of the curve make a constant angle with a fixed light direc-
tion, [14]. In recent years, there have been many applications
of these curves in different branches. In [15], the authors
are developed a novel technique to detect caries lesions using
isophote concepts. Also, in [16], they present the implemen-
tation of a real-time eye detection method that uses the prop-
erties of isophotes, to achieve robustness against changes in
illumination, eye rotation and pupil size.

FIGURE 1. An isophote on a surface.
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In this present paper, we investigate the spherical circles
and constant angle surfaces inE3. This study has emerged
by considering the study of Munteanu and Nistor in [2] from
a different perspective. The difference of the present paper
is that a constant angle surface is obtained with respect to
any direction and some characterizations are given in three
dimensional Euclidean space. This constant angle surface is
the developable ruled surface whose direction is the spheri-
cal circle whose radius is less than the radius of the sphere.
Also, by the definition of isophote curves, the curves on this
surface are isophote curves. These curves have applications
in many fields. At the beginning of these is optics, which is its
application in physics. There are many studies that bring to-
gether the optics branch of physics and the geometry branch
of mathematics [17–21]. This study is one of them. Based on
that, we can say that when we beam from a light source in a
constant direction, the intensity of the light will be the same
at every point on this constant angle surface. On the other
hand, the singularity of the ruled surfaces has been studied
by many authors. We also investigate the singularity types of
this special surface. Finally, as an application, we give some
illustrated examples which support the theory of the paper.

2. Preliminaries

Let α = α(s) : I −→ E3 be an arbitrary curve inE3. The
curveα is said to be a unit speed if〈α′(s), α′(s)〉 = 1 for any
s ∈ I. Assume that{t(s), n(s), b(s)} be the moving frame
of the curveα which satisfies the Frenet equations

d

ds




t(s)
n(s)
b(s)


 =




0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0







t(s)
n(s)
b(s)


 , (1)

where t(s), n(s), b(s), κ(s) and τ(s) are the tangent, the
principal normal and the binormal vector fields, curvature and
torsion ofα(s), respectively, [22].

Let the position vector of the surfaceM in the standard
form of Euclidean spaceE3 is

Φ(u, v) = (x1(u, v), x2(u, v), x3(u, v)).

Then the standard unit normal vector fieldN on the surface
can be defined by

N =
Φu × Φv

‖Φu × Φv‖ , (2)

whereΦu = (∂Φ(u, v)/∂u) andΦv = (∂Φ(u, v)/∂v). Also,
the first and second fundamental forms of the surface are as
follows

I = Edu2 + 2Fdudv + Gdv2,

II = edu2 + 2fdudv + gdv2 (3)

where theE,F andG components are called the coefficients
of the first fundemental form of the surface, and thee, f and
g components are called the coefficients of the second funde-
mental form, respectively. The following equations are given

for the first and second fundamental form coefficients of the
surface

E = 〈Φu,Φu〉 , F = 〈Φu, Φv〉 , G = 〈Φv,Φv〉 , (4)

and

e = 〈Φuu, N〉 , f = 〈Φuv, N〉 , g = 〈Φvv, N〉 . (5)

On the other hand, the Gaussian curvatureK and the mean
curvatureH of the surface are as follows

K =
eg − f2

EG− F 2
, (6)

and

H =
Eg + Ge− 2Ff

2(EG− F 2)
. (7)

Definition 1. Let α, γ be curves andM be a surface in
Euclidean3−space. Surfaces formed by the movement of a
line along a curve in space are called ruled surfaces. The pa-
rameterization of the ruled surface for any two differentiable
curvesα andγ is as follows

Φ(u, v) = α(v) + uγ(v),

whereα(v) is called base curve of the ruled surface andγ(v)
is a unit direction vector of an oriented line inE3. In addi-
tion, if the direction curve is not constant, that is,γ′(v) 6= 0,
the surface is called a non-cylindrical ruled surface, and the
surfaces with a constant direction curve are called the gener-
alized cylindrical surface, [23].
Theorem 1. Let M be a regular ruled surface with the
parameterizationΦ(u, v) = α(v) + uγ(v). If the Gaussian
curvature of the surface is zero, the surfaceM is called the
developable surface. Also, another characterization for de-
velopable ruled surfaces is thatdet(α′(v), γ(v), γ′(v)) = 0,
[24,25].
Theorem 2. LetM be a surface in Euclidean3−space. For
the surfaceM = Φ(u, v) = α(v) + uγ(v), line of striction
is calculated as,[26]

ᾱ(v) = α(v)− 〈γ(v)× γ′(v), γ(v)× α′(v)〉
‖γ(v)× γ′(v)‖2 γ(v).

Definition 2. Let α : I ⊂ R → E3 be a unit speed curve
in E3. Points withα′(t) = 0 on the curveα(t) are called
singular points,[27].

The study of ruled surfaces is a main subject in differen-
tial geometry in Euclidean space. Generally, ruled surfaces
have singularities. Briefly speaking, the cuspidal edgeC×R,
the cuspidal cross-capCCR or the swallowtail appearSW as
singularities of developable surfaces in general. The figures
of these types of singularity are given below in Fig. 2, [28].
Theorem 3. Let Φ(α,γ) : I × J → R3 be a noncylindrical
developable surface andµ, λ : I → R be smooth functions
with α

′
(t) = µ(t)γ(t) + λ(t)γ′(t). Let (t0, u0) ∈ I × J be

a singular point ofΦ(α,γ) and putx0 = α(t0) + u0γ(t0) =
Φ(α,γ)(t0, u0).

Rev. Mex. Fis.69041301
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FIGURE 2. Types of singularity (C × R, CCR andSW , respectively).

1. Suppose thatdet(γ(t0), γ′(t0), γ′′(t0)) 6= 0. Then

a. The germ ofΦ(α,γ)(I × J) at x0 is locally dif-
feomorphic toC × R if u0 = λ(t0) andµ(t0) 6=
λ′(t0).

b. The germ ofΦ(α,γ)(I×J) atx0 is locally diffeo-
morphic toSW if u0 = λ(t0), µ(t0) = λ′(t0)
andµ′(t0) = λ′′(t0).

2. Suppose thatdet(γ(t0), γ′(t0), γ′′(t0)) = 0. Then the
germ of Φ(α,γ)(I × J) at x0 is locally diffeomor-
phic to CCR if u0 = λ(t0), µ(t0) 6= λ′(t0) and
det(γ(t0), γ′(t0), γ(3)(t0)) 6= 0, [29].

Definition 3. A curve lying on a sphere is called a spherical
curve,[27].
Definition 4. Let α : I → S2 be a unit speed spherical
curve. We denotes as the arc-length parameter ofα. Let us
denote by

α(s) = α(s), T (s) = α′(s), S(s) = α(s)× T (s)

where T (s) is a unit tangent vector ofα. The frame
{α(s), T (s), S(s)} is called the Sabban frame ofα on S2,
[27].

3. Spherical circles and constant angle sur-
faces

A circle of a sphere is a circle that lies on a sphere. A spher-
ical circle can be formed as the intersection of a sphere and
a plane, or two spheres. A circle on a sphere whose radius
passes through the center of the sphere is called a great cir-
cle, otherwise this spherical circle is called the small circle.
In this section, a method will be given to obtain constant an-
gle ruled surfaces with the help of small circle on the sphere
in Euclidean3−spaceE3.

Let S2 =
{
(x, y, z) ∈ E3

∣∣ x2 + y2 + z2 = 1
}

be a unit
sphere inE3 and let{e1, e2} be any orthonormal vectors in
this space. We can express a circle on this sphere with the
help of these orthonormal bases as follows

α(v) = cos θ(cos ve1 + sin ve2) + sin θ(e1 × e2). (8)

If we takeθ = 0 in above equation, the expression

α(v) = cos ve1 + sin ve2,

becomes the great circle with a radius of1 on the unit sphere.
Thus, in order to obtain other circles (small circles), we
can construct circles with a certain angleθ and the normal
e3 = e1 × e2 in the plane. By considering the study of
Munteanu and Nistor in [2] from a different perspective, we
obtain a ruled surface with a constant angle with respect
to any direction. The fixed direction is directly related to
e3 = e1 × e2. To find the tangent vector of the curveα(v)
on the sphere forθ 6= 0, we take the derivative of the Eq. (8)
with respect tov

α
′
(v) = cos θ(− sin ve1 + cos ve2). (9)

The norm of the above equation is that
∥∥∥α

′
(v)

∥∥∥ = cos θ.

So, the unit tangent vector ofα(v) is obtained as follows

T (v) =
α
′
(v)

‖α′(v)‖ = − sin ve1 + cos ve2. (10)

If we cross product the curveα(v) and the tangent vector
T (v), we get the expression

S(v) = α(v)× T (v) = − sin θ(cos ve1 + sin ve2)

+ cos θe3. (11)

Thus, the Sabban frame is obtained on the unit sphere as
{α(v), T (v), S(v)} as expressed in Definition 4 in the Pre-
liminaries section. If the necessary calculations are taken,
the derivative change of the frame is as follows

d

dv




α(v)
T (v)
S(v)


=




0 cos θ 0
− cos θ 0 sin θ

0 − sin θ 0




×



α(v)
T (v)
S(v)


 . (12)
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In addition, the Darboux vector of the spherical circle
α(v) determines the fixed direction as

ω = sin θα(v) + cos θS(v). (13)

In fact, if the necessary calculations are done here, it can be
easily seen that

ω = e1 × e2 = e3.

Theorem 4. Let {e1, e2} be any orthonormal vectors in
3−dimensional Euclidean space. Letα be the small circle in
the unit sphere given as

α(v) = cos θ(cos ve1 + sin ve2) + sin θe3, θ 6= 0.

The surfaceΦ(u, v) defined below is a ruled surface

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v), (14)

wheref(v) andg(v) are the differentiable functions.
Proof. Letα(v) be any small circle on the unit sphereS2 and
Φ(u, v) be the surface. Considering the definition of ruled
surfaces, the curve

v∫

0

[f(v)α(v) + g(v)α′(v)] dv,

is defined as the ruled surface directrix (also called the base
curve) andα(v) is defined as the direction vector of the sur-
face. So, we can easily see that the surfaceΦ(u, v) is a ruled
surface.
Corollary 1. Let

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v),

be the ruled surface in3−dimensional Euclidean space.
S(v) = α(v) × T (v) is the unit normal of ruled surface
Φ(u, v) whereα(v) is the small circle on the sphere andT (v)
is its unit tangent vector.
Proof. Let Φ(u, v) be the ruled surface in3−dimensional
Euclidean space. To find the unit normal of the surface,

N =
Φu × Φv

‖Φu × Φv‖ ,

we firstly calculate the parameter curves of the surface. If
the derivatives of Eq. (14) are taken with respect tou andv,
respectively, we get

Φu = α(v), (15)

and

Φv = α(v)f(v) + α′(v)(g(v) + u). (16)

If the following calculations are done to find the normal of
the surface, we obtain

Φu × Φv = −(g(v) + u) cos θ sin θ cos ve1

− (g(v) + u) cos θ sin θ sin ve2

+ (g(v) + u) cos2 θ(e1 × e2),

and

‖Φu × Φv‖ = (g(v) + u) cos θ.

So, we can easily find the normal of the surface as follows

N = − sin θ cos ve1 − sin θ sin ve2 + cos θ(e1 × e2). (17)

If necessary arrangements are made in the above expression,
it can be seen that

N = − sin θ(cos ve1 + sin ve2) + cos θe3,

N = S. (18)

Thus, we can say thatS(v) is the unit normal to the ruled
surfaceΦ(u, v).
Corollary 2. Let the normal of the ruled surfaceΦ(u, v)
defined in Eq. (14) be N and ω = (e1 × e2) = e3 be the
axis of the constant direction. Then, the surfaceΦ(u, v) is a
constant angle ruled surface.
Proof. Let Φ(u, v) be the ruled surface in3−dimensional
Euclidean space. Considering Eq. (17) and axis of the con-
stant directionω = (e1 × e2) = e3, we can easily write that

〈N,ω〉 = cos θ = constant. (19)

So, we can say that the surfaceΦ(u, v) is a constant angle
ruled surface.
Corollary 3. Let

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v)

be the ruled surface in3−dimensional Euclidean space. The
surfaceΦ(u, v) is a developable ruled surface.
Proof. Let Φ(u, v) be the ruled surface. If we rename the
base curve of the surfaceΦ(u, v) as

ϕ =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv, (20)

and use the developable ruled surface condition, we obtain
that

det(ϕ
′
(v), α(v), α′(v)) = det(f(v)α(v)

+ g(v)α′(v), α(v), α′(v)).

Rev. Mex. Fis.69041301
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If necessary calculations are made, it can be easily seen that
this determinant value is zero. So, we can say thatΦ(u, v) is
a developable ruled surface.
Corollary 4. Let

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v)

be the ruled surface in3−dimensional Euclidean space. The
line of striction of the surfaceΦ(u, v) is as follows

ϕ̄ = ϕ− g(v)α(v) (21)

where

ϕ =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv.

Let Φ(u, v) be the ruled surface. The line of striction of
the surface is calculated as follows

ϕ̄ = ϕ− 〈α(v)× α′(v), α(v)× ϕ′(v)〉
‖α(v)× α′(v)‖2 α(v). (22)

If the necessary calculations are made in the above expres-
sion, we get

α(v)× α′(v) = − sin θ cos θ cos ve1

− sin θ cos θ sin ve2 + cos2 θ(e1 × e2), (23)

α(v)× ϕ′(v) = −g(v) cos θ sin θ cos ve1 − g(v) cos θ

× sin θ sin ve2 + g(v) cos2 θ(e1 × e2). (24)

If the above equations are substituted in Eq. (22), line of
striction is obtained as

ϕ̄ = ϕ− g(v) cos2 θ

cos2 θ
α(v),

ϕ̄ = ϕ− g(v)α(v).

Corollary 5. Let

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v)

be the ruled surface in3−dimensional Euclidean space. If
f(v) = 0 andg(v) =constant,Φ(u, v) is a cone surface.
Proof. Let Φ(u, v) be the ruled surface. If the expressions
f(v) = 0 andg(v) =constant are substituted in the surface
equation above, we can easily see that

Φ(u, v) = cα(v) + uα(v), c constant

Φ(u, v) = (c + u)α(v), c constant.

So, we can say thatΦ(u, v) is a cone surface.

Theorem 5. LetΦ : I × J → E3,

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v)

be a constant angle ruled surface andf, g : I → R be smooth
functions with

d

dv




v∫

0

[f(v)α(v) + g(v)α′(v)] dv




= f(v)α(v) + g(v)α′(v).

Also, let(u0, v0) ∈ I × J be a singular point ofΦ(u, v) and

x0 =

v∫

0

[f(v0)α(v0) + g(v0)α′(v0)] dv

+ u0α(v0) = Φ(u0, v0).

The germ ofΦ(u, v) at x0 is locally diffeomorphic toC × R
andSW. Also, the germ ofΦ(u, v) at x0 isn’t locally diffeo-
morphic toCCR.
Proof. Let Φ : I × J → E3 be a constant angle ruled sur-
face andf, g : I → R be smooth functions. Considering
Theorem 3 in Preliminaries section, we are calculated that

det(α(v), α′(v), α′′(v)) = sin θ cos2 θ.

1. For θ 6= 0 (θ 6= π
2 , π, ...), det(α(v), α′(v), α′′(v)) 6=

0. Then;

a. Sinceu0 = g(v0) andf(v0) 6= g′(v0), the germ
of Φ(u, v) atx0 is locally diffeomorphic toC×R.

b. Sinceu0 = g(v0), f(v0) = g′(v0) andf ′(v0) 6=
g
′′
(v0) the germ ofΦ(u, v) at x0 is locally dif-

feomorphic toSW .

2. For θ = 0 (θ = π
2 , π, ...), det(α(v), α′(v), α′′(v)) =

0.

Although u0 = g(v0), f(v0) 6= g′(v0),
det(α(v), α′(v), α(3)(v)) = 0. Hence, the germ ofΦ(u, v)
atx0 isn’t locally diffeomorphic toCCR.
Remark 1. Considering the theory in the study, we can say
that when we are given any axis, we can create a constant
angle surface with the help of this axis. For example, let’s ex-
amine the problem of creating a constant angle ruled surface
with axisk = e3. To find the circleα(v), the circle whose
normal isk = e3 must be written. This is found by writing
the intersection curve of the unit sphere and the plane withe3

normal. Let the{e1, e2} be an orthonormal vector obtained
by Gramm-Schmidt orthonormalization method in the plane
whose normal ise3. In this case, the intersection curve of the
unit sphere and the plane is as follows

cos ve1 + sin ve2.

Rev. Mex. Fis.69041301
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This curve is the great circle with radius length1. Small cir-
cles with radiusr = cos θ are as follows

α(v) = cos θ cos ve1 + cos θ sin ve2 + sin θe3.

The surface

Φ(u, v) =

v∫

0

[f(v)α(v) + g(v)α′(v)] dv + uα(v),

obtained by this spherical circleα(v) is a constant angle
ruled surface with the axisk = e3. The normal to this surface
is

N = sin θ cos ve1 − sin θ sin ve2 + cos θe3,

and 〈N, e3〉 = cos θ. The angle that the surface makes with
the axis is determined according to the state of theθ angle.
Also, when the functionsf and g are changed, they change
on the constant angle surfaces.

The equations and figures of the constant angle surfaces
according to given any direction are discussed in the exam-
ples below.
Example 1. Let’s get the equation of the constant angle sur-
face with the axisk = e3 = (1/

√
3)(1, 1, 1) and draw its

figures as Fig. 3.

ẽ1 = (1,−1, 0), ẽ2 = (0, 1,−1).

If the vectors perpendicular to the plane are made orthonor-
mal with the Gramm-Schmidt method, the following vectors
are obtained as

e1 =
1√
2
(1,−1, 0), e2 =

1√
6
(1, 1,−2).

In this case, the spherical circleα(v) with radiusr = cos θ
is obtained as follows forθ = π/4,

α(v) =
(

1
2

cos v +
1

2
√

3
sin v +

1√
6
,

−1
2

cos v +
1

2
√

3
sin v +

1√
6
,

−1√
3

sin v +
1√
6

)
.

For the functionsf(v) = v + 1 andg(v) = v2, if the neces-
sary calculations are done, the equation of the constant angle
ruled surface can be easily written as

Φ(u, v) = (Φ1, Φ2,Φ3)

where

Φ1(u, v) =
1
6
[(
√

3 + 3v) cos v + (−3 +
√

3v) sin v]

+
1
2
u cos v +

1
2
√

3
u sin v +

1√
6
u,

Φ2(u, v) =
1
6
[(
√

3− 3v) cos v + (3 +
√

3v) sin v]

− 1
2
u cos v +

1
2
√

3
u sin v +

1√
6
u,

Φ3(u, v)=
−1√

3
(cos v + v sin v)− 1√

3
u sin v +

1√
6
u.

If we calculate the singular points for this surface according
to Theorem 5, we can write that

det(α(v), α′(v), α′′(v)) 6= 0

for θ 6= 0
(
θ 6= π

2
, π, ...

)
.

a. Forf(v0) = v0 + 1, g′(v0) = 2v0,

v0 + 1 6= 2v0

and

v0 6= 1.

Sinceu0 = g(v0), we can say that all points as(u0, v0) of
Φ(u, v) satisfying the following condition are locally diffeo-
morphic toC × R

u0 = v2
0 , for v0 6= 1.

b. Forf ′(v) = 1, g′(v) = 2v, g
′′
(v) = 2,

f(v0) = v0 + 1,

g′(v0) = 2v0.

From the equality of the above equations, we obtain that

v0 = 1.

Considering the following equations,

f ′(v0) = 1,

g
′′
(v0) = 2,

we can say that

f ′(v0) 6= g
′′
(v0).

We obtain the other singular point as follows

u0 = g(v0) = g(1) = 1.

So, the pointΦ(u0, v0) = Φ(1, 1) is locally diffeomorphic to
SW . Also, according to Theorem 5, we know that the germ
of Φ(u, v) isn’t locally diffeomorphic toCCR.

Example 2. Let’s get the equation of the constant angle sur-
face with the axisk = e3 = (1/3)(2, 1, 2) and draw its fig-
ures as Fig. 4.

ẽ1 = (0,−2, 1), ẽ2 = (−1, 0, 1).

Rev. Mex. Fis.69041301
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FIGURE 3. Constant angle surface forπ/4.

If the vectors perpendicular to the plane are made orthonor-
mal with the Gramm-Schmidt method, the following vectors
are obtained as

e1 =
1√
5
(0,−2, 1), e2 =

√
5

3

(
−1,

2
5
,
4
5

)
.

In this case, the spherical circleα(v) with radiusr = cos θ is
obtained as follows forθ = π/3,

α(v) =

(
−√5

6
sin v +

√
3

3
,

−1√
5

cos v +
√

5
15

sin v +
√

3
6

,

1
2
√

5
cos v +

2
√

5
15

sin v +
√

3
3

)
. (25)

For the functionsf(v) = sin v andg(v) = cos v, if the neces-
sary calculations are done, the equation of the constant angle
ruled surface can be easily written as

Φ(u, v) = (Φ1,Φ2, Φ3)

where

Φ1(u, v) =
−√5

6
v − cos v√

3
+
−√5

6
u sin v +

√
3

3
u,

Φ2(u, v) =
1
30

(2
√

5v − 5
√

3 cos v)

− 1√
5
u cos v +

√
5

15
u sin v +

√
3

6
u,

Φ3(u, v) =
2v

3
√

5
− cos v√

3
+

1
2
√

5
u cos v

+
2
√

5
15

u sin v +
√

3
3

u.

FIGURE 4. Constant angle surface forπ/4.
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