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Elko spinors revised
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It is shown that c-number elko spinors obey the massless Dirac equation and are unitarily equivalent to Weyl bispinors. Therefore, they do
not constitute a new spinor type with mass dimension one.
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Elko spinors are a complete set ofc-number bispinors that
are eigenstates of the charge conjugation operator, a property
from which they take their name (an acronym from the ger-
man Eigenspinoren des Ladungs Konjugations Operators).
They were proposed in 2005 [1,2] as the expansion coeffi-
cients of a quantum field operator, the elko field, presented
as a new type of fermion field with the exotic properties of
not obeying the massive Dirac equation and having canonical
mass dimension one, despite being fermionic. The latter fea-
ture led to their proposal as a dark matter candidate, since the
elko field is assumed to couple only to the Higgs field to en-
sure renormalizability. To this day, elko spinors continue to
appear in the scientific literature in various applications, see
e.g. references [3-9] and references therein. However, elko
spinors are just another type of massless bispinors satisfying
the masslesss Dirac equation, and as such they can not con-
stitute a new spinor type with mass dimension different from
the known 3/2 mass dimension of fermions in the Standard
Model Lagrangian [10]. In fact, they can be unitarily trans-
formed to massless Weyl spinors, as is shown in this letter.

Let us first state the properties of masless four-component
Weyl spinors. A complete treatment is given in Ref. [11],
but here we reproduce the main properties for completeness.
Plane wave solutions to the massless Dirac equation are given
by Ψ = u(p) exp {i (±Et− x · p)}, with the bispinors

u(1)(p) =
(

0
χ+ (p)

)
, u(2)(p) =

(
χ− (p)

0

)
,

u(3)(p) =
(

0
χ− (p)

)
, u(4)(p) =

(
χ+ (p)

0

)
,

(1)

and the two-component spinorsχ± (p) given by

χ+ (p) =
(

cos
(

θ
2

)
eiϕ sin

(
θ
2

)
)

,

χ− (p) =
(−e−iϕ sin

(
θ
2

)
cos

(
θ
2

)
)

.

(2)

For definiteness, we use the gamma matrices Weyl represen-
tation, with the following definitions

γ0 =
(

0 1
1 0

)
, γ =

(
0 σ

−σ 0

)
, (3)

γ5 ≡ iγ0γ1γ2γ3 =
(

0 1
1 0

)
,

Σ ≡ γ5γ0γ =
(

σ 0
0 σ

)
, (4)

where σ =
(
σ1, σ2, σ3

)
are the standard Pauli matrices.

Then the massless Dirac equationiγµ∂µΨ = 0 simplifies
to

Σ · p̂u(p) = ±γ5 u(p). (5)

In Hamiltonian form Eq. (5) reads

α · p̂u(s)(p) = + u(s)(p),

α · p̂u(s+2)(p) =− u(s+2)(p),
s = 1, 2 (6)

andu(1)(p) andu(2)(p) are positive-energy bispinors, with
both positive helicity an chirality for the former and negative
for the latter, whileu(3)(p) andu(4)(p) are negative-energy
ones, with negative helicity and positive chirality for the for-
mer and the reversed values for the latter. These bispinors are
orthonormal

[
u(i)(p)

]†
u(j)(p) = δij . Taking the momen-

tum p̂ = (sin θ cosϕ, sin θ sin ϕ, cos θ) in the ẑ direction,
which will be referred to as the canonical frame, the bispinors
simplify to

u(1) (pz) =




0
0
1
0


 , u(2) (pz) =




0
1
0
0


 ,

u(3) (pz) =




0
0
0
1


 , u(4) (pz) =




1
0
0
0


 .

(7)
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The canonical frame bispinors and the general momentum
ones are related by the rotation

Λ1 (θ, ϕ) = exp
{
−θ

2
(
γ1 cosϕ + γ2 sin ϕ

)
γ3

}
, (8)

since

Λ1 (θ, ϕ) u(i) (pz) = u(i)(p), i = 1, . . . , 4. (9)

Let us now define the elko bispinors following Ref. 9.
These are

λ(1)(p) =
(

σ2η∗+(p)
η+(p)

)
, λ(2)(p) =

(
σ2η∗+(p)
−η+(p)

)
,

λ(3)(p) =
(−σ2η∗−(p)

η−(p)

)
, λ(4)(p) =

(
σ2η∗−(p)
η−(p)

)
,

(10)

where we have changed the notation and ignore the ad-hoc
normalization used in the aforementioned reference, for sim-
plicity. The two-component spinorsη±(p) are given by

η+ (p) =

(
e−iϕ/2 cos

(
θ
2

)

eiϕ/2 sin
(

θ
2

)
)

,

η− (p) =

(
−e−iϕ/2 sin

(
θ
2

)

eiϕ/2 cos
(

θ
2

)
)

,

(11)

which differ from the spinors in Eq. (2) by a phase

χ± = e±iϕ/2η±. (12)

The elko bispinors are eigenstates of the charge conjugation
operatorC ≡ γ2K, which is their defining property, withK
representing complex conjugation to the right

Cλ(1,4)(p) = + λ(1,4)(p),

Cλ(2,3)(p) =− λ(2,3)(p).
(13)

Now, a straightforward calculation shows that the elko
bispinors are solutions to the massless Dirac equation

α · p̂λ(s)(p) = + λ(s)(p),

α · p̂λ(s+2)(p) =− λ(s+2)(p).
s = 1, 2, (14)

Hence, the correct field operator, expanded in terms of these
spinors, would necessarily be that of a massless Dirac field,
satisfying the massless Dirac equation, as Weinberg has
shown in a seminal paper [12]. Furthermore, the associated
propagator, either for the spinors in a Relativistic Quantum
Mechanics framework or for the field operator in Quantum
field Theory, would have to be the masless Dirac propagator.
Therefore, a massive spin1/2 field operator in terms of elko
spinors, as defined in reference Ref. 9, with mass dimension
one and that does not obey the massive Dirac equation is just
unphysical.

Having proved that Elko spinors obey the massless Dirac
equation, we now have that both Elko and Weyl bispinors sat-
isfy an eigenvalue equation with the same Hamiltonian and±

eigenvalues, as shown in Eqs. (6) and (14). Let us schemati-
cally write them asHu(p) = ±u(p) andHλ(p) = ±λ(p),
with H = α · p̂ the massless Dirac Hamiltonian. Then,
there must be a unitary transformationΩ(θ, ϕ) with the
propertiesΩλ(p) = u(p) andΩH − HΩ = 0, such that
ΩHΩ−1Ωλ(p) = ±Ωλ(p) impliesHu(p) = ±u(p)

To this end let us consider the rotation

Λ2 (θ, ϕ)= sin
(ϕ

2

)[
cos

(
θ

2

)
γ1+sin

(
θ

2

)
γ3

]
γ2

+ cos
(ϕ

2

) [
cos

(
θ

2

)
1− sin

(
θ

2

)
γ1γ3

]
, (15)

which transforms the elko bispinors from the canonical frame
to the general momentum bispinors in Eq. (10), that is

Λ2 (θ, ϕ)λ(i) (pz) = λ(i)(p), i = 1, . . . , 4, (16)

where theλ(i) (pz) correspond to theλ(i)(p) with θ = ϕ =
0. The canonical frame elko bispinors can be rotated to the
corresponding Weyl bispinors, by means of the rotation

U =
i

2
√

2

(
− i

(
1+ γ5

)
+ γ1

(
1+ iγ2

)

+ γ2 − (
1− i

(
γ1 + γ2

))
γ0γ3

)
, (17)

yielding

Uλ(1) (pz) = u(1) (pz) ,

Uλ(2) (pz) = u(2) (pz) ,

Uλ(3) (pz) = u(3) (pz) ,

Uλ(4) (pz) = u(4) (pz) . (18)

Defining the rotation

Ω (θ, ϕ) ≡ Λ1 (θ, ϕ)UΛ†2 (θ, ϕ) , (19)

we obtain from Eqs. (9), (16) and (18), a relation between
general momentum elko and massless Weyl bispinors

Ω(θ, ϕ) λ(1) (p) = u(1) (p) ,

Ω(θ, ϕ) λ(2) (p) = u(2) (p) ,

Ω(θ, ϕ) λ(3) (p) = u(4) (p) ,

Ω(θ, ϕ) λ(4) (p) = u(3) (p) . (20)

It can also be shown that, as required,

[Ω (θ, ϕ) ,α · p̂] = 0. (21)

Therefore, elko spinors can be obtained from Weyl bispinors
by a rotation and vice versa, which is another way to show
that the former do not constitute a new type of spinors, but
are in fact equivalent to massless Weyl bispinors, obeying the
massless Dirac equation.
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