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A static spherically symmetric perfect fluid solution to model the interior of stars
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An exact solution for modeling the interior of stars with perfect fluid is presented, the geometry of their interior is described by a static and
spherically symmetric regular space-time. The hydrostatic functions are physically acceptable for the compactnessGate/c*R ¢
(0,0.3183497], the speed of sound is a monotonically decreasing function, positive and lower than the speed of light, which implies that the
condition of causality is not violated, meanwhile the stability of the solution is guaranteed due to the adiabaticin@eé8387 and it is a
monotonically increasing function. The analysis of the solution is presented graphically for specific values of the compactness on the interval
u € [0.2509338,0.3183497] with the minimum value of this interval associated to the neutron star PSR J0348+0432, for observational
data which generates the maximum compactness when the radius is mRigmal2.062 km and the mass is maximuid = 2.05 Mg,
generating a value of the central dengity= 7.520589 x 107 kg/m?.
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1. Introduction with a state equation, in a static and spherically symmetric
space time, it becomes necessary to use numeric methods to
One of the investigation themes that maintains it's relevancylescribe the solutions to these equations in a graphic man-
since the proposal of Einstein’s theory of general relativity isner [22—-25]. As such, in most cases, the physically accept-
the one related to exact interior solutions, due to their usefulable exact solutions that are constructed suppose a specific
ness for modeling stellar objects. A task which is not simple form of the metric functiory,; or g,.., and not a state equa-
with the construction of exact solutions for chargeless pertion, and although in some cases a condition is proposed,
fect fluids being more complicated when comparing it withas it occurs in the Tolman solutions [26], this is the equiv-
the case of charged perfect fluid or solutions with anisotropialent of giving a metric function. Until a bit over five years
pressures. In the last century a number of exact solutionago, in the works related with regular solutions with perfect
with perfect fluid were presented, however, most of them aréluid and in which it is specified the component [27-29],
not physically acceptable [1-10]. Which contrasts with theit was supposed;;(r) = (1 + ar?)™ with n an integer or
case of charged perfect fluid or fluid with anisotropic pres-a rational number, recently new physically acceptable solu-
sures for which, parting from a physically acceptable solutiortions have been presented in whigh(r) no longer has this
with perfect fluid, we can obtain a wide array of physically structure [30-34], but instead the coefficient of two func-
acceptable solutions, besides the inherent importance of findions, one of these being; = —S(5 + 4ar?)?/(1 4 ar?)
ing exact solutions with perfect fluid, there is an additional[34]. Combining the previous works that reflect the possibil-
interest since these could be used as seeds to obtain charggdof having physically acceptable solutions wigh (r) =
or anisotropic models, one path for this is through the Min-—S(1 + ar?)" for different values of:, it's natural to inves-
imal Geometric Deformation method [11-14]. Although its tigate if there exist physically acceptable exact solutions with
construction can also be done by other alternatives, accordy, = —S[(5 + 4ar?)?/(1 + ar?)]" for different values of
ing to the objectives of the investigation work intended ton. For the case witm = 1, discussed previously [34], it
be developed [15-21]. Given the difficulty of obtaining ex- was shown that the density and the pressure are monoton-
act solutions to Einstein’s equations with a perfect fluid and
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ically decreasing functions and that the speed of sound ialthough this last one is not an independent equation, since
monotonically increasing, with maximum compactness ratét can be obtained from the system of EcR) { (5). Being
u = GM/c*R = 0.2660858316 and it was applied for the this the set of equations for which we will obtain the solution
star PSR J0348+0432. In this work we show thatrfo= 3 starting from a functiorny(r).
we also have a physically acceptable exact solution with a
compactness value greater than the case 1, as such the .
. . 2.1. The solution
new solution would be useful for representing a broader spec-

frum of stars. Starting from a given solution(r) facilitates the integration

declicato o the presentation ofthe equations that deserbeC e SYSIem because when we campare the @fargi 6
P 9 obtain a linear first order non homogeneous differential

statp sphere'wnh perfect fluid and 0 t'he consiruction of theequation, although this does not guarantee that it will admit
solution starting from the metric functiof;. In the Sec. 3

we mention the required conditions in the center. in the in an analytical solution nor that the solution to the system of
i q . : o equations is physically acceptable. We can have an exact so-
terior and on the surface for a solution of Einstein’s syste

of equations with perfect fluid to be physically acee tablg]ution but it can occur that when the solution is not regular, or
quatl with p i physically P ‘even when the solution is regular, that the condition of causal-

stall'rél'?g fﬁ? thel ct(')ndm:)n?r,] Wg detirmlne the '”ttetf"a's Oc]]ty is violated [1] or that the density and pressure are not both
valdity ot In€ soiution. In th€ Sec. 4 a representation ang, ;o [37]. In this work, based in a metric potentigl(r)

graphic analysis for some values of the compactness rate Fﬁat was used before and allows to describe stars with a com-
done, showing that it is physically acceptable, due to the hy- actness rate — GM/c2R < 0.2660858316 [34], we sup-
drostatic functions being monotonically decreasing, that th ose a new function(r) — - (7;)3_ '

condition of causality is not violated and that the solution is b Yoidl?)"-

stable. In the Sec. 5 we do a comparison between the cases

n = 1 (that was shown previously [34]) and = 3 (devel- y(r)=25 (
oped in this work), as well as a discussion of the outstanding

characteristics of the new solution.

9\ 3
5—|—4a72> e

V14 ar?

whereS anda are constants. From the isotropy in the pres-
sures, subtracting the Eg#l) (and 6) and substituting the
2. The system functiony given by [7) it results:

The' type qf m_attgr that we consider i_n the description of the B 2(25 + 90ar? + 82421t — 32a%%) B
star’s interior is given by a.perfect fluid, as such the energy- 1+ @) (5 + 4ar2)(1 + 2ar%) (5 + 8ar?)r
momentum tensor is described by:

2(1 + ar?)(5 + 4ar?)

T v — 2 v P v v 1 - 07 8
i c”puy Uy, + (UHU +9u ) 1) + (1+2ar?)(5 + 8ar?)r ®)

wherep is the energy density? is the pressure and" the
four velocity components. Meanwhile the geometry is staticthe integration of this equation leads us to:
and spherically symmetric, as such, the line element can be

represented by: [101612 + 719063ar?+ Sy (1)]ar?

B(r)=1- -
ds? 2 742 dr? 20462 2 04> 5 ) (54 8ar?)3(5 + 4ar?)*
§° = —y(r)°dt® + +r + sin ,
y(r) Byt o). @) 64(1+ 2ar2)(1 + ar?) Sy (r)ar? @)
The relation between the hydrostatic functions and the metric 3(5 + 8ar2)7/2(5 + 4ar?2)t 7
components is given by Einstein’s equatio6s,, = k7., _
which leads us to the following system of ordinary coupledwith
differential equations:
B 1-B S1(r) = 2053262a”r* + 3056936a°r° + 2519264 r®
kc?p=—— + 5 3) 1 12
r r +1094720a°7° + 196608a°r'2,
2By’ 1-B
kP = -~ : 4 V5 +8ar?
ry @ 6 = - 191 Varctan W]
ar
1 / B / B/
pp= T HYIB (Y +y)B (5)
Y 2y + 4131 arctanh | Y28
with k& = 87G/c* and’ denotes the derivative with respect areta 3+4ar? |’

to the radial coordinate. As well as, the equation of conser-
vationV,T* , = 0 gives origin to the well known Tolman- and( is the integration constant. Once determined the func-

Oppenheimer-Volkov (TOV) equation [35, 36]: tion B and from the functiory proposed by the substitution
P ic2p) e of these in the Eqsi3f and @) arriving to
po 2y ©)
Y
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kc?p(r) =

6H (r)a’r* + 3 (25 + 105 ar? + 142 a*r* + 72a°r%) (1 — B)

(10)

6a (3 +4 ar2)

(I+ar?)(1+2ar?) (5+4ar?) (5+8ar?)r? ’
(1+4ar?) (5+7ar?) (1 - B)

kP(r) = (5+4ar?)(1+ ar?)

(I+ar?)(5+4ar?)r? ’

(11)

where H(r) = 13 + 24ar? + 16 ar*. It's important to note that from the functioR given by ) we have that the term

(1 — B)/r? is regular, which guarantees the regularity of the density and the pressure in the center. Also, by the rule of the

chain, we obtain the speed of sound:

,_ 9P(p) _ dP(r)

dp(r)

v

dp
the remaining expressed in the form:

v (r)

dr

/

(54 8ar?)(3 + 4ar?) [B S3(r) — (5 + 4ar?)?(1 + ar?)?]

dr ’

2 B Sa(r) — (75 + 124ar? + 64a2r4)(5 + 4 ar?)2(1 + ar?)?’

where

(12)

S3(r) = 25 + 45ar? — 140ar* — 360ar5 — 22448,
Sy(r) = 1875 + 11475ar* + 26880a?r* 4 32440 a®r°
+ 20800 a*r® + 5760 a°r'0.

The speed of sound will be of use in the analysis of the con-
ditions required for the solution to be physically acceptable
and, particularly, in relation to the non violation of the causal-
ity. For a solution to be physically acceptable it's necessary
that some criteria of regularity are met for the geometry, for
the hydrostatic functions as well as conditions of behaviour
in the interior and on the surface, these will be numbered in
the following section.

3. Ciriteria for physical acceptability

The conditions that allow us to determine if an exact so-

lution to Einstein’s equations is physically acceptable have

been stated in different works, their essential content can be
classified in conditions on the regularity of the geometry and

from the sources of matter, as well as in: the behaviour of the
hydrostatic variables, energy conditions, stability conditions

and causality conditions [1, 38]:

(a) Regularity conditions. The magnitude of the static
Killing vector field ¢ = 9/0t must satisfyg(£, &) =
—y(r)? < 0, ¥r < R, whereR is the radius of the
star. The geometry and physical quantities must be
regularyr < R. In particular, from the regularity of
the Kretschmann scalar near the center we get that the
behavior of the metric components satisfy:

B(r)=1+ar?+0(r"), B =pr+0(r?),

y(r)y~p+vr> +00t), o =or+0(?),

whereq, 3, 1, v ando are nonzero parameters.

Rev. Mex.

(b) Behavior of hydrostatic functions. The pressure and

()

()

(®

)]

density must be finite and positive, with their maxi-
mum value on the center and monotonically decreasing
towards the boundary of the fluid sphere,, o’ < 0
andP’ < 0forr € (0, R)0 and

P(0) >0,
p(0) >0,

P'(0)
p'(0)

also, the pressure must be nullified on the surface
P(R) = 0.

P"(0) <0,

= 0’
=0, p"(0)<0,

Energy conditions In addition to the intuitive physi-
cal requirements mentioned above, the interior solution
should satisfy either:

- The Strong Energy Conditionc¢?p + 3P > 0,
Ep+P>0o0r

- The Dominant Energy Conditionp > 0 and
p > |P|

Causality condition. The speed of sound must not ex-
ceed the speed of light, which implies

Stability condition. In order to have an equilibrium
configuration the matter must be stable and, as a re-
quired condition, the relativistic adiabatic index

_Picipdp 4

P dp 3

Matching condition. On the surface of the star= R,

the interior solution should match continuously with
the exterior region described by the Schwarzschild so-
lution:

r

Y rel0,R].

Fis69030701
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evaluation of the density, pressure and speed of sound implies

2GM 2GM\ 2 304836 641/5595(0)
2 _ 2 2 ke p(0) = — 0 15
s __(1_ 02r>dt+<l_ 62T> dr <0 = T5125 %~ o065 © 0% (19

. 179638  641/555(0)
—1—7“2dt92—|—811129d27 r > R, kP(0) = 2

( ?) (0)= 78125 ¢ Tr7as75 ©
where M represents the total mass inside the fluid 0< v(0)2  6455(0) — 726711v/5

sphere. Which implies the continuity @f (r) and - 2 5[6455(0) — 101711y/5] —
B(r) across the boundary= R.

>0, (16)

(17)

Also, P’ (0) = 0, p'(0) = 0 (u(0)2) = 0. So, if the in-
These conditions allow us to fixate and determine the val€dualities are satisfied.)- (17) and also that the second

ues and intervals of the constants present in the solution &i€rivatives in the origin of the density and the pressure are
well as determining the validity of our solution as a stellar"€9ative,l.e.,

model.

It is of interest to mention that according to the Petrov p"(0) = 6 [64\/2532(;)5]%208555] a®> <0, (18)
classification [39-41], the interior solutions for static and
spherically symmetrical spacetimes are Petrov type D or P(0) = 6 [64.55(0) — 726711V/5] a2 <0, (19)
Petrov type O, sinc@, is the only Weyl scalar different than 390625v/5k

zero. For the case in which we have a perfect fluid, takin

. . Yhe requirement that these functions have a maximum value
into account the Eqs4] y (5), we arrive to:

in the center would be met. From the condition that the pres-
sure must be zero on the surface of the £@R) = 0, Eq. 4)

!/
U, = —? - 3—12(1 - B). (13)  valued inr = R, we expresg in terms ofw = aR*:
T r
. , ) 3v/5 + 8w [Hy + 64(150236w + 36864w? )wd
If U5 # 0 the solution is type D and i¥'; = 0 the solution C= [ 2 ( ) ]

4
is type O. Imposingl, = 0 we obtainB(r) = 1 — ar? and 64 (5 + 7w) (1 + 4w) (1 4 2w) (1 + w)

replacing in the difference of the Eqd) @nd B) it results: 305 + 8
+191V/3 arctan %
y(r) =C+ D1 —ar?, (14)
tanh | VO T 8w (20)
which correspond to the interior Schwarzschild solution, this —arctan 34+4w |’

being the only interior solution, in a static and spherically

symmetrical spacetime with perfect fluid, which is PetrovWhere Hx = —898190 + 5887971w — 14385882w? —
type 0 and as such it is the only one that is conformally!4277600w” + 438528w* 4 12575808w°. From the expres-
flat [42, 43]. The rest of the interior solutions with perfect Sion 20) for ¢ and the set of inequalitied§)-(17) we ob-

fluid are Petrov type D just like the exterior Schwarzschildtain the interval of validity for the parameter = aR* €
solution. (0,0.655607717]. From this set of inequalities, the one that

restricted the maximum possible value wfwas obtained
from imposing that the speed of sound is lower than the speed
3.1. Condition on the model of light in the center of the star. The behaviour of the solution
in the interior is shown in a graphic manner in the following
The calculation of the Kretschmann scalar will allow us tosection.
affirm that the geometry is regular, however, given the ex-

tension of it we only show the form of the behaviour for the4 Graphic representation of the solution
metric functions in the vicinity of the center: ’

The type of stellar object that the model represents is deter-

y(r) = 2555 + ga,i +0 (1], mined by the compactness value= GM/c*R and in our
2 case it is obtained from imposing the geometry’s continuity
4 [76209\/5 — 1652(0)] condition on the surface, specifically of the compongn{
B(r)=1- 23837575 ar? +0 (r') . resulting in:
GM 1 3w (3 + 4w)
-exi i i =——=-[1-B = 21
And the non-existence of the event horizon will be shown u(w) 2R 2[ (R)] B+ 7w)( £ 4w)’ (21)

graphically in the following section. The conditions for the
hydrostatic functions will generate for us a series of inequalithis is a monotonically increasing function and it's
ties for the intervals of validity, of the constantandC. The  maximum value in the interval of validity of the solution is

Rev. Mex. Fis69030701
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FIGURE 1. Behaviour of the density for different compactness val- figyRre 3. Graphic representation of the speed of sound.
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FIGURE 4. The adiabatic index for different compactness values.
FIGURE 2. Pressure for different values of the compactness The Fig. 2 shows the monotonically decreasing behaviour

of the pressure as well as how it becomes zero on the surface,
©(0.655607717) = 0.3183497451. Meanwhile the continu- represented by = 1.

ity of g;; allows us to determine the form 6fwhich appears From the Fig. 3 we observe that the speed of sound is a
in the metric: monotonically decreasing function, positive and lower than
5/2 the speed of light. The interval of validity of the parame-
_ (1+w) (22) ter w was determined by the non violation of the causality,
(1+4w)(5+7w)(5+4w) matching the value of the speed of sound with the value of

the speed of light for,., = 0.3183497 (or equivalently

The solution is determined by the parameter = aR? Wmax = 0.655607717), for values ofu > u,,., the condition
as such for our graphic description we will chose differentof causality is violated. We also observe that as the compact-
values of it and we will define the dimensionless variableness decreases the speed of sound is lower. The Fig. 4 shows
x = r/R, with this the center is represented by= 0 and  that the adiabatic index > 4/3 meets the requirement for
the surface by = 1, meanwhile we redefine the hydrostatic the stability of the solution, we also observe that the function
functions askc®R%p, kR%P, v*/c? for their dimensionless ~ is not monotonically decreasing (see blue colored line).
graphic representation. In the following figures we graph  From a detailed analysis we have that the lowest value
the functions for different compactness values, among thesef the adiabatic index i8.083875 and it occurs for the com-
some stand out, as is the maximum compactness value of thctness value = 0.2917064, which guarantees the stabil-
model,u = 0.3183497451, and the value ofi = 0.2509338 ity of the solution. In relation to the energy conditions, given
which corresponds to the neutron star PSR J0348+0432. the positivity of the functions, we only need to verify that

In the Fig. 1 we represent the density for different com-c?p — P > 0 is satisfied. From the Figs. 1 and 2 we observe
pactness values, from which we can observe that it is a mondhat, for a specific value of the compactness, the pressure is
tonically decreasing function with its values lowering as thelower than the density, which guarantees that the requirement
compactness rate decreased. c2p— P > 0is met.

Rev. Mex. Fis69030701
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mentary manner, we report the physical values of the hydro-
TABLE |. Interior behavior of the physical values for the den- static variables for the neutron star PSR J0348+0432.

sity, pressure, speed of sound and adiabatic index for the PSR From the Table | we can observe that the orders of mag-
J0348+0432, with? = 12.062 km andM = 2.05 Me. nitude from the density and pressure are of the order of
magnitude characteristic for neutron stars and that the adi-

r(km)  p(10'" kgim’)  P(10*' Pa)  v*(c?) v o i , > _
0 25203 16346 063733 3.2723 abatic index complies with the condition required for the
‘ ' ‘ ' stability (y > 4/3). The choice of the neutron star PSR
1.2062 7.4790 1.6100 0.63643  3.2935 J0348+0432 was done with the objective of being able to re-
2.4124 7.3505 1.5380 0.63395 3.3569 alize a comparison with a model that was approached previ-
3.6186 7.1474 1.4216 0.63027 3.4781 ously [34] in which the metric potential ig, = —S[(5 +
4.8248 6.8736 12675  0.62618 3.6779 4aT2);t/ (1+ da:; " V;”tth " L mgear::Wh”e t'r:‘ this report
we obtained the solution for = 3. From the compara-
6.0310 6.5441 1.0833 0.62162  3.9965 tive analysis between the Figs. 1-4, Tables Il, Ill and the
7.2372 6.1740 0.87685  0.61710 4.5220 figyres and tables from the work reported in Ref. [34], we
8.4434 5.7778 0.65774 0.61194 5.4424 have that both models show important differences, which are:
9.6496 5.3682 0.43383 0.60551 7.3394 a) the admissible compactness value is greatemfor 3
10856 4.9592 0.21217 059718 13.135 (ﬁ;na_x,?)h: 0-318?497 > 9-2660%58316 - ur;ax,é), due to
12.062 45503 0 058613 oo this in the case fon = 3 it would allow for the description

of stellar objects with a greater compactness. b) The speed of
sound is a monotonically increasing function for= 1, but
TABLE Il. Comparison of the physical values between the modelit is @ monotonically decreasing function fer= 3, although

for n = 1 [34] andn = 3 (the model presented in this report) for both behaviours are considered physically valid, there is still
the PSR J0348+0432, with = 12.062 km andM = 2.05 Mg, the need of further discussion on this point. ¢) The density,
both in the center and on the surface, is greatemfor 1
compared with the density fer = 3, d) The central pressure

is greater fom = 1 than forn = 3.

3 7.5203 4.5593 1.6346 From the previous text we have that the model presented
(casen = 3), given it's compactness, can be applied to a
|greater amount of stars and according to the imposed require-
ment in Ref. [1] is more adequate to represent the interior

n o pc(10" Kg/m®)  pp(10'7 Kg/m®)  P.(10* Pa)
1 12.838 3.7174 2.4209

TABLE IIl. Comparison of the physical values between the mode
for n = 1 [34] andn = 3 (the model presented in this report) for

the PSR J0348+0432, with = 12.062 km andM = 2.05 M. of the stars, although this is still a point that has not been
— — approached sufficiently on the literature. From the present
n ve (<) vy (c7) Ve work some questions arise that could be approached in future
1 0.49985 0.65286 1.4407 works, among these are determining how the form of the met-
3 0.63733 0.58613 3.2723 ric potential g;; influences the behaviour of the hydrostatic

variables and if there is a way to determine for which poten-
tials the speed of sound will be a monotonically increasing or

) ] ] monotonically decreasing function.
5. Discussion and conclusions

In the previous section, by means of dimensionless functionsAcknowledg ments

it has been shown that the solution has an adequate behaviour

for representing the interior of the stars with compactness raté/e appreciate the facilities provided by the Universidad Mi-
u < 0.3183497 and, in particular, we took one of the com- choacana de San Ni&s de Hidalgo and the CIC -UMSNH
pactness values = 0.2509338 associated to observational during the realization of this investigation as well as the
data of the star PSR J0348+0432. In the Table I, in a compleEONACYT for the support given.
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