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A static spherically symmetric perfect fluid solution to model the interior of stars
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An exact solution for modeling the interior of stars with perfect fluid is presented, the geometry of their interior is described by a static and
spherically symmetric regular space-time. The hydrostatic functions are physically acceptable for the compactness rateu = GM/c2R ∈
(0, 0.3183497], the speed of sound is a monotonically decreasing function, positive and lower than the speed of light, which implies that the
condition of causality is not violated, meanwhile the stability of the solution is guaranteed due to the adiabatic indexγ > 3.08387 and it is a
monotonically increasing function. The analysis of the solution is presented graphically for specific values of the compactness on the interval
u ∈ [0.2509338, 0.3183497] with the minimum value of this interval associated to the neutron star PSR J0348+0432, for observational
data which generates the maximum compactness when the radius is minimalR = 12.062 km and the mass is maximumM = 2.05 M¯,
generating a value of the central densityρc = 7.520589× 1017 kg/m3.
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1. Introduction

One of the investigation themes that maintains it’s relevancy
since the proposal of Einstein’s theory of general relativity is
the one related to exact interior solutions, due to their useful-
ness for modeling stellar objects. A task which is not simple,
with the construction of exact solutions for chargeless per-
fect fluids being more complicated when comparing it with
the case of charged perfect fluid or solutions with anisotropic
pressures. In the last century a number of exact solutions
with perfect fluid were presented, however, most of them are
not physically acceptable [1–10]. Which contrasts with the
case of charged perfect fluid or fluid with anisotropic pres-
sures for which, parting from a physically acceptable solution
with perfect fluid, we can obtain a wide array of physically
acceptable solutions, besides the inherent importance of find-
ing exact solutions with perfect fluid, there is an additional
interest since these could be used as seeds to obtain charged
or anisotropic models, one path for this is through the Min-
imal Geometric Deformation method [11–14]. Although its
construction can also be done by other alternatives, accord-
ing to the objectives of the investigation work intended to
be developed [15–21]. Given the difficulty of obtaining ex-
act solutions to Einstein’s equations with a perfect fluid and

with a state equation, in a static and spherically symmetric
space time, it becomes necessary to use numeric methods to
describe the solutions to these equations in a graphic man-
ner [22–25]. As such, in most cases, the physically accept-
able exact solutions that are constructed suppose a specific
form of the metric functiongtt or grr, and not a state equa-
tion, and although in some cases a condition is proposed,
as it occurs in the Tolman solutions [26], this is the equiv-
alent of giving a metric function. Until a bit over five years
ago, in the works related with regular solutions with perfect
fluid and in which it is specified the componentgtt [27–29],
it was supposedgtt(r) = (1 + ar2)n with n an integer or
a rational number, recently new physically acceptable solu-
tions have been presented in whichgtt(r) no longer has this
structure [30–34], but instead the coefficient of two func-
tions, one of these beinggtt = −S(5 + 4ar2)2/(1 + ar2)
[34]. Combining the previous works that reflect the possibil-
ity of having physically acceptable solutions withgtt(r) =
−S(1 + ar2)n for different values ofn, it’s natural to inves-
tigate if there exist physically acceptable exact solutions with
gtt = −S[(5 + 4ar2)2/(1 + ar2)]n for different values of
n. For the case withn = 1, discussed previously [34], it
was shown that the density and the pressure are monoton-
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ically decreasing functions and that the speed of sound is
monotonically increasing, with maximum compactness rate
u = GM/c2R = 0.2660858316 and it was applied for the
star PSR J0348+0432. In this work we show that forn = 3
we also have a physically acceptable exact solution with a
compactness value greater than the casen = 1, as such the
new solution would be useful for representing a broader spec-
trum of stars.

The organization of this work is as follows: the Sec. 2 is
dedicated to the presentation of the equations that describe a
static sphere with perfect fluid and to the construction of the
solution starting from the metric functiongtt. In the Sec. 3
we mention the required conditions in the center, in the in-
terior and on the surface for a solution of Einstein’s system
of equations with perfect fluid to be physically acceptable,
starting from the conditions, we determine the intervals of
validity of the solution. In the Sec. 4 a representation and
graphic analysis for some values of the compactness rate is
done, showing that it is physically acceptable, due to the hy-
drostatic functions being monotonically decreasing, that the
condition of causality is not violated and that the solution is
stable. In the Sec. 5 we do a comparison between the cases
n = 1 (that was shown previously [34]) andn = 3 (devel-
oped in this work), as well as a discussion of the outstanding
characteristics of the new solution.

2. The system

The type of matter that we consider in the description of the
star’s interior is given by a perfect fluid, as such the energy-
momentum tensor is described by:

Tµν = c2ρuµuν + P(uµuν + gµν), (1)

whereρ is the energy density,P is the pressure anduµ the
four velocity components. Meanwhile the geometry is static
and spherically symmetric, as such, the line element can be
represented by:

ds2 = −y(r)2dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θdφ2), (2)

The relation between the hydrostatic functions and the metric
components is given by Einstein’s equations,Gµν = kTµν ,
which leads us to the following system of ordinary coupled
differential equations:

kc2ρ = −B′

r
+

1−B

r2
, (3)

kP =
2By′

ry
− 1−B

r2
, (4)

kP =
(ry′′ + y′)B

ry
+

(ry′ + y)B′

2ry
, (5)

with k = 8πG/c4 and ′ denotes the derivative with respect
to the radial coordinater. As well as, the equation of conser-
vation∇µTµ

ν = 0 gives origin to the well known Tolman-
Oppenheimer-Volkov (TOV) equation [35,36]:

P ′ = −
(
P + c2ρ

)
y′

y
, (6)

although this last one is not an independent equation, since
it can be obtained from the system of Eqs. (3) - (5). Being
this the set of equations for which we will obtain the solution
starting from a functiony(r).

2.1. The solution

Starting from a given solutiony(r) facilitates the integration
of the system because when we compare the Eqs. (4) and (5)
we obtain a linear first order non homogeneous differential
equation, although this does not guarantee that it will admit
an analytical solution nor that the solution to the system of
equations is physically acceptable. We can have an exact so-
lution but it can occur that when the solution is not regular, or
even when the solution is regular, that the condition of causal-
ity is violated [1] or that the density and pressure are not both
positive [37]. In this work, based in a metric potentialyold(r)
that was used before and allows to describe stars with a com-
pactness rateu = GM/c2R ≤ 0.2660858316 [34], we sup-
pose a new functiony(r) = yold(r)3:

y (r) = S

(
5 + 4 ar2

√
1 + ar2

)3

, (7)

whereS anda are constants. From the isotropy in the pres-
sures, subtracting the Eqs. (4) and (5) and substituting the
functiony given by (7) it results:

B′ − 2(25 + 90ar2 + 82a2r4 − 32a4r8)B
(1 + ar2)(5 + 4ar2)(1 + 2ar2)(5 + 8ar2)r

+
2(1 + ar2)(5 + 4ar2)
(1 + 2ar2)(5 + 8ar2)r

= 0, (8)

the integration of this equation leads us to:

B(r) = 1− [101612 + 719063ar2+ S1(r)]ar2

(5 + 8ar2)3(5 + 4ar2)4

+
64(1+ 2ar2)(1 + ar2)5S2(r)ar2

3(5 + 8ar2)7/2(5 + 4ar2)4
, (9)

with

S1(r) = 2053262a2r4 + 3056936a3r6 + 2519264a4r8

+1094720a5r10+ 196608a6r12,

S2(r) = C − 191
√

3 arctan

[√
3
√

5 + 8 ar2

1 + 4ar2

]

+ 4131 arctanh

[√
5 + 8 ar2

3 + 4 ar2

]
,

andC is the integration constant. Once determined the func-
tion B and from the functiony proposed by the substitution
of these in the Eqs. (3) and (4) arriving to
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kc2ρ(r) =
6H(r)a2r4 + 3

(
25 + 105 ar2 + 142 a2r4 + 72 a3r6

)
(1−B)

(1 + ar2) (1 + 2 ar2) (5 + 4 ar2) (5 + 8 ar2) r2
, (10)

kP (r) =
6a

(
3 + 4 ar2

)

(5 + 4 ar2) (1 + ar2)
−

(
1 + 4 ar2

) (
5 + 7 ar2

)
(1−B)

(1 + ar2) (5 + 4 ar2) r2
, (11)

whereH(r) = 13 + 24 ar2 + 16 a2r4. It’s important to note that from the functionB given by (9) we have that the term
(1 − B)/r2 is regular, which guarantees the regularity of the density and the pressure in the center. Also, by the rule of the
chain, we obtain the speed of sound:

v2 =
∂P (ρ)

∂ρ
=

dP (r)
dr

/
dρ(r)
dr

,

the remaining expressed in the form:

v2(r)
c2

=
(5 + 8ar2)(3 + 4ar2)

[
B S3(r)− (5 + 4ar2)2(1 + ar2)2

]

B S4(r)− (75 + 124ar2 + 64a2r4)(5 + 4 ar2)2(1 + ar2)2
, (12)

where

S3(r) = 25 + 45ar2 − 140a2r4 − 360a3r6 − 224a4r8,

S4(r) = 1875 + 11475ar2 + 26880a2r4 + 32440 a3r6

+ 20800 a4r8 + 5760 a5r10.

The speed of sound will be of use in the analysis of the con-
ditions required for the solution to be physically acceptable
and, particularly, in relation to the non violation of the causal-
ity. For a solution to be physically acceptable it’s necessary
that some criteria of regularity are met for the geometry, for
the hydrostatic functions as well as conditions of behaviour
in the interior and on the surface, these will be numbered in
the following section.

3. Criteria for physical acceptability

The conditions that allow us to determine if an exact so-
lution to Einstein’s equations is physically acceptable have
been stated in different works, their essential content can be
classified in conditions on the regularity of the geometry and
from the sources of matter, as well as in: the behaviour of the
hydrostatic variables, energy conditions, stability conditions
and causality conditions [1,38]:

(a) Regularity conditions. The magnitude of the static
Killing vector field ξ = ∂/∂t must satisfyg(ξ, ξ) =
−y(r)2 < 0, ∀r ≤ R, whereR is the radius of the
star. The geometry and physical quantities must be
regular∀r ≤ R. In particular, from the regularity of
the Kretschmann scalar near the center we get that the
behavior of the metric components satisfy:

B(r)≈ 1 + αr2 + 0(r4), B′ ≈ βr + 0(r3),

y(r)≈ µ + νr2 + 0(r4), y′ ≈ σr + 0(r3),

whereα, β, µ, ν andσ are nonzero parameters.

(b) Behavior of hydrostatic functions. The pressure and
density must be finite and positive, with their maxi-
mum value on the center and monotonically decreasing
towards the boundary of the fluid sphere,i.e., ρ′ < 0
andP ′ < 0 for r ∈ (0, R)0 and

P (0) > 0, P ′(0) = 0, P ′′(0) < 0,

ρ(0) > 0, ρ′(0) = 0, ρ′′(0) < 0,

also, the pressure must be nullified on the surface
P (R) = 0.

(c) Energy conditions. In addition to the intuitive physi-
cal requirements mentioned above, the interior solution
should satisfy either:

- The Strong Energy Condition:c2ρ + 3P ≥ 0,
c2ρ + P ≥ 0 or

- The Dominant Energy Condition:ρ ≥ 0 and
c2ρ ≥ |P |

(e) Causality condition. The speed of sound must not ex-
ceed the speed of light, which implies

v(r)2 =
dP (ρ)

dρ
∈ [0, c2].

(f) Stability condition . In order to have an equilibrium
configuration the matter must be stable and, as a re-
quired condition, the relativistic adiabatic index

Γ =
P + c2ρ

P

dP

dρ
>

4
3
, ∀ r ∈ [0, R].

(g) Matching condition. On the surface of the starr = R,
the interior solution should match continuously with
the exterior region described by the Schwarzschild so-
lution:
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ds2 = −
(

1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2), r ≥ R,

where M represents the total mass inside the fluid
sphere. Which implies the continuity ofy2(r) and
B(r) across the boundaryr = R.

These conditions allow us to fixate and determine the val-
ues and intervals of the constants present in the solution as
well as determining the validity of our solution as a stellar
model.

It is of interest to mention that according to the Petrov
classification [39–41], the interior solutions for static and
spherically symmetrical spacetimes are Petrov type D or
Petrov type O, sinceΨ2 is the only Weyl scalar different than
zero. For the case in which we have a perfect fluid, taking
into account the Eqs. (4) y (5), we arrive to:

Ψ2 = −B′

6r
− 1

3r2
(1−B). (13)

If Ψ2 6= 0 the solution is type D and ifΨ2 = 0 the solution
is type O. ImposingΨ2 = 0 we obtainB(r) = 1 − ar2 and
replacing in the difference of the Eqs. (4) and (5) it results:

y(r) = C + D
√

1− ar2, (14)

which correspond to the interior Schwarzschild solution, this
being the only interior solution, in a static and spherically
symmetrical spacetime with perfect fluid, which is Petrov
type 0 and as such it is the only one that is conformally
flat [42, 43]. The rest of the interior solutions with perfect
fluid are Petrov type D just like the exterior Schwarzschild
solution.

3.1. Condition on the model

The calculation of the Kretschmann scalar will allow us to
affirm that the geometry is regular, however, given the ex-
tension of it we only show the form of the behaviour for the
metric functions in the vicinity of the center:

y(r) = 25S[5 +
9
2
ar2 + O

(
r4

)
],

B(r) = 1− 4
[
76209

√
5− 16S2(0)

]

234375
√

5
ar2 + O

(
r4

)
.

And the non-existence of the event horizon will be shown
graphically in the following section. The conditions for the
hydrostatic functions will generate for us a series of inequali-
ties for the intervals of validity, of the constantsa andC. The

evaluation of the density, pressure and speed of sound implies

kc2ρ(0) =
304836
78125

a− 64
√

5S2(0)
390625

a > 0, (15)

kP (0) =
179638
78125

a +
64
√

5S2(0)
1171875

a > 0, (16)

0 ≤ v(0)2

c2
=

64S2(0)− 726711
√

5
5 [64S2(0)− 101711

√
5]
≤ 1. (17)

Also, P ′ (0) = 0, ρ′(0) = 0 (v(0)2)′ = 0. So, if the in-
equalities are satisfied (15)- (17) and also that the second
derivatives in the origin of the density and the pressure are
negative, i.e.,

ρ′′(0) =
6

[
64
√

5S2(0)− 508555
]

390625kc2
a2 < 0, (18)

P ′′(0) =
6

[
64S2(0)− 726711

√
5
]

390625
√

5k
a2 < 0. (19)

the requirement that these functions have a maximum value
in the center would be met. From the condition that the pres-
sure must be zero on the surface of the starP (R) = 0, Eq. (4)
valued inr = R, we expressC in terms ofw = aR2:

C =
3
√

5 + 8w
[
H2 + 64(150236w + 36864w2)w5

]

64 (5 + 7w) (1 + 4w) (1 + 2w) (1 + w)4

+ 191
√

3 arctan

[√
3(5 + 8w)
1 + 4w

]

− arctanh
[√

5 + 8w

3 + 4w

]
, (20)

where H2 = −898190 + 5887971w − 14385882w2 −
14277600w3 + 438528w4 + 12575808w5. From the expres-
sion (20) for C and the set of inequalities (15)-(17) we ob-
tain the interval of validity for the parameterw = aR2 ∈
(0, 0.655607717]. From this set of inequalities, the one that
restricted the maximum possible value ofw was obtained
from imposing that the speed of sound is lower than the speed
of light in the center of the star. The behaviour of the solution
in the interior is shown in a graphic manner in the following
section.

4. Graphic representation of the solution

The type of stellar object that the model represents is deter-
mined by the compactness valueu = GM/c2R and in our
case it is obtained from imposing the geometry’s continuity
condition on the surface, specifically of the componentgrr,
resulting in:

u(w) =
GM

c2R
=

1
2
[1−B(R)] =

3w (3 + 4w)
(5 + 7w)(1 + 4w)

, (21)

this is a monotonically increasing function and it’s
maximum value in the interval of validity of the solution is
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FIGURE 1. Behaviour of the density for different compactness val-
ues.

FIGURE 2. Pressure for different values of the compactnessu.

u(0.655607717) = 0.3183497451. Meanwhile the continu-
ity of gtt allows us to determine the form ofS which appears
in the metric:

S =
(1 + w)5/2

(1 + 4 w) (5 + 7 w) (5 + 4 w)2
. (22)

The solution is determined by the parameterw = aR2

as such for our graphic description we will chose different
values of it and we will define the dimensionless variable
x = r/R, with this the center is represented byx = 0 and
the surface byx = 1, meanwhile we redefine the hydrostatic
functions askc2R2ρ, kR2P , v2/c2 for their dimensionless
graphic representation. In the following figures we graph
the functions for different compactness values, among these
some stand out, as is the maximum compactness value of the
model,u = 0.3183497451, and the value ofu = 0.2509338
which corresponds to the neutron star PSR J0348+0432.

In the Fig. 1 we represent the density for different com-
pactness values, from which we can observe that it is a mono-
tonically decreasing function with its values lowering as the
compactness rate decreased.

FIGURE 3. Graphic representation of the speed of sound.

FIGURE 4. The adiabatic index for different compactness values.

The Fig. 2 shows the monotonically decreasing behaviour
of the pressure as well as how it becomes zero on the surface,
represented byx = 1.

From the Fig. 3 we observe that the speed of sound is a
monotonically decreasing function, positive and lower than
the speed of light. The interval of validity of the parame-
ter w was determined by the non violation of the causality,
matching the value of the speed of sound with the value of
the speed of light forumax = 0.3183497 (or equivalently
wmax = 0.655607717), for values ofu > umax the condition
of causality is violated. We also observe that as the compact-
ness decreases the speed of sound is lower. The Fig. 4 shows
that the adiabatic indexγ > 4/3 meets the requirement for
the stability of the solution, we also observe that the function
γ is not monotonically decreasing (see blue colored line).

From a detailed analysis we have that the lowest value
of the adiabatic index is3.083875 and it occurs for the com-
pactness valueu = 0.2917064, which guarantees the stabil-
ity of the solution. In relation to the energy conditions, given
the positivity of the functions, we only need to verify that
c2ρ− P ≥ 0 is satisfied. From the Figs. 1 and 2 we observe
that, for a specific value of the compactness, the pressure is
lower than the density, which guarantees that the requirement
c2ρ− P ≥ 0 is met.
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6 G. ESTEVEZ-DELGADO, J. ESTEVEZ-DELGADO, AND E. AGUILAR CAMPUZANO

TABLE I. Interior behavior of the physical values for the den-
sity, pressure, speed of sound and adiabatic index for the PSR
J0348+0432, withR = 12.062 km andM = 2.05 M¯.

r (km) ρ(1017 kg/m3) P (1034 Pa) v2(c2) γ

0 7.5203 1.6346 0.63733 3.2723

1.2062 7.4790 1.6100 0.63643 3.2935

2.4124 7.3505 1.5380 0.63395 3.3569

3.6186 7.1474 1.4216 0.63027 3.4781

4.8248 6.8736 1.2675 0.62618 3.6779

6.0310 6.5441 1.0833 0.62162 3.9965

7.2372 6.1740 0.87685 0.61710 4.5220

8.4434 5.7778 0.65774 0.61194 5.4424

9.6496 5.3682 0.43383 0.60551 7.3394

10.856 4.9592 0.21217 0.59718 13.135

12.062 4.5593 0 0.58613 ∞

TABLE II. Comparison of the physical values between the model
for n = 1 [34] andn = 3 (the model presented in this report) for
the PSR J0348+0432, withR = 12.062 km andM = 2.05 M¯.

n ρc(1017 Kg/m3) ρb(1017 Kg/m3) Pc(1034 Pa)

1 12.838 3.7174 2.4209

3 7.5203 4.5593 1.6346

TABLE III. Comparison of the physical values between the model
for n = 1 [34] andn = 3 (the model presented in this report) for
the PSR J0348+0432, withR = 12.062 km andM = 2.05 M¯.

n v2
c (c2) v2

b (c2) γc

1 0.49985 0.65286 1.4407

3 0.63733 0.58613 3.2723

5. Discussion and conclusions

In the previous section, by means of dimensionless functions,
it has been shown that the solution has an adequate behaviour
for representing the interior of the stars with compactness rate
u ≤ 0.3183497 and, in particular, we took one of the com-
pactness valuesu = 0.2509338 associated to observational
data of the star PSR J0348+0432. In the Table I, in a comple-

mentary manner, we report the physical values of the hydro-
static variables for the neutron star PSR J0348+0432.

From the Table I we can observe that the orders of mag-
nitude from the density and pressure are of the order of
magnitude characteristic for neutron stars and that the adi-
abatic index complies with the condition required for the
stability (γ > 4/3). The choice of the neutron star PSR
J0348+0432 was done with the objective of being able to re-
alize a comparison with a model that was approached previ-
ously [34] in which the metric potential isgtt = −S[(5 +
4ar2)2/(1 + ar2)]n with n = 1, meanwhile in this report
we obtained the solution forn = 3. From the compara-
tive analysis between the Figs. 1-4, Tables II, III and the
figures and tables from the work reported in Ref. [34], we
have that both models show important differences, which are:
a) the admissible compactness value is greater forn = 3
(umax,3 = 0.3183497 > 0.2660858316 = umax,1), due to
this in the case forn = 3 it would allow for the description
of stellar objects with a greater compactness. b) The speed of
sound is a monotonically increasing function forn = 1, but
it is a monotonically decreasing function forn = 3, although
both behaviours are considered physically valid, there is still
the need of further discussion on this point. c) The density,
both in the center and on the surface, is greater forn = 1
compared with the density forn = 3, d) The central pressure
is greater forn = 1 than forn = 3.

From the previous text we have that the model presented
(casen = 3), given it’s compactness, can be applied to a
greater amount of stars and according to the imposed require-
ment in Ref. [1] is more adequate to represent the interior
of the stars, although this is still a point that has not been
approached sufficiently on the literature. From the present
work some questions arise that could be approached in future
works, among these are determining how the form of the met-
ric potentialgtt influences the behaviour of the hydrostatic
variables and if there is a way to determine for which poten-
tials the speed of sound will be a monotonically increasing or
monotonically decreasing function.
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