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For the Einstein-Maxwell equation system, with perfect fluid in a static and spherically symmetrical spacetime, we report an analytical
internal solution which is obtained by imposing the Karmarkar condition, the behaviour of the solution is such that the density and pressures
are monotonically decreasing functions while the electric field function is a monotonically increasing function that is adequate to represent
compact objects. In particular we have these characteristics for the observational values of mass (1.29 ± 0.05) M¯ and radius (8.831 ±
0.09) km of the star SMC X-4. We will analyze the two extremes the one of minimum compactnessumin = 0.20523 (M = 1.24 M¯,
R = 8.921 km) and the one of maximum compactnessumax = 0.22635 (M = 1.34 M¯, R = 8.741 km), resulting that the electric charge
Qumin ∈ [1.5279, 1.8498]1020C andQumax ∈ [1.6899, 1.9986]1020C respectively, implying that the case with higher compactness has a
higher electric charge. Also in a graphic manner, it is shown that the causality condition is satisfied and that the solution is stable against
infinitesimal radial adiabatic perturbation and also in regards to the Harrison-Novikov-Zeldovich criteria.
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1. Introduction

In obtaining analytical interior solutions for a static and
spherically symmetrical spacetime that represent compact
objects like neutron stars and quark stars, we can utilize dif-
ferent mechanisms depending on the type of source of matter
that is considered for the interior region. Solutions with per-
fect fluid tend to be more complicated to obtain than charged
solutions or anisotropic solutions,i.e., fluids that present dif-
ferences between the radial and tangential pressures, since
the number of restrictions that can be imposed is lower for the
case of a perfect fluid. Even the solutions with perfect fluid
[1-10] can be used as seed solutions to obtain generalizations
to the charged [11-17] or anisotropic [18-24] cases. There is
also a method to obtain the solution of a perfect fluid from
a seed solution of perfect fluid, this mechanism utilizes the
existence of a second order differential equation that relates
the metric coefficientsgtt andgrr, although this one can only
generate an exact new solution, return to an exact solution

that was already known or it can even be that the resulting
integral equation does not admit a primitive function [25,26].

In the case of the construction of exact solutions with
sources of matter from a fluid with anisotropic or charged
pressures there exists a method that starts from a geomet-
ric property, related with embedding of the spacetime man-
ifold in a 5-dimensional pseudo-Euclidean spaceE5 called
class 1 solutions, which originates a connection between the
metric coefficientsgtt and grr through a differential equa-
tion known as the Karmarkar condition, which has allowed
to obtain useful solutions to represent the interior of the stars
[27-38]. A n dimensional manifold is said to be of classp if
it is embedded in a Pseudo Euclidean spacetime ofn + p di-
mensions and an-dimensional spacetime can always be em-
bedded inn(n + 1)/2-dimensional Pseudo Euclidean space
and the minimum dimension required to embed a manifold
has to be lower or equal ton(n − 1)/2 [39], as such, the
metric of the static and spherically symmetric spacetime is
of class II al though the transformation of coordinates that
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generates the embed is not unique [40,41]. The space-time
of Kerr is of class 5, the exterior Schwarzschild solution is
of class 2, the Friedman-Lemaitre-Robertson-Walker space-
time [42], the Scharzschild interior solution and the Kohler-
Chao solution are of class 1 [43], these last two are the only
solutions with perfect fluid that satisfy the Karmarkar condi-
tion.

The Karmarkar condition has also been employed to
model the dissipative gravitational collapse with spherical
symmetry [44], in the construction of solutions that represent
gravastars [45], in obtaining wormhole solutions [46,47], in
the study of charged wormholes and flat rotation curves in
spiral galaxies [48]. Class 1 stellar models have also been
analyzed in modified gravity theory [49-53].

On the other hand, considering charged stellar models al-
lows for the representation of objects with a greater compact-
ness compared to the case of chargeless perfect fluid [54,55],
it favors the equilibrium of the configuration and its repul-
sive effect counteracts the gravitational attraction [56]. One
of the forms in which we can have stellar objects with a
net charge that is non zero is due to the accretion process.
There are a variety of works in which they analyze the ef-
fect of the electric field’s presence and construct stellar mod-
els that show aspects which contrast with the chargeless case
[55,57-68], in one of these works there is the construction of
a model with a compactness rate greater than the Buchdahl
limit u = GM/c2R < 4/9 present in the case of a perfect
fluid [69].

Taking into account the necessity of including in the stel-
lar models the effect of the charge and that the solutions
which satisfy the Karmarkar condition result from it being
a good tool in the construction of interior solutions, in this
report we present an analytical charged perfect fluid solution
of the Einstein-Maxwell field equations considering a spher-
ically symmetric and static space-time. To satisfy the Kar-
markar condition we chose the form of the metric potential
grr = [1 + Car2 arctan2(d + ar2)]−1, this was previously
used to model the star EXO 1785-248 by means of a fluid
with anisotropic pressures [70], in the current case the anal-
ysis of the solution is done by taking the observational data
of massM = and radiusR = km of the star SMC X-4. The
work we are presenting is organized as follows: in the Sec. 2
we show the field equations for a charged perfect fluid and we
describe the origin of the Karmarkar condition. In the Sec. 3
we mention the required conditions for a solution to be physi-
cally acceptable and we obtain said solution, determining the
integration constants that originate from imposing physical
conditions. The Sec. 4 is dedicated to the graphic analysis of
the solution, taking as observational data those corresponding
to the star SMC X-4, showing also the stability of the solution
and the analysis of the hydrostatic equilibrium. The Sec. 5 is
dedicated to the discussion of the results and conclusions.

2. Solution with the Karmarkar condition

Our model considers that the equations which describe the in-
terior behaviour of compact objects are given by the Einstein-
Maxwell equations with a perfect fluid and that their geome-
try satisfies the Karmarkar condition, that is to say the 4 -dim
spacetime can be embedded in a flat 5 -dim spacetime. To
clarify each part, in this section we give the field equations,
we discuss the Karmarkar condition and we obtain the solu-
tion of the equations.

2.1. The Einstein-Maxwell field equations

Einstein’s equations are given byGαβ = kTαβ with Gαβ the
components of the Einstein tensor andTαβ are the compo-
nents of the stress energy tensor

Tαβ = (c2ρ + P )uαuβ + Pgαβ

+
1
4π

(FαµFβµ − 1
4
gαβFµνFµν), (1)

with ρ andP being the energy density and pressure respec-
tively, uα represents the velocity of the fluid. The tensor
Fαβ , represents the skew-symmetric electromagnetic tensor
defined by

Fαβ = ∂αAβ − ∂βAα,

which satisfies the covariant Maxwell equations

∇[αFβγ] = 0, and ∇βF βα = 4πJα, (2)

whereJα is the four electric current. Since out interest is
centered in the presence of an electric field in a static and
spherically symmetric spacetime, we chose the line element
expressed in canonical coordinatesxα ≡ (t, r, θ, φ) as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2, (3)

then the vectorial potentialAα = Φ(r)δα
t , while the four

electric current is expressed byJα = e−ν/2σδα
t , whereσ is

representing the charge density. As such the only non zero
components areFtr(r) = −Frt(r) and from the Eq. (2) and
by means of the relativistic Gauss’s law we define the charge
q(r) [59,71]

q(r) = 4π

∫ r

0

σ(x)x2eλ(x)/2dx = E(r)r2, (4)

whereE(r) is the electric field. With these elements the non
zero components of Einstein’s equations, with stress energy
tensor (1), generate the equation system:

kc2ρ + E2 = e−λ

(
λ′

r
− 1

r2

)
+

1
r2

, (5)

kP − E2 = e−λ

(
ν′

r
− 1

r2

)
− 1

r2
, (6)

kP + E2 =
1
4
e−λ

[
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

]
. (7)
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The conservation of the energy momentum tensor∇αTα
β =

0 implies

−P ′ − ν′

2
(c2ρ + P ) + 2

E

r2
[r2E]′ = 0, (8)

and although it can be obtained from the Eqs. (5)-(7), its rel-
evance is that it allows us to express the equilibrium between
the forces that are present:

Fh = −P ′, Fg = −ν′

2
(c2ρ + P ), Fe = 2

E

r2
[r2E]′, (9)

the first term represents the force of the pressure gradient, the
second term is the gravitational force and the last term is the
electric force, this expression will be employed in the Sec. 4
to show the repulsive effect of the electric force.

2.2. The karmarkar condition

The Karmarkar equation is the result of the integrability con-
ditions which guarantee that if (ngαβ ,Ωαβ) satisfies the equa-
tions [72-74]

Rαβγδ = ε(ΩαγΩβδ − ΩαδΩβγ)

+ K0(gαγgβδ − gαδgβγ), (10)

∇αΩβγ −∇βΩαγ = 0, (11)

then, the manifoldM,n g) of dimensionn can be immersed
in a manifold (N,n+1 g) of dimensionn + 1 of curvature
K0. Whereε = ±1 whenever the normal to the manifold
is spacelike (+1) or time-like (-1). For the deduction of the
Karmarkar condition we will solve the Eqs. (10) and (11) in
the particular case of the spacetime described by the metric
(3),n = 4 for the embedding in a flat 5 dimension space, that
is to sayK0 = 0. The non zero components of the Riemann
tensor for (3) are:

Rtrtr = −eν

4
[2ν′′ + ν′2 − λ′ν′],

Rtθtθ = R sin2 θ = −r

2
ν′eν−λ,

Rθφθφ = e−λr2(1− e−λ) sin2 θ,

Rrφrφ = Rrθrθ sin2 θ =
r

2
λ′.

Replacing these components ofRαβγδ in the Eq. (10), and
then from algebra, we obtain the equation:

RtrtrRθφθφ −RtθtθRrφrφ = 0, (12)

with the restrictionRθφθφ 6= 0 [74,75], from this equation we
obtain what is called the Karmarkar condition for the metric
(3):

2(1− eλ)ν′′ + (1− eλ)ν′2 + λ′ν′eλ = 0, (13)

This differential equation can be integrated forλ or ν, giving
as a result [28,29]:

eλ = 1 + Cν′2eν , (14)

eν =
[
C1 + C2

∫ √
(eλ − 1)dr

]2

, (15)

(C, C1, C2) are integration constants. The Eq. (15) will be
our starting point to solve the equation system.

3. The physical conditions and the solution

How it can be observed from the equation (14) or (15) obtain-
ing a solution requires the adequate assignation of one of the
functionsλ or ν. Which will immediately generate a solution
to Einstein’s equations (5)-(7), however, this does not mean
that the functions (µ, ν, ρ, P, E) are physically acceptable,
it is required that they satisfy special properties. a) the func-
tions ρ, P must be positive, regular and monotonically de-
creasing, the only value in which the pressure is zero is on
the surface of the starr = R; b) the causality conditions must
not be violated; c) the magnitude of the electric fieldE(r)2

must be zero on the center and must be given by a regular
and positive function; d) the geometry must be regular and
the metric functionsgtt = −eν(r) < 0 andgrr = eλ(r) > 0
with grr(0) = 1 e) The Israel-Darmois conditions must be
satisfied [76], this is, the metric functions and their second
fundamental form of the interior (i) and exterior (e) metric,
on the surface, must be continuous

g
(i)
tt

∣∣∣∣
r=R

= g
(e)
tt

∣∣∣∣
r=R

and g(i)
rr

∣∣∣∣
r=R

= g(e)
rr

∣∣∣∣
r=R

,

(16)

∂

∂r
g
(i)
tt

∣∣∣∣
r=R

=
∂

∂r
g
(e)
tt

∣∣∣∣
r=R

, (17)

where the exterior geometry corresponds to the Reissner -
Nordstr̈om solution:

ds2 = −
[
1− 2GM

c2r
+

Q2

r2

]
dt2

+
dr2

1− 2GM
c2r + Q2

r2

+ r2dΩ2. (18)

f) The energy conditions must be satisfied; g) the solution
must be stable against disturbances, in our case we will ver-
ify the adiabatic index condition and the Zeldovich condi-
tion. Although it seems like a simple task the integration of
the equations starting from the Karmarkar condition, not ev-
ery solution satisfies the conditions previously mentioned. In
the case of chargeless perfect fluid most of the solutions are
not physically acceptable [77], some are singular, don’t sat-
isfy the integrability condition, the density or pressure func-
tions are not monotonically decreasing or both are not posi-
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tive [78], which exemplifies the difficulty in obtaining solu-
tions that are physically acceptable. In our case we chose:

eλ = 1 + Car2 arctan2(d + ar2), (19)

and replacing in the Eq. (15) we obtain the function:

eν = (C1 + C2[2{d + ar2} arctan{d + ar2}
− ln{1 + (d + ar2)2}])2. (20)

Once we have determined the form of the metric func-
tions we replace these in the Eqs. (5)-(7). The electric field
function E2 we obtain from subtracting to the Eq. (7) the
Eq. (6). And adding the Eqs. (6) and (7) we determine the
pressure, finally replacing the form of the electric field in the
Eq. (5) we find the density, each one of these functions ends
up expressed as:

c2kρ(r)=
(5CS(r)−4C2e

−ν/2)(H(r)S(r)+2ar2)a
2H(r)e2λ

+
1
2
aS(r)(CS(r) + 4C2e

−ν/2)e2λ, (21)

kP (r) =
(4C2e

−ν/2 − CS(r))(H(r)S(r) + 2ar2)a
2H(r)e2λ

− 1
2
aS(r)(CS(r)− 12C2e

−ν/2)e−λ, (22)

E(r)2=
(2−CH(r)S(r)3)(4C2e

−ν/2−CS(r))a2r2

2H(r)e2λ
,

(23)

whereS(r) = arctan(d + ar2) andH(r) = 1 + (d + ar2)2

Other quantities that are relevant in the analysis of the inte-
rior solutions are the speed of sound and the adiabatic index
defined by:

v2 =
∂P (ρ)

∂ρ
,

γ
P + c2ρ

c2P

∂P (ρ)
∂ρ

,

however, given it’s typographic extension this is not reported
but it will be analyzed in the following section. Imposing, on
the surface of the starr = R, the continuity conditions of the
metric (Eq. (16)) and the continuity of the second fundamen-
tal form (Eq. (17) or equivalently that the pressure is zero on
the surface) and thatE(R)2 = Q2/R4 we obtain expressions
for the constantsC, C1 andC2 given by

C =
2u(2H(R)S(R) + aR2)
(2− 3u)H(R)S(R)3aR2

,

C1 =
√

1− 2u + q2 − (2[d + aR2]S(R)− ln H(R))C2,

C2 =
([2− u]H(R)S(R) + 2[1− u]aR2)u
4S(R)

√
(2− 3u)H(R)S(R)NaR2

,

q2 = 2(H(R)S(R)u− [1− 2u]aR2)N−2u,

whereN =
√

(2 + u)H(R)S(R) + 2uaR2, q = Q/R and
u = GM/c2R. Once we have obtained the integration con-
stants and determined the functions we observe that the so-
lution depends of the dimensionless parametersu (compact-
ness) and of the parameters (d, s = aR2).

4. Graphic analysis for the star SMC X-4

It results easier to visualize, through a graphic analysis, the
behaviour of the constructed solution. And we will do this
specially for the case of the star SMC X-4, although it can
also be developed for another star with a compactness rate
u < 0.3224. In the graphic analysis it’s convenient to de-
fine the dimensionless functions of the speed of soundv2/c2,
densitykc2R2ρ, pressurekR2P and electric fieldR2E2.

For the case of the star SMC X-4 which has values of
mass(1.29 ± 0.05) M¯ and radius(8.831 ± 0.09) km we
will analyze the two extremes, the one of minimum compact-
nessumin = 0.20523 (M = 1.24 M¯, R = 8.921 km)
and the one of maximum compactnessumax = 0.22635
(M = 1.34 M¯, R = 8.741 km). Once we set the com-
pactness parameter u we chose the adequate value for the pa-
rameter d and we determine the value ofs = aR2 imposing
the conditions that must be satisfied for the solution to be
physically acceptable. For the star SMC X-4 it results con-
venient to set the parameterd = 1/2, and we observe that
the interval of the parameters = aR2 is determined by a)
the causality condition, that is to say, that the speed of sound
is a positive function that is equal or lower than the speed of
light in the vacuum and b) that the function of the speed of
sound is a monotonically decreasing function. If these condi-
tions are met, then the rest of the conditions are satisfied. For
umin = 0.20523 we have thats[0.03427, 0.10800] and this
implies that the interval forq ∈ [0.1476, 0.1786], meanwhile
that forumax = 0.22635 we haves ∈ [0.03863, 0.12019] or
q ∈ [0.1665, 0.1969].

In the graphic representation we will employ the tag ofq
which has a more direct association with the dimensionless
measure of the charge-radius rate. And the graphs in purple
color correspond to the case of compactnessu = 0.22635

Rev. Mex. Fis.70030702
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FIGURE 1. Behaviour of the speed of sound for the two values
of maximum and minimum compactness considering the extreme
values ofq.

FIGURE 2. Behaviour of the density for the compactness data
(umax, umin) corresponding to the star SMC X-4.

and the ones in green to the case of compactnessu =
0.20523, meanwhile the solid line will be associated to the
value of greater charge-radius rateq and the dotted line (dash)
represents the value of the lower charge-radius rate. In the
graph we can appreciate the value of the radius for the star
with greater radiusR = 8.921 km (green colored lines) and
it can be noticed that the graphs of the star with lower radius
R = 8.741 km end slightly before (purple colored lines).

In the Fig. 4 it is shown the positive and monotonically
decreasing behaviour of the speed of sound function. The
maximum value of the speed of sound, equal to the value of
the speed of light in the vacuum, we have that for the value of
lower rateq = qmin. If we take values ofq < qmin we have
thatv2 > c2 which would imply the violation of the causal-
ity, on the other hand forq > qmax the function of the speed
of sound stops being a monotonically decreasing function.

FIGURE 3. Behaviour of the pressure in which we can appreciate
that the pressure on the surface is zero.

FIGURE 4. Behaviour of the electric field magnitude.

In the Fig. 2 we graph the density for the compactness
values, from this we can observe that it has a monotonically
decreasing behaviour. The central density is greater for the
case in which we have a greater compactness value and rate
q and it exists the possibility that the density is greater for the
case of lower compactness if the rateq is taken as the maxi-
mum (green solid line and purple dotted line), this as a result
of the presence of a greater charge in the star.

The pressure is graphed in the Fig. 3, in it we observe
that the pressure is greater for a greater compactness rate, and
that for a fixed value of the compactness (same color lines) in
the presence of a greater charge-radius rateq the pressure is
lower as a result of the presence of the charge.

From the magnitude of the electric fieldE(r)2, repre-
sented in the Fig. 4, as it was to be expected, we observe
that for a greater value of the rate q the magnitudeE(r)2 is
greater.

From the set of graphs presented in the Figs. 4 we have
that the model is consistent with what is expected for this

Rev. Mex. Fis.70030702
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type of star, however it is necessary to review some other
properties like the energy conditions and the stability of the
solution, which will be done in the following.

4.1. Energy conditions

The energy conditions that are imposed on the interior solu-
tions are

1. Null energy condition (NEC):c2ρ + P ≥ 0, kc2ρ +
kP + 2E2 ≥ 0.

2. Weak energy condition (WEC):c2ρ + P ≥ 0, kc2ρ +
E2 ≥ 0 andkc2ρ + kP + 2E2 ≥ 0.

3. Strong energy condition (SEC):c2ρ+Pr ≥ 0, kc2ρ+
3kP + 2E2 ≥ 0, kc2ρ + kP + 2E2 ≥ 0.

4. Dominant energy condition (DEC):c2ρ + P ≥ 0,
kc2ρ + E2 ≥ 0, c2ρ− P ≥ 0, kc2ρ− kP + 2E2 ≥ 0,
kc2ρ + kP + 2E2 ≥ 0.

5. Trace energy condition (TEC):c2ρ− 3P ≥ 0.

FIGURE 5. Behaviour of the trace energy condition for the model.

In the graphic analysis that was done in the previous sub-
section it was shown that the density, pressure and electric
field (E(r)2) are non negative functions, as such, the first
three energy conditions (NEC, WEC, SEC) are met. To ver-
ify the other two conditions, in the Fig. 5 we present the graph
of c2ρ − 3P and from it we obtain that the TEC is satisfied
and as a consequence the DEC is also satisfied (for this we
will observe that ifc2ρ − 3P > 0 thenc2ρ − P > 0 and
sinceE2 ≥ 0 thenkc2ρ− kP + 2E2 > 0), so all the energy
conditions are met.

4.2. Hydrostatic equilibrium and stability

In the case of a chargeless perfect fluid, the equation of the
hydrostatic equilibrium is given by the TOV equation [81,82],

FIGURE 6. The gravitational force corresponds to the lines be-
low the horizontal axis (attractive force). The hydrostatic force is
represented by the lines that are found above the horizontal axis
in green and purple (repulsive force) colors. The electric force is
represented by the lines above the horizontal axis in red and blue
(repulsive force) colors.

FIGURE 7. Behaviour of the adiabatic index for the solution. In
the graph it’s shown that the smallest value is greater than 2, which
guarantees the stability.

the difference with the charged case is the existence of a term
associated with the electric force (repulsive) as a result of
the presence of the charge. So in the charged case the hy-
drostatic equilibrium is given by the attractive effect of the
gravitational forceFg, the repulsive hydrostatic force due to
the pressure gradientFh and the electric forceFe resulting
of the presence of the charge, each one of these terms have
already been mentioned in the Eqs. (8) and (9). The graphic
behaviour of these forces is shown in the Fig. 6, in it we ver-
ify the attractive behaviour of the gravitational force and re-

Rev. Mex. Fis.70030702
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pulsive of the electrical and hydrostatic force. We also ob-
serve that for a greater compactness rate (Purple color lines)
we have a greater gravitational force and that as the rateq
increases the electric force has a greater contribution in the
repulsive effect.

In the determination of the stability of the solution we
begin by showing that the solution is stable according to
the Harrison-Zeldovich-Novikov criteria [79,80] which in-
dicates to us that a configuration of a fluid is stable if the
mass is an increasing function in relation to the central den-
sity ρ(0) = ρc, that is to say, if∂M(ρc)/∂ρc > 0. From the
Eq. (21) evaluating inr = 0 and replacing the constantsC,
C2 we obtain

M(ρc) =
2S(R)3H(R)R2

cρc

3G
{H(R)S(R)3ρc

+ 2[aR2 + 2S(R)H(R)] arctan2 d}−1, (24)

and deriving this function in regards to theρc results

∂M(ρc)
∂ρc

=
3(2H(R)S(R) + aR2)GM(ρc)2 arctan2 d

H(R)S(R)3Rc2ρc2
, (25)

this function is positive since for the modeld = 1/2 and
aR2 > 0 as suchH(R), S(R) > 0. Which shows that
the solution is stable according to the Harrison-Zeldovich-
Novikov criteria. Another criteria that gives us information
in relation to the stability is the one of the adiabatic index
γ = (c2ρ + P )v2

r/(c2P ), that for the case of a perfect fluid,
guarantees that the solution is stable against infinitesimal ra-
dial adiabatic perturbation ifγ > 4/3. In the Fig. 7 we
present the graph of the adiabatic index for the cases con-
sidered of compactness for the values of the rate q, from it
we observe that the solution satisfies the

5. Results and conclusions

In previous sections, we have obtained an analytical solution
which is physically acceptable and applied the model to de-
scribe the behaviour of a compact object’s interior taking as
observational data of mass and radius those corresponding
to the star SMC X-4, it was shown that the solution satis-
fies the criteria of stability in relation to the adiabatic index
and the Harrison-Novikov-Zeldovich index. And by means
of graphic representation in each one of the terms of the gen-
eralized TOV equation for the charged case was shown that,
as it was expected, the presence of the charge has a repulsive
effect. In a complementary manner in the Tables I and II we
report the physical values of the densities in the centerρc and
on the surfaceρb, the central pressurePc, the values of the
speed of sound in the centerv2

c and on the surfacev2
b as well

as the net charge. From these tables we have that the orders
of magnitude of each one of these hydrostatic functions are
consistent with what is to be expected for these type of stars.

TABLE I. Interior behavior of the physical values for the star SMC
X-4, with minimal compactness.

Theoretical results for the star SMC X-4

M = 1.24 M R = 8.921 km u = 0.20523

q 0.1476 0.1786

ρc 1018 kg/m3 0.9256 1.0990

ρb 1017 kg/m3 6.5967 5.8481

Pc 1033 Pa 8.0842 3.9956

v2
c (c2) 1.0000 0.0879

v2
b (c2) 0.1707 0.0821

Q 1020 C 1.5279 1.8498

TABLE II. Interior behavior of the physical values for the star SMC
X-4, with maximal compactness.

M = 1.34 M R = 8.741 km u = 0.22635

q 0.1665 0.1969

ρc 1018 kg/m3 0.0851 1.3088

ρb 1017 kg/m3 0.0.6448 1

Pc 1033 Pa 10.735 5.6165

v2
c (c2) 1.0000 0.0960

v2
b (c2) 0.1664 0.0883

Q 1020 C 1.6899 1.9986

Another relevant observation of this model and that can
be deduced from the graphs and complemented with the val-
ues of the tables is that for a fixed value of the compactness
value the central density is greater as the electric charge in-
creases, meanwhile the pressure has the opposite behaviour,
that is to say, the pressure is lower for a greater net charge.
Which manifests the consistency of the model with the ex-
pected behaviour from the charge contributing to counteract
the attractive gravitational force, diminishing the hydrostatic
pressure and allowing for a greater density in the interior of
the star.

In conclusion, we have that the model satisfies the criteria
required for a solution to be physically acceptable, stable and
consistent with the expected behaviour of the electric charge
present in the interior. On the other hand, in regard to the Kar-
markar condition which has a geometric origin, it leaves open
the possibility of being able to do a posterior analysis for the
same choice of the metric function grr but in which a new
model will include sources of matter that are quintessence
type or ordinary matter, with a state equation for any of the
two cases, which would allow to clarify what is the effect of
these sources on the behaviour of the hydrostatic functions.
Questions that can be developed in future investigations.
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