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An Einstein-Maxwell interior solution obeying the Karmarkar condition
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For the Einstein-Maxwell equation system, with perfect fluid in a static and spherically symmetrical spacetime, we report an analytical
internal solution which is obtained by imposing the Karmarkar condition, the behaviour of the solution is such that the density and pressures
are monotonically decreasing functions while the electric field function is a monotonically increasing function that is adequate to represent
compact objects. In particular we have these characteristics for the observational values df.29a$s0(05) M and radius §.831 +

0.09) km of the star SMC X-4. We will analyze the two extremes the one of minimum compaatpgss= 0.20523 (M = 1.24 Mg,

R = 8.921 km) and the one of maximum compactness.x = 0.22635 (M = 1.34 Mg, R = 8.741 km), resulting that the electric charge

Qu,.., € [1.5279,1.8498]10%°C andQ.,,,. € [1.6899,1.9986]10%°C respectively, implying that the case with higher compactness has a
higher electric charge. Also in a graphic manner, it is shown that the causality condition is satisfied and that the solution is stable against
infinitesimal radial adiabatic perturbation and also in regards to the Harrison-Novikov-Zeldovich criteria.
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1. Introduction that was already known or it can even be that the resulting
integral equation does not admit a primitive function [25,26].

In obtaining analytical interior solutions for a static and  In the case of the construction of exact solutions with
spherically symmetrical spacetime that represent compaaources of matter from a fluid with anisotropic or charged
objects like neutron stars and quark stars, we can utilize difpressures there exists a method that starts from a geomet-
ferent mechanisms depending on the type of source of matteic property, related with embedding of the spacetime man-
that is considered for the interior region. Solutions with per-ifold in a 5-dimensional pseudo-Euclidean spdggecalled

fect fluid tend to be more complicated to obtain than chargedlass 1 solutions, which originates a connection between the
solutions or anisotropic solutionise., fluids that present dif- metric coefficientsy;; and g, through a differential equa-
ferences between the radial and tangential pressures, sintien known as the Karmarkar condition, which has allowed
the number of restrictions that can be imposed is lower for theéo obtain useful solutions to represent the interior of the stars
case of a perfect fluid. Even the solutions with perfect fluid[27-38]. A n dimensional manifold is said to be of class
[1-10] can be used as seed solutions to obtain generalizatiolitsis embedded in a Pseudo Euclidean spacetime-ofp di-

to the charged [11-17] or anisotropic [18-24] cases. There isnensions and a-dimensional spacetime can always be em-
also a method to obtain the solution of a perfect fluid frombedded inn(n + 1)/2-dimensional Pseudo Euclidean space
a seed solution of perfect fluid, this mechanism utilizes theand the minimum dimension required to embed a manifold
existence of a second order differential equation that relatelsas to be lower or equal to(n — 1)/2 [39], as such, the
the metric coefficientg,; andg,.., although this one can only metric of the static and spherically symmetric spacetime is
generate an exact new solution, return to an exact solution of class Il al though the transformation of coordinates that
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generates the embed is not unique [40,41]. The space-tini2. Solution with the Karmarkar condition

of Kerr is of class 5, the exterior Schwarzschild solution is

of class 2, the Friedman-Lemaitre-Robertson-Walker SIOaceDur model considers that the equations which describe the in-
time [42], the Scharzschild interior solution and the Kohler-terior behaviour of compact objects are given by the Einstein-
Chao solution are of class 1 [43], these last two are the onl)axwell equations with a perfect fluid and that their geome-

solutions with perfect fluid that satisfy the Karmarkar condi-try satisfies the Karmarkar condition, that is to say the 4 -dim
tion. spacetime can be embedded in a flat 5 -dim spacetime. To

clarify each part, in this section we give the field equations,

. we discuss the Karmarkar condition and we obtain the solu-
The Karmarkar condition has also been employed tq;,, of the equations

model the dissipative gravitational collapse with spherical

symmetry [44], in the construction of solutions thatrepresend 1 The Einstein-Maxwell field equations

gravastars [45], in obtaining wormhole solutions [46,47], in

the study of charged wormholes and flat rotation curves irEinstein’s equations are given 6y,s = k7,3 With G, the
spiral galaxies [48]. Class 1 stellar models have also beeoomponents of the Einstein tensor &figl; are the compo-
analyzed in modified gravity theory [49-53]. nents of the stress energy tensor

S Tup = (*p+ Pluqug + Pgag
On the other hand, considering charged stellar models al-

lows for the representation of objects with a greater gompact— + 1 (Fap Fy — 1 GasF" F), 1)
ness compared to the case of chargeless perfect fluid [54,55], dr 4

it favors the equilibrium of the configuration and its repul- with p and P being the energy density and pressure respec-
sive effect counteracts the gravitational attraction [56]. Onejvely, u represents the velocity of the fluid. The tensor
of the forms in which we can have stellar objects with aF,, ;, represents the skew-symmetric electromagnetic tensor
net charge that is non zero is due to the accretion procesgefined by

There are a variety of works in which they analyze the ef-

fect of the electric field’s presence and construct stellar mod- Fop = 0aAp — 0pAa,

els that show aspects which contrast with the chargeless case
[55,57-68], in one of these works there is the construction of'
a model with a compactness rate greater than the Buchdahl

limit w = GM/c®R < 4/9 present in the case of a perfect
fluid [69]. where J, is the four electric current. Since out interest is

centered in the presence of an electric field in a static and

I : . L spherically symmetric spacetime, we chose the line element
Taking into account the necessity of including in the stel expressed in canonical coordinates= (¢, , 6, ¢) as

lar models the effect of the charge and that the solutions
which satisfy the Karmarkar condition result from it being ds? = —e*Mdt? + A dr? 4+ r2d02, (3)

a good tool in the construction of interior solutions, in this

report we present an analytical charged perfect fluid solutiothen the vectorial potentiall® = &(r)dy, while the four

of the Einstein-Maxwell field equations considering a spherelectric current is expressed by = e~"/?¢4, whereo is
ically symmetric and static space-time. To satisfy the Kar-"epresenting the charge density. As such the only non zero
markar condition we chose the form of the metric potentialcomponents aré;,.(r) = —F,(r) and from the Eq. (2) and
grr = [1 4+ Car? arctan?(d + ar?)]~!, this was previously by means of the relativistic Gauss’s law we define the charge
used to model the star EXO 1785-248 by means of a fluid/(r) [59,71]

with anisotropic pressures [70], in the current case the anal- r

ysis of the solution is done by taking the observational data q(r) = 47T/ o(x)z?eM/2dy = E(r)r?, (4)

of massM = and radiusk = km of the star SMC X-4. The 0

work we are presenting is organized as follows: in the Sec. &vhereE(r) is the electric field. With these elements the non
we show the field equations for a charged perfect fluid and weero components of Einstein’'s equations, with stress energy
describe the origin of the Karmarkar condition. In the Sec. 3ensor (1), generate the equation system:

we mention the required conditions for a solution to be physi- ()\, 1 > 1

ich satisfies the covariant Maxwell equations

Viersy =0, and VgF’® =d4nJ®, )

cally acceptable and we obtain said solution, determining the kc?p + E? = ¢~ >+ (5)
integration constants that originate from imposing physical rer "
conditions. The Sec. 4 is dedicated to the graphic analysis of [V 1 1

grap y B2 _ oA 6
the solution, taking as observational data those corresponding - o2 2 ®6)
to the star SMC X-4, showing also the stability of the solution , ,
and the analysis of the hydrostatic equilibrium. The Sec.5is p 4 g2 — 164 {2,// FRYC R VA L A (7)
dedicated to the discussion of the results and conclusions. 4
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The conservation of the energy momentum tengi™“g =  This differential equation can be integrated foor v, giving
0 implies as a result [28,29]:

/ A 12 v
_Pl_%(CQP“FP)“FQTEQ[TQE]/:O, (8) & —1+CV e, (14)
2
and although it can be obtained from the Egs. (5)-(7), its rel- e = {01 + Cy / V(e = 1)64 : (15)
evance is that it allows us to express the equilibrium between
the forces that are present: (C,C4,Cy) are integration constants. The Eq. (15) will be

, our starting point to solve the equation system.

E
Fy=—P', F,=—=2(*+P), F.=2[E], (9)

. _ 3. The physical conditions and the solution
the first term represents the force of the pressure gradient, the

second term is the gravitational force and the last term is thejow it can be observed from the equation (14) or (15) obtain-
electric force, this expression will be employed in the Sec. 4ng a solution requires the adequate assignation of one of the

to show the repulsive effect of the electric force. functions) or v. Which will immediately generate a solution
to Einstein’s equations (5)-(7), however, this does not mean
2.2. The karmarkar condition that the functionsy, v, p, P, E) are physically acceptable,

it is required that they satisfy special properties. a) the func-
The Karmarkar equation is the result of the integrability con-tions p, P must be positive, regular and monotonically de-
ditions which guarantee that if §, 5, {2.5) satisfies the equa- creasing, the only value in which the pressure is zero is on

tions [72-74] the surface of the star= R; b) the causality conditions must
not be violated; c) the magnitude of the electric fiél¢r)?
Rapys = €(QayQs5 — Qassy) must be zero on the center and must be given by a regular
and positive function; d) the geometry must be regular and
K [e% e ) 10 . .
+ Ko(9ar9p5 — 9as9pr) (10) the metric functiong,; = —e*(") < 0 andg,, = e} > 0
Vaflgy — VQay =0, (11)  with g,,.(0) = 1 e) The Israel-Darmois conditions must be

satisfied [76], this is, the metric functions and their second
then, the manifold\/,” ¢) of dimensionn can be immersed fundamental form of the interior (i) and exterior (e) metric,
in a manifold (V,"*! g) of dimensionn + 1 of curvature  on the surface, must be continuous
Ky. Wheree = £1 whenever the normal to the manifold

is spacelike (+1) or time-like (-1). For the deduction of the g,ff) _ ggte) and 99 - gﬁi) ’
Karmarkar condition we will solve the Egs. (10) and (11) in r—R r—R r—R =R
the particular case of the spacetime described by the metric (16)
(3),n = 4 for the embedding in a flat 5 dimension space, that
is to sayK, = 0. The non zero components of the Riemann 9 ) (o
tensor for (3) are: oy Jtt - = oy . (17)
Riptr = _i[gl// +2 =\, where the exterior geometry corresponds to the Reissner -
4 Nordstdm solution:
R :Rsinzez—fz/e”_’\, 2
1010 5 ds? — {1 3 QG;M N QQ] P
Rogop = e_)‘r2(1 —e M) sin? 6, er "
r dr? 2 702
Rygry = Rygrosin® 0 = N T @ 0 L @ + r?dQ?. (18)
ceT T
Replacing these components Bf,s.s in the Eqg. (10), and f) The energy conditions must be satisfied; g) the solution
then from algebra, we obtain the equation: must be stable against disturbances, in our case we will ver-
ify the adiabatic index condition and the Zeldovich condi-
RirtrRogogp — Riotg Rrgre = 0, (12)  tion. Although it seems like a simple task the integration of

the equations starting from the Karmarkar condition, not ev-
with the restrictionRy g, 7 0 [74,75], from this equation we gy solution satisfies the conditions previously mentioned. In
obtain what is called the Karmarkar condition for the metricihe case of chargeless perfect fluid most of the solutions are
3): not physically acceptable [77], some are singular, don’t sat-
isfy the integrability condition, the density or pressure func-

A A 2 A
20 ="+ (1 —e )"+ XNve* =0, (13)  tions are not monotonically decreasing or both are not posi-
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tive [78], which exemplifies the difficulty in obtaining solu- whereN = /(2 + u)H(R)S(R) + 2uaR?, ¢ = Q/R and
tions that are physically acceptable. In our case we chose: u = GM/c?R. Once we have obtained the integration con-
stants and determined the functions we observe that the so-
lution depends of the dimensionless parametefsompact-
ness) and of the parameteds { = aR?).

e* =1+ Car? arctan®(d + ar?), (29)
and replacing in the Eqg. (15) we obtain the function:
e’ = (Cy + Co[2{d + ar*} arctan{d + ar®}
—In{1 + (d + ar?)?}])%. (20)

Once we have determined the form of the metric func-
tions we replace these in the Egs. (5)-(7). The electric field
function E? we obtain from subtracting to the Eq. (7) the
Eq. (6). And adding the Egs. (6) and (7) we determine the
pressure, finally replacing the form of the electric field in the
Eq. (5) we find the density, each one of these functions ends

up expressed as: 4. Graphic analysis for the star SMC X-4
hp(r)= (5CS(r)—4Cre"/?)(H (r)S(r)+2ar?)a
2H (r)e?*
1 —v
+ 5‘15(7“)(05(7") +4Coe™" ), (21) it results easier to visualize, through a graphic analysis, the

s ) behaviour of the constructed solution. And we will do this
(4Cze — CS(r))(H(r)S(r) + 2ar*)a specially for the case of the star SMC X-4, although it can
2H (r)e?A also be developed for another star with a compactness rate
1 Zu/2y A u < 0.3224. In the graphic analysis it's convenient to de-
- 5“5(7')(05(7') — 12Ce7"%)e™%, (22) " fine the dimensionless functions of the speed of satiie?,
densitykc?R?p, pressuré: R? P and electric fieldR2E2.

EP(r) =

E(r)zz(Z—CH(T)S(T)S)(402€_D/2—CS(T))CL2T2
2H (r)e2* ’
(23) For the case of the star SMC X-4 which has values of

mass(1.29 £ 0.05) Mg and radius(8.831 + 0.09) km we

_ 2 _ 2
Wh:reSO") = _arCtﬁn(d +ar I) andH(r% =1 +I (d+ C;ﬁh) _ will analyze the two extremes, the one of minimum compact-
Other quantities that are relevant in the analysis of the intehecg,, “" (90593 (M — 1.24 Mo, R — 8.921 km)

rior solutions are the speed of sound and the adiabatic index,§ the one of maximum compactness.. — 0.22635

defined by: (M = 1.34 Mg, R = 8.741 km). Once we set the com-
,  OP(p) pactness parameter u we chose the adequate value for the pa-
v= , ine the valuesoE aR? imposin
ap rameter d and we determine the va p g
) the conditions that must be satisfied for the solution to be
7P +cp 3P(p)7 physically acceptable. For the star SMC X-4 it results con-
2P dp venient to set the parametér= 1/2, and we observe that

however, given it's typographic extension this is not reportedhe interval of the parameter = aR* is determined by a)
but it will be analyzed in the following section. Imposing, on the causality condition, that is to say, that the speed of sound
the surface of the star= R, the continuity conditions of the is a positive function that is equal or lower than the speed of
metric (Eg. (16)) and the continuity of the second fundamenlight in the vacuum and b) that the function of the speed of

tal form (Eq. (17) or equivalently that the pressure is zero or§ound is a monotonically decreasing fqpction. If the;e_ condi-
the surface) and tha(R)2 = Q2/R* we obtain expressions tions are met, then the rest of the conditions are satisfied. For

for the constant€’, ¢, andC, given by umin = 0.20523 we have that[0.03427,0.10800] and this

implies that the interval fog € [0.1476, 0.1786], meanwhile

o 2uH(R)S(R) + aR®) that foruma, = 0.22635 we haves € [0.03863,0.12019] or
(2 — 3u)H(R)S(R)3aR?’ q € [0.1665,0.1969].

C1=+/1-2u+q>— (2[d+aR*S(R) — In H(R))Cs,

(12 — W H(R)S(R) +2[1 — wlaR?)u In the graphic representation we will employ the tag of

Cy = S which has a more direct association with the dimensionless
4S(R)\/(2 — 3u)H(R)S(R)NaR measure of the charge-radius rate. And the graphs in purple
¢ = 2(H(R)S(R)u — [1 — 2u]aR?)N 2 color correspond to the case of compactness 0.22635

Rev. Mex. Fis70030702
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FIGURE 1. Behaviour of the speed of sound for the two values Ficure 3. Behaviour of the pressure in which we can appreciate
of maximum and minimum compactness considering the extremethat the pressure on the surface is zero.
values ofq.

1.8 - u=0.22635
u=0.22635 e itees
L7 —q=0.1969 0.03
: ——q=0.1665 — =it
1.6 //
NA /
T1s o u=0.20523 £
14 v —q=0.1786 ;7
N M — e Ny ——g=0.1476 ’y
~G 1.3 /7
< S0
1.2 u=0.20523 0.01 y //
—q=0.1786 ot
111 —_g=0.1476 e
1.0 .
0.9 o 1 2 3 4 5 6 7 88921

0 1 2 3 4 5 6 7 8 8.921

r(km FIGURE 4. Behaviour of the electric field magnitude.

FIGURE 2. Behaviour of the density for the compactness data
(Umax, Umin) COrresponding to the star SMC X-4. In the Flg 2 we graph the density for the compactness
values, from this we can observe that it has a monotonically

and the ones in green to the case of compactness decreasing behaviour. The central density is greater for the

0.20523, meanwhile the solid line will be associated to the case in which we have a greater compactness value and rate

value of greater charge-radius ratand the dotted line (dash) ¢ and it exists the possibility that the density is greater for the

represents the value of the lower charge-radius rate. In thease of lower compactness if the rates taken as the maxi-

graph we can appreciate the value of the radius for the stanum (green solid line and purple dotted line), this as a result

with greater radiug? = 8.921 km (green colored lines) and of the presence of a greater charge in the star.

it can be noticed that the graphs of the star with lower radius The pressure is graphed in the Fig. 3, in it we observe

R = 8.741 km end slightly before (purple colored lines). that the pressure is greater for a greater compactness rate, and
In the Fig. 4 it is shown the positive and monotonically that for a fixed value of the compactness (same color lines) in

decreasing behaviour of the speed of sound function. Th#éhe presence of a greater charge-radius gate pressure is

maximum value of the speed of sound, equal to the value dbwer as a result of the presence of the charge.

the speed of light in the vacuum, we have that for the value of From the magnitude of the electric fiell(r)?, repre-

lower rateq = g, If we take values of < ¢, We have  sented in the Fig. 4, as it was to be expected, we observe

thatv? > ¢2 which would imply the violation of the causal- that for a greater value of the rate q the magnitéitie)? is

ity, on the other hand faf > ¢.,.x the function of the speed greater.

of sound stops being a monotonically decreasing function. From the set of graphs presented in the Figs. 4 we have

that the model is consistent with what is expected for this

Rev. Mex. Fis70030702
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type of star, however it is necessary to review some other Y5 T e ——
P . o0 0.2 h
properties like the energy conditions and the stability of the
solution, which will be done in the following.
0.1

4.1. Energy conditions

= 0
The energy conditions that are imposed on the interior solu- - u=0.20523

—q=0.1786

tions are " 0.1 ==q=0.1476
< -m !—;

1. Null energy condition (NEC)z%p + P > 0, kc?p + '
kP +2E? > 0. ~hL2

2. Weak energy condition (WEC)2p + P > 0, kc?p + 03 =[¢3==0(')?12§gg
E? > 0andkc?p + kP +2E% > 0. " |==g=0.1665 S~

3. Strong energy condition (SEG¥p + Pr > 0, kc?p + 0 1 2 3 4 5 6 7 88921
3kP +2E% > 0,kc?p+ kP +2E? > 0. r(km)

4. Dominant energy condition (DEC)?p + P > 0, FIGURE 6. The gravitational force corresponds to the lines be-
k2p+E?>0,c2p—P >0, ké?p—kP+2E? >0, low the horizontal axis (attractive force). The hydrostatic force is

kc2p + kP + 2E2 > 0. represented by the lines that are found above the horizontal axis
__ ) in green and purple (repulsive force) colors. The electric force is
5. Trace energy condition (TEC)?p — 3P > 0. represented by the lines above the horizontal axis in red and blue

(repulsive force) colors.

u=0.22635 50
—qg=0.1969 u=0.22635 u=0.20523
L5 ——q=0.1665 —q=0.1969 —q=0.1786
= ——q=0.1665 ——q=0.1476
=14 u=0.20523 I !
[ - 40
- —q=0.1786
| L3 ——q=0.1476
~
s 1.2 30
NU r—
et ] _ - =
e [ _——— -
peh L 20
0.9
o 1 2 3 4 5 6 7 880921 —
r(km) 10
FIGURE 5. Behaviour of the trace energy condition for the model.
0
In the graphic analysis that was done in the previous sub- o 1 2 3 4 5 6 7 88921
section it was shown that the density, pressure and electric r(km)

field (E(r)?) are n.o.n hegative functions, as such, the fIrStFIGURE 7. Behaviour of the adiabatic index for the solution. In

Fhree energy Cond't'o_n_s (NEC' WE_C’ SEC) are met. To Velihe graph it's shown that the smallest value is greater than 2, which

ify the other two conditions, inthe Fig. 5 we present the graphyarantees the stability.

of ¢2p — 3P and from it we obtain that the TEC is satisfied ) ) _ )

and as a consequence the DEC is also satisfied (for this w8 difference with the charged case is the existence of a term

will observe that ifc2p — 3P > 0 thenc?p — P > 0 and  @ssociated with the electric force (repulsive) as a result of

sinceE? > 0 thenkc2p — kP + 2E2 > 0), so all the energy  the presence of the charge. So in the charged case the hy-

conditions are met. drostatic equilibrium is given by the attractive effect of the

gravitational forcel,, the repulsive hydrostatic force due to

the pressure gradier#f, and the electric forcd’, resulting

of the presence of the charge, each one of these terms have
Iready been mentioned in the Egs. (8) and (9). The graphic
ehaviour of these forces is shown in the Fig. 6, in it we ver-

ify the attractive behaviour of the gravitational force and re-

4.2. Hydrostatic equilibrium and stability

In the case of a chargeless perfect fluid, the equation of th
hydrostatic equilibrium is given by the TOV equation [81,82],

Rev. Mex. Fis70030702



AN EINSTEIN-MAXWELL INTERIOR SOLUTION OBEYING THE KARMARKAR CONDITION 7

pulsive of the electrical and hydrostatic force. We also ob-
serve that for a greater compactness rate (Purple color lines)
we have a greater gravitational force and that as thegrate TasLE I. Interior behavior of the physical values for the star SMC
increases the electric force has a greater contribution in thg-4, with minimal compactness.
repulsive effect.

In the determination of the stability of the solution we

Theoretical results for the star SMC X-4

begin by showing that the solution is stable according to M =1.24M R =28.921km u = 0.20523
the Harrison-Zeldovich-Novikov criteria [79,80] which in- q 0.1476 0.1786
dicates to us that a configuration of a fluid is stable if the ;. 108 kg/m? 0.9256 1.0990
mass is an increasing function in relation to the central den- s 1017 kg/n? 6.5967 5.8481

sity p(0) = pc, that is to say, iDM (p.)/dp. > 0. From the

3
Eq. (21) evaluating in = 0 and replacing the constantg P. 10 Pa 8.0842 3.9956
C5 we obtain vZ (c2) 1.0000 0.0879
2 (c2) 0.1707 0.0821

2S(R)?H(R)R2pe v (C
M(pc) = () 3é JFep {H(R)S(R)?pc Q10*°C 1.5279 1.8498

+2[aR? 4+ 2S(R)H(R)] arctan®d} ™,  (24)

and deriving this function in regards to theresults
TABLE Il. Interior behavior of the physical values for the star SMC

X-4, with maximal compactness.

M (pc)
dpc M =1.34M R =8.741 km u = 0.22635
3(2H(R)S(R) + aR?)GM (pc)? arctan? d a 0.1665 0.1969
= H(R)S(RP R pc ,  (25) pe 108 kg/m? 0.0851 1.3088
this f fi . it . for th dél 1/2 and pu 1017 kg/n? 0.0.6448 1
is function is positive since for the modél = an 3
aR? > 0 as suchH(R), S(R) > 0. Which shows that Pe 2103 Pa 10.735 5.6165
the solution is stable according to the Harrison-Zeldovich- ve (€2) 1.0000 0.0960
Novikov criteria. Another criteria that gives us information vy (€2) 0.1664 0.0883
in relation to the stability is the one of the adiabatic index Q10*°C 1.6899 1.9986

v = (?p + P)v2/(c*P), that for the case of a perfect fluid,
guarantees that the solution is stable against infinitesimal ra-

dial adiabatic perturbation iy > 4/3. In the Fig. 7 we Another relevant observation of this model and that can
present the graph of the adiabatic index for the cases core deduced from the graphs and complemented with the val-
sidered of compactness for the values of the rate g, from ifies of the tables is that for a fixed value of the compactness

we observe that the solution satisfies the value the central density is greater as the electric charge in-
creases, meanwhile the pressure has the opposite behaviour,
5. Results and conclusions that is to say, the pressure is lower for a greater net charge.

Which manifests the consistency of the model with the ex-
In previous sections, we have obtained an analytical solutiopected behaviour from the charge contributing to counteract
which is physically acceptable and applied the model to dethe attractive gravitational force, diminishing the hydrostatic
scribe the behaviour of a compact object’s interior taking apressure and allowing for a greater density in the interior of
observational data of mass and radius those correspondirilge star.
to the star SMC X-4, it was shown that the solution satis-  In conclusion, we have that the model satisfies the criteria
fies the criteria of stability in relation to the adiabatic index required for a solution to be physically acceptable, stable and
and the Harrison-Novikov-Zeldovich index. And by meansconsistent with the expected behaviour of the electric charge
of graphic representation in each one of the terms of the gerpresent in the interior. On the other hand, in regard to the Kar-
eralized TOV equation for the charged case was shown thamarkar condition which has a geometric origin, it leaves open
as it was expected, the presence of the charge has a repulsite possibility of being able to do a posterior analysis for the
effect. In a complementary manner in the Tables | and Il wesame choice of the metric function grr but in which a new
report the physical values of the densities in the cemt@and  model will include sources of matter that are quintessence
on the surfacey, the central pressurg,, the values of the type or ordinary matter, with a state equation for any of the
speed of sound in the centet and on the surface? as well  two cases, which would allow to clarify what is the effect of
as the net charge. From these tables we have that the orddh®se sources on the behaviour of the hydrostatic functions.
of magnitude of each one of these hydrostatic functions ar@uestions that can be developed in future investigations.
consistent with what is to be expected for these type of stars.
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