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In this paper, we determine the approximate eigenvalue solution of the non-relativistic wave equation in the presence of the Aharonov-Bohm
flux field with Hulthen-Yukawa-Inverse Quadratic potential in a topological defect via point-like global monopole (PGM) geometry. We use
the Greene-Aldrich improved approximation scheme into the centrifugal and reciprocal terms appear in the ralalggetequation. We

then solve this radial equation using the parametric Nikiforov-Uvarov method and analyze the effects on the eigenvalue solution. We see that
the energy levels and the radial wave functions get modified by the topological defect of a point-like global monopole and the magnetic flux
field that shows an analogue of the Aharonov-Bohm effect for the bound state. Finally, we utilize the eigenvalue solution to some potential
models, such as Hulthen potential, Hulthen plus Yukawa potential, and Hulthen plus inverse quadratic potential and discuss the results.
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1. Introduction are given by

The exact and approximate eigenvalue solutions of the non- P(s) = s2(1 —cz8)” 7 =3

relativistic Schodinger equation (SE) with different poten- (er0— 1,511 —e10—1)

tial models are significant in physics and chemistry because x P, o s (1 —2c3s). (2)

they contain all the necessary information of a quantum sys-

tem. In the literaturefZ-atom and harmonic oscillator prob- And the energy eigenvalue equation is

lems discussed in many textbooks are two of several ex-

actly solvable quantum mechanical problems in classicaland €27 — (2n+1)cs +(2n +1) (Vo + c3 /cs)

guantum physics [1-4]. Several authors have obtained the tn(n—1)ca+er+2cace +2cace=0. (3
exact and approximate solutions to the radial Sdhrger ( JesFer 2 5 3

equation by considering various kinds of potential of phys-The parameters;, . . ., ¢;5 are obtained from the six param-
ical interest, such as Yukawa potential [5-8], Hulthen po-etersc,, ..., c5 and¢y,. . ., &5 as follows:

tential [9-12], Hartmann potential [13—-15], Manning-Rosen

(MR) potential [16, 17], Hylleraas potential [18, 19], Eckart = 1 (1—c1), c5= 1 (ca—2¢3), co=c2+&i,
potential [20, 21], Morse potential [22, 23], Rosen-Morse po- 2 2

tfential [24-26], Killingbeck potential [27], Kratzer poten- ¢, = 2¢,¢5 — &, cg = c3 + &3,
tial [28—32], Eckart-Hellmann potential [34] and many more. )
Noted that all the above investigations were done in the flat €9 = ¢6 +¢3cr + ¢3¢, 10 =1 +2¢4 +2/Cs,
tseprige background both in the cylindrical and spherical sys- c11 = ¢z — 2¢5+ 2 (/G + €3 /C8),

The exact and approximate eigenvalue solutions have ci2 = c4 + /cs, c13 =c5 — (Vg +ez/eg). ()
been found using several methods or techniques in the litera- . ) o
ture. Among them, the parametric Nikiforov-Uvarov method ~ The study of topological defects via a point-like global
[35] is one of the successful methods applied to obtain th&nonopole in quantum system has been done only in a handful
energy levels and the wave functions of a second-order homd&f works in the literature. In the relativistic limit, these stud-
geneous differential equation (see, Refs. [6-8, 11, 12, 32, 33¢S are the hydrogen and pionic atoms [41], quantum motions
36-40]). According to this method, the wave functions of a0f a spin-zero particle with potential under the AB-flux field

second-order differential equation of the following form [35] [42], solution of the Dirac equation [43], the exact solution
of the DKP equation under the AB-flux field and Coulomb

/ (c1 —c28) |, potential [44], and the Klein-Gordon oscillator and its gener-
¥(s) + s(L—czs) alization Refs. [36,37, 45, 46]. On the other hand, studies of
the non-relativistic Sclidinger equation [47], quantum scat-

(=615° + 85— &) P(s) =0 (1) tering of charged particles [48], harmonic oscillator problem

+
5% (1 —c35)? [49], a harmonic oscillator with Cornell-type potential [50], a
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harmonic oscillator with Mie-type potential in the presence oftime geometry reduces to Minkowski flat space.

the AB-flux field [51], non-relativistic equation with Kratzer This paper is organised as follows: in Sec. 2, we will

and Morse potential [52], quantum motions of particles withdiscuss 3D radial Scbdinger non-relativistic wave equa-

generalized Morse potential [53], non-relativistic particlestion in the presence of the AB-flux field with potential in

interact with diatomic molecular potential in the presence ofa conical singularity space-time. Then, we solve the radial

the AB-flux field [54], quantum dynamics of non-relativistic equation through a suitable approximation scheme using the

particles with pseudoharmonic- and Mie-type potentials inparametric NU-method and obtain the eigenvalue solution;

the presence of the AB-flux field [55], and non-relativistic in Sec. 3, we utilize the eigenvalue solution to some indi-

particles interact with generalized g-deformed Hulthen plusvidual as well as combined potential models; in Sec. 4, we

Coulomb and inverse quadratic Yukawa potential [56] arepresent our results. We have used the system of units where

known in the non-relativistic limit. The presence of topolog-c =1 =1 = G.

ical defect modifies the eigenvalue solutions in comparison

with the flat space results and broke the degeneracy. Thus, . . L

the physical properties of the quantum system are changed t%/ ElgenYa'Ue Solution  of _ Non'_Relat'V'St'C

the global features of point-like global monopole geometry. ~ Equation Under AB-flux Field with Poten-

In addition, the presence of external magnetic and the quan-  tial in a Point-like Defect

tum flux fields also shift the eigenvalue solutions if one would

considered in a quantum system in addition to the topologln this section, we study the quantum motions of non-

ical defects. The dependence of the eigenvalue solution@lativistic particles confined by the AB-flux field with po-

on the geometric quantum phase shows an analogue to tfi@ntial in a topological defect geometry produced by point-

Aharonov-Bohm effect [57,58] for the bound state. This AB- like global monopole (PGM). We solve the three dimensional

effect is a quantum mechanical phenomenon where the pafadial Schodinger equation and discuss the effects of topo-

ticles confined by the AB-flux field experience zero electriclogical defects and the magnetic flux with potential on the

and magnetic fields everywhere except at the origin. In thigigenvalue solution.

analysis, we study the non-relativistic Satlinger equation We begin this paragraph with time-independent

in three dimensions in the presence of the AB-flux field withSchibdinger wave equation with a spatial-dependent inter-

potential in a point-like global monopole. The considered po-action potential/(r) described by the following wave equa-

tential is the superposition of Hulthen potential (HP), Yukawation [42, 49-55]

potential (YP), and Inverse Quadratic potential (IQP) which

have _several applicationsin differlen.t branches qf physicsand | 1 (L D; (\/ggij Dj)) +V(r)

chemistry. As the chosen potential is exponential-type, such 2M \\/g

as Hulthen potential and Yukawa potential, one should em-

ploy a suitable approximation scheme into the centrifugal angvhere M is the mass of the non-relativistic particlds; =

reciprocal terms appear in the radial equation in order to ob¢d; —ie A;) [1,2],i = 1,2,3 wheree is the electric charge,

tain its solution. In this analysis, among many approximationd; is the electromagnetic three-vector potentigl; is the

schemes we use one such scheme called the Greene-Aldrigetric tensor withy*/ its inverse. For the space-tinig){its

improved approximation scheme [59] that gives us a goodleterminant will bey = |g;;| = r* sin® 6/a?.

approximation to~ 1/r and~ 1/72 for small values of the In this analysis, we have chosen the following electro-

screening parametér< 1. The small values of the param- magnetic three-vector potentidl given by Refs. [42, 44, 46,

eterd < 1 correspond to a short-range potential. We thenb1,54,55]

solve this radial equation using the parametric NU-method

and obtain the approximate eigenvalue solution. We see that A, =0=A4y, Ay= — )

the eigenvalue solution gets influenced by the topological de- 2mr sing

fect of a point-like global monopole and the magnetic fluxwhere® 4,z = const = ® @, is the Aharonov-Bohm mag-

field with potential. The presence of a topological defectnetic flux field, », = 27e~! is the quantum of magnetic

shifts the energy levels and these get modified in comparisoflux, and® is the amount of magnetic flux which is a positive

with the flat space result with this chosen potential. integer. Several authors have studied the quantum mechani-
A static and spherically symmetric space-time describcal problems in the presence of the AB-flux field in the liter-

ing a point-like global monopole geometry in the spher-ature (see, Ref. [42,44,46] and related references therein). It

ical coordinates(r, #,¢) in three dimensions is given by s well-known that the dependence of the eigenvalue solution

U=EV, (6)

DB

[41,42,46,49-54] on the geometric phase shows an analogue of the Aharonov-
a2 Bohm effect [57, 58] for the bound state.
ds2p = % + 72 (d6? + sin? 0 dp?), (5) In the literature, it is well-known that the total wave func-
«

tion ¥ can always express in terms of different variables by
wherea < 1 represents the topological defect parameter othe method of separation of variables. Since we are deal-
a point-like global monopole (PGM). Far — 1, this space- ing with the spherical system, a possible total wave function
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RADIAL SOLUTION OF SCHRODINGER EQUATION WITH HULTHEN-YUKAWA-INVERSE QUADRATIC ... 3

U(t,r,0,¢) in terms of a radial wave functiop(r) can be Thereby, substituting potential@) into the radial equa-
expressed as tion (9), we have

U(t,7.0,0) = e~ BV (60, 0) L0, ®)

" " OME 2MV, e 2°° 2Ma g,
where E is the energy of the particleY; . (6,¢) = $(r) 2 + o (1—e207) + o2r ©
A m(0) B, (¢) is the spherical harmonic functions, afd
are respectively the orbital and magnetic quantum numbers. ('('+1)+2Mb) 1
Thereby, substituting Eqs7)—(8) into the Eq. 6) and ex- - o2 ) ¢(r) = 0. (12)

pressing in the space-time backgrouByl (ve have obtained
the following wave equation in terms of the radial function
Y(r) as:

) Ve The radia! part of the Schdinger equation for the.super-

W)+ —5 |2M (B~ V() - . W(r) =0, posed potentiall0) cannot be solved fdr# 0. To obtain the

a r eigenvalue solution of the above equatidg)(for I # 0, we
employ a suitable approximation scheme into the centrifugal
(~ 1/7?) as well as the reciprocal terms (1 /r) appearing

where we have used various eigenvalues of operators givefl the radial equation. As one can see, in the superposed po-
in Refs. [51, 54-56]. tential there is d /(1 — e=2°") term. As a result, while for

In this analysis, we have considered the superpositiofMall values of < that correspond to a short-range poten-
of Hulthen potential [9-12], Yukawa potential [5—8], and in- tial, we have employed an improved approximation scheme

'=(@1-9), (9)

verse quadratic potential [2, 60] given by given by [59,66-73]
VE) 6—267'
Vaviq(r) = Vu(r) + W + Vig, VH:—m7 1 985e—0" 1 452 20T 13)
“ s b TN(l—e—”’)’ T2N(1_€—26r)2'
VY:_;B_ " VIQzﬁa (10)

whereV; is the potential depthy, b are the potential strength  Note that Eq. [13) is not a good approximation to the cen-

parameters, and is the screening parameter. It is worth trifugal barrier when the screening paramefebecomes
mentioning that a common screening parameter is chosearge.

such that one can employ a suitable approximation scheme

into the centrifugal term and would be able to solve the ra-  Therefore, using the above improved approximation
dial equation. The Hulthen potential [9, 10] is a short-rangeScheme into the Eq19), we have

potential which behaves like a Coulomb potential for small

values ofr and decreases exponentially for large values of

r. This Hulthen potential has widely been used in many " e=20r

branches of physics and chemistry, such as atomic and molec- )+ |8 =B (1—e267)2

ular physics [61, 62], solid state physics [63], and chemical

physics [64]. On the other hand, Yukawa potential [5] which e=20r

is known as a screened Coulomb potential has great impor- + B2 (1_6—25”] ¥(r) =0, (14)

tance in different branches of physics and chemistry, such

as in plasma physics, particle and nuclear physics, chemical

physics, solid-state physics and atomic physics [15,65].  \yhere we have set the parameters
Using potentiall10), one will have the effective potential

of the quantum system given by

2MFE 462
_|-2)(-2+1) f=—— bi=—% l/(l/+1>+2Mb},
Vert(r) = 2M a?r? @ @
2M
95 B2 =—5 (Vo +2ad). (15)
‘/06 26r a s o
O ey (11)

T o\ a2 a2r2 |’
o2 (1_6—257~) o?r aZr

One can see that the effective potential is influenced by the Let us perform a change of variable via= e=2°" into

topological defects of the geometry characterised by the pahe above Eq.14). We have obtained the following second-
rameterw and the magnetic flux fiel® 4 5. order differential equation:

Rev. Mex. Fis69030401
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(—5152+§23—§3)

" (Cl — C2 S) 1 _
¢ (S) + s (1 — 3 8) S) + 82 (1 —c3 8)2 '(/J(S) - 0 (16)
wherec; =1 = ¢y = c3 and
B 1 . 1 9 . 6 17
5177452 (B2 — ), 5277452 (B2 — B1 —20), 53**7452- (17)

Equation [L6) is a linear homogeneous second-order differential equation that can be solved using a well-known method
called the parametric Nikiforov-Uvarov method discussed earlier. Thereby, comparin@i@egith the Eq. [), the different
parameters are as follows:

1

1 1
¢y =0, =3 06=1+€17 c7 = —&o, cg = &s, 09:Z+£1_§2+§33

cio=1+28, c11:2<1+m+\/§3>, c12 = V&,
1 1
G3= "5~ (m+ \/573> (18)

Substituting Eqg. 18) into the Eq. 8) and using Eq. [17), one can obtain the following expression of the approximate
energy eigenvalue

a? 62
oM

E, =
ot 2 4 a2

2
1 1 (1-®)(—-2+1)+2Mb 545z (Vo +2ad
(n++\/+< (I —®+1)+ )_ s (0 200) Mw. 19)
(n+%+\/i+(*)(*a1)+ )

The radial wave functions are given by

1 1, (-3 (—d+D)t2MDb (2 A,2 l-&-—(lf(l))(li:;lH?Mb)
z/)n,l(s) =g (1- s)2+\/4+ o2 P, \/4 (1-2s), (20)

whereP(? are the Jacobi polynomials and

<n+1+\/1+(l—<1>)(l—<1>+1)+2Mb)_ M%(‘?Hla&)
<"+%+\/i+ (*¢)(*‘(1;;r1)+2Mb>

2 4 a?

Equation IL9) is the non-relativistic bound-state energy levels and 1) is the radial wave functions of Sdidinger
particles confined by the AB-flux field with superposed potential in a point-like global monopole defect. We can see that the
eigenvalue solution is influenced by the topological defects of the geometry characterised by the parandtarodified
the result in comparison with the flat space case. Furthermore, the energy levels depend on the magnetic flux field and shifted
more in addition to the topological defects, and this is a periodic function of the geometric quantum phase with a periodicity
®(. Thus, we have thal,, ;(Pap + Pov) = E, 14.(Pap), Wherev = 0, 1,2, 3, ... This dependence of the energy levels on
the magnetic flux field shows an analogue to the Aharonov-Bohm effect [57, 58] for the bound-state.

Now, we discuss below the effects of various factors one by one on the eigenvalue solution of the quantum system.

1
A==
2

] . (21)

Case A: Without topological defects

We want to study the above quantum mechanical problem in absence of topological defects of the geometry. Therefore, for
a — 1, the space-time5) under consideration will become Minkowski flat space. Thuspfer 1, the bound-state energy
eigenvalue expression will be

<n+;+\/(l—<l>+;)2+2Mb> - %(V‘)”a‘z r. (22)
(n+§+\/(l¢+;) +2Mb)

52
B ="on1

Rev. Mex. Fis69030401



RADIAL SOLUTION OF SCHRODINGER EQUATION WITH HULTHEN-YUKAWA-INVERSE QUADRATIC ... 5

The radial wave functions are given by

1%,5(3) _ (1- 3)%+¢(l%§>2+21\/ﬂipn(2@2¢(l<I>+§)2+2Mb) 1_23) 23)
where
1 1 1N\2 35 (Vo +2a)
(== < ++\/1—¢>+ —|—2Mb>— 20 ] (24)
2 n 2 ( 2) <n+§+\/(l—<1>+é>2+2Mb)

We can see that the bound-state energy [e\@2s énd the radial wave function23)—(24) of non-relativistic particles
interact with Hulthen plus Yukawa and inverse quadratic potential in the flat space background get shifted or modified by the
guantum flux field that shows an analogue of the Aharonov-Bohm effect [57, 58] for the bound-state.

Case B: Without magnetic flux field

In this case, we analyze the quantum mechanical problem in absence of magnetic flux field. Therefogeg, for 0, the
bound state energy eigenvalue from EXg)(will be

2
252 1 1 I(l+1)+2Mb M (Vo+2ad
Bni =571 (”*z*ﬁ* s )‘ pree 0 : (25)
o (n+%+ i+l<l+lzxigwb)
And the corresponding radial wave functions are given by
34/ Ty (219,2\/@)
%,1(5) = 5" (1—s)2 o? * Py (1-2s), (26)
where
1 1 1 I(+1)+2Mb 724 (Vo +2ad
’=3 <n+2+\/4+ ”L? )‘ o la)M ] (27)
(n+ 5+ /4 + L0200

One can see that only the topological defects of the geometry characterised by the pasashéfted the bound state
energy levels25) and the radial wave function2@)—(27) with this superposed potential in a point-like global monopole.

3. Applications to some individual and combined potential models

In this section, we discuss now the above quantum mechanical problem to some known individual potential as well as combined
potential models and analyze the effects of the topological defect and the magnetic flux field. One can see that the eigenvalu
solution gets modified by these factors with individual or combined potential.

3.1. Hulthen potential

The original Hulthen potential [9,10] can be recovered by setting the parametetg2 x,a = 0,b = 0, andVy = Z e? /k =
K/k, K = Z ¢? in the general potential expressid®). We have obtained the following potential form [73]
K e w
Vg=—— ——. 28
S e (28)
Thereby, using this potentig28) in the radial Eqg.'9) and following a similar procedure, one can obtain the following
bound state energy eigenvalue expression given by

2 1 I-®)(-®+1) 1 2w
En,l :_80[?]\4 <n+2+\/( )( 2 )+Z - a (29)
K o (n“r%‘f'\/(l_q))éﬁ‘Fi)

Rev. Mex. Fis69030401
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The radial wave functions are given by

. T—3) (I—D+1
1+\/(l*‘1’) (l,¢,+1)+l (211 s 2\/( )i2 + )_;'_%)

Yna(s) =8 (1—3s)2 o2 1P, (1-2s), (30)
where
1 1 (l-®)(-®+1) 1 SALh
T (n+2+\/ a? +4)_(n+ +\/l<b)(l o+ ) (31)

Equation [29) is the bound-state energy levels and EBQ){(31) is the radial wave function of a non-relativistic particle
under AB-flux field with Hulthen potential in point-like global monopole. This eigenvalue solution gets modified in comparison
to those results obtained in Refs. [11,12,73]in flat space background due to the presence of the topological defects characterised
by the parametett, and the magnetic flux fiel®d , 5 considered in the quantum system. One can see that the energy levels
depend on the magnetic flux field and this dependence of the energy levels on the geometric quantum phase gives us an analogue
of the Aharonov-Bohm effect [57, 58] for the bound-state.

If we analyze this quantum system without magnetic flux field, tha®isg — 0, the eigenvalue solution from Egs.
(29—(32) becomes

2

2 2M Kk
En. Se2 M (n+%+ l(la—gl)+i)—(n+;+ azl(l+1)+ ) ;
Yni(s) = 5° ﬂ/%ﬂ (%,m/%) (129, (32)
where
<=;l(n+; 1) 1)_ o (33)
“ R RS ERVECTREY

One can see that only the topological defect of point-like global monopole influences the bound-state eigenvalue solution
of a non-relativistic particle with Hulthen potential. The global effects of the geometry characterised by the pasaimeter
present explicitly on the eigenvalue solution which modified the result.

On the other hand, if we analyze the quantum system without topological defects, thatis, the space-time geometry
(5) under consideration will become Minkowski flat space. Thereforexfes 1, the eigenvalue solution from Eq29)—(31)
becomes

g 1 |tl-2+1) MK
mT oM 2k m+l—®+1)|
Pn(s) =% (1L —s)! P pRE= 20040 (1 — 9), (34)

wherew = 1/2 [(n+z— S+1) - CMKr/(n+1—+ 1))].

Equation[84) is the bound-state eigenvalue solution of a non-relativistic particle confined by the AB-flux field with Hulthen
potential in the flat space background. Note that for zero magnetic flux dialg,— 0, this eigenvalue solutioiBd) reduces
to the result obtained in Ref. [73]. Thus, we can see that the presence of the magnetic flux field in the quantum system shifted the
energy levels and the radial wave functions which shows an analogue of the Aharonov-Bohm effect for the bound-state [57,58].

3.2. Hulthen-Yukawa potential

In this section, we set the parameter= 0 in the potential/6), one will have a combined potential called Hulthen-Yukawa
potential (HYP) given by

e—26r a _s,

Rev. Mex. Fis69030401



RADIAL SOLUTION OF SCHRODINGER EQUATION WITH HULTHEN-YUKAWA-INVERSE QUADRATIC ... 7

Thereby using this combined potential in the radial equatd@) &nd following the previous procedure, one can find the
following bound-state energy eigenvalue expression given by

2

g o n+1+\/(z_q>)(z_<1>+1)+1 B 7242 (Vo 4+ 2a0) 36)
ol 2M 2 a2 4 (n4-%4-y/”‘¢)g§¢+”'+i) '

The radial wave functions are given by

1, BT T (202 Q:El%?fill+*)
Un1(9) :s”(l—s)é‘*‘\/ o2 +1 P, \/ ! (1-2s), (37)

where

1 <n+1+\/(1_q>)(z_¢>+1)+1) M (Vo +2a0)
_ - i _ L
2 2 a 4 (n+§+¢93%;ﬁﬁ+i)

Equation [86) is the non-relativistic bound-state energy levels and [33d) i6 the radial wave function of a Schrodinger
particle confined by the AB-flux field with superposed Hulthen-Yukawa potential in a point-like global monopole. This eigen-
value solution gets modified by the topological defects of point-like global monopole characterised by the paraarader
the magnetic flux field.

In absence of magnetic flux field, that &, 5 — 0, the eigenvalue solution from Eq86)—(37) becomes

2

252 1 L(l+1 1 M _(Vo+2a6
Enl:——a2M <n+2+ (—;)+4>— 2a2§3(0+ Cl)
« (nJr%Jr (l+1)Jr >
T 1 242/ M4
Yna(s) = s2 (15)%+¢’(L¥)+ipn( v ) (1-2s), (38)
where
1 1 L(1+1 1 Vo+2ad
A=3 (”*z* o ”4)‘ el 39)
(n+3+yHR 4+ 1)

We can see that the eigenvalue soluti8g) (s only influenced by the topological defects of the geometry characterised by
the parametedt which modified the result in comparison to flat space case with this combined potential.

On the other hand, if we analyze the quantum system without topological defects, thatis, the space-time geometry
will become Minkowski flat space. Therefore, for— 1, the bound-state eigenvalue solution will be

2
52 M (Vo +2ad)
Epj=—— —d41) -2 L 4
=gy |2+ n+l—®+1)| (40)
The radial wave functions are given by
Una(s) = 5% (1= 5)7PFLPEO2=0F (1 = 24), (41)

where
% (Vo +2a0)

(ntl=2+) -5+

1
L

Equations/40)-(41) is the bound-state eigenvalue solution of a non-relativistic particle under the influence of the AB-flux
field with Hulthen plus Yukawa potential in the flat space background. One can see that the energy levels depend on the
magnetic flux which shows an analogue of the Aharonov-Bohm effect for the bound-state [57, 58].

Rev. Mex. Fis69030401



8 FAIZUDDIN AHMED
3.3. Hulthen-Inverse Quadratic Potential

In this section, we set the parameters:, V, = Z ¢2/k, § = 1/2 k in potential L0), we have
V()= -=——++ . (42)

Thereby, substituting this combined potenti42)in the radial equation9j and following the same procedure, one can
obtain the following eigenvalue solution

2
202 1 [T (—®)(—-d+1)+2Mb 2u K
En,l:—m n—|—§+ E+ o2 — ,
(n+ % + \/i 4+ (=2 = ijl)“l‘“)
14,/140=8)(=2+D+2 M0 (2x72 l+“*¢’>“*i¢)
n (s )—sx(l—s)§+\/<11+ S P, Vi ’ (1-25). (43)
where
1 1 1 (I-2)(l-®+1)+2Mb 2M Kk
T2 G+2+¢4+( e )‘ = )
(”‘*‘%‘F\/i“‘ (l—@)(l—i;—l)-&-QMb)

Equation 43) is the eigenvalue solution of a non-relativistic particle confined by the AB-flux field in point-like global
monopole with this combined Hulthen-Inverse Quadratic potential. One can see that the topological defects characterised by
the parametest modified the eigenvalue solution in comparison with the flat space result.

If we analyze the quantum system without topological defects, that+s, 1, the space-time will become Minkowski flat
space. Therefore, far — 1, the eigenvalue solution becomes

2
2 1 1 2MK
E”’IZ_LM <n—|—+\/+(l—¢))(l—‘1>+1)+2Mb>— n ] ,
2 2 V4 (n+ 3+ \/E+-®) -2+ 1)+2M0)
2x1,24/ 1 +(1—®) (I—P+1)+2 M b
wnJ(S):SXl (175) +\/4 (I— ¢‘+1)+2]Wbpn< X1 \/4 )(125) (45)
where
1 1 1 2MK
Xi=3 <n+2+\/4+(l—<1))(l—<1)+1)+2Mb>— n ] (46)
(n+ i+ A2 -+ 1)+2M0)

Thus, we can see that the magnetic flux field shifts the eigenvalue solution and one can observe an analogous of the Aharonov-
Bohm effect for the bound-state.

4. Conclusions

ISchlfxdinger equation in a curved geometry via a point-like
To sum up, in this paper, we have investigated the approxglobal monopole with potentid/ (). Then, in Sec. 2, we
imate eigenvalue solutions of the three-dimensional radiahave chosen a potential superposed of Hulthen, Yukawa and
Schibdinger equation in the presence of Aharonov-Bohminverse quadratic potentials that has many applications in
flux field with potential under topological effects produced different branches of physics and chemistry. We employed
by a point-like global monopole. The presence of topolog-the Greene-Aldrich improved approximation scheme into the
ical defects (cosmic strings, global monopoles) makes theentrifugal and reciprocal terms that appeared in the radial
space-time geometry curved and changes the physical propgquation and arrived at a second-order homogeneous differ-
erties of a quantum system. The studies of the wave equatiomntial equation after a suitable transformation. This equation
in curved space-time with topological defects have physicalvas then solved using the parametric NU-method and the
importance and significance. The space-time geometry ureigenvalue solution was obtained. The energy levels given
der consideration in this analysis possesses a curvature siby Eq. (19) and the radial functions by Eq.20) of the
gularity on the axis and reduces to Minkowski flat space fomon-relativistic particles. One can see that the topological
a — 1. We have derived the radial wave equation of the defect parameter characterised doyand the magnetic flux
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field ® 45 shifts the eigenvalue solution and modified themthe eigenvalue solution reduces to flat space result with these
in comparison to the flat space result with this superposegotential models. It is worth mentioning that several au-
potential. Furthermore, one can see that the eigenvalue solthors studied the non-relativistic wave equation with differ-
tion depends on the magnetic flux field, and this dependencent combined potential models in flat space background. In
of the eigenvalue solution on the geometric quantum phasthe present analysis, we have studied the quantum mechani-
shows an analogue to the Aharonov-Bohm effect [57, 58] forcal problem in a topological defect produced by a point-like
the bound-state. global monopole. We believe that the presented results are

In Sec. 3, we utilized the above eigenvalue solution for in-interesting and have significance in the literature.
dividual and some combined potential models and analyzed
the results. For example, in Subsec. 3.1, we used HuItheB\
potential only and the eigenvalue soluti@8)—(30) was ob- cknowledgement
tained using a similar procec_iure done earlier. In Subsec. 3'%Ne sincerely acknowledge the anonymous kind referee for
Hulthen plus Yukawa potential was used and the bound'Statﬁis/her valuable comments
eigenvalue solutiori36)—(37) was obtained. In Subsec. 3.3, '
Hulthen plus inverse quadratic potential was used and the
bound state eigenvalue soluticA3{ was obtained. In all Conflict of Interest
cases, we have seen that the topological defect represented
by the parameter and the magnetic flu® shifted the eigen- There is no conflict of interests regarding publication of this
value solutions and modified them in comparison to the flapaper.
space results with these potential models.

Thus, we investigated the quantum motions of non- .
relativistic particles confined by the Aharonov-Bohm flux Funding Statement
field with potential in a point-like defect. We verified that the No fund has received for this paper.
global effect of the geometry represented by the parameter
was present explicitly in the energy levels and the structure of
states. The presence of topological defect shifted the eigeldata Availability Statement
value solutions in comparison with the flat space results with
the chosen potential and broke the degeneracy.oFer 1, N0 new data are generated in this paper.
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