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Theµ ↔ τ symmetry has been ruled out by its predictions on the reactor and atmospheric angles, nevertheless, a breaking of this symmetry
might provide correct values. For that reason, we build a non-renormalizable lepton model where the mixings arise from the spontaneous
breaking of theS4 ⊗Z2 discrete group, subsequently theµ ↔ τ symmetry is broken in the effective neutrino mass matrix, that comes from
the type II see-saw mechanism. As main result, the reactor and atmospheric angles are corrected and their values are in good agreement with
the experimental data for the inverted hierarchy. Furthermore, we point out a link between the atmospheric angle and reactor one. In the
quark sector, under certain assumptions, the generalized Fritzsch textures shape to the quark mass matrices so that the CKM matrix values
are guaranteed.
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1. Introduction

The confirmed(g − 2)µ anomaly by the Fermilab [1] and
theW boson mass new measurement [2], which are not con-
sistent with the theoretical prediction, have shown again that
the Standard Model (SM) is incomplete. Along with this, the
flavor puzzle remains to be solved so that there is a need to
enlarge the SM.

The neutrino oscillation opened the window to search
physics beyond the SM, as it is well known, these established
that neutrinos have mass so they mix. Although there are
many mechanism [3] to get tiny neutrino masses, so far there
is no a convincing theory that explains the origin of such
mass and the peculiar pattern which is completely different
from the quark sector. In the last years, several experiments
have measured the neutrino mixing angles with great accu-
racy, also the masses seem to obey two orderings (normal
and inverted hierarchy) due to the lacking of information on
the absolute neutrino mass. Certainly, the normal ordering
is preferred by the available data [4, 5] but the inverted hi-
erarchy is not completely discarded [6]. Another important
point is that, conforming to the experimental data, the PMNS
mixing matrix exhibits large values in its entries, in addition,
the second and third rows satisfy the relation|Uµi| = |Uτi|
(i = 1, 2, 3) in good approximation for the normal and in-
verted hierarchy. The aforementioned facts might be under-
stood by means of a symmetry in the effective neutrino mass
matrix, then the concept of flavor symmetry turn out being
crucial to explain the mixings, and a variety of discrete sym-
metries [7,8,8–14] have been applied to the lepton sector. In

particular, the neutrino data seem to obey an approximated
µ ↔ τ symmetry (for a complete review see [15]), that con-
sists in the exchange labelµ ↔ τ in the effective neutrino
mass matrix when the charged lepton mass one is diagonal.
Speaking of exactµ ↔ τ symmetry, which is is outdated cur-
rently due to its predictions, would imply to obtain0◦ and45◦

for the reactor and atmospheric angles, respectively. Besides
that, the solar angle and the Dirac CP-violating phase keep
as a free and unknown parameters. Despite this, from the
model building point of view, the well studiedµ ↔ τ sym-
metry has been a guide to construct lepton models [16–24]
and there is a possibility that a soft breaking [21–23,25–29]
of this symmetry can accommodate the experimental results
so that there is still strong motivation to study on theµ ↔ τ
symmetry. Apart from this, elaborated flavored models have
been proposed to face the lepton mixings and related issues
as leptogenesis, dark matter, and so forth [14,30,31].

On the other hand, in the quark sector, according to the
available data [32] the CKM matrix is close to the identity
one, this pattern might be explained by the notable hierarchy
among the quark masses. In addition, this feature is exhib-
ited by some matrices like the nearest neighbor interactions
(NNI) [33–36] and the generalized Fritzsch [37–39] mass
textures which can be obtained by means the flavor symme-
tries [7–10]. The contrasting behavior between the PMNS
and CKM mixing matrices is undoubtedly a puzzling prob-
lem, so far one of the main task for model builders is to match
simultaneously the fermion mixings by the same flavor sym-
metry in the suitable framework.
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In order to address the masses and mixing problem, a phe-
nomenological scalar extension of the SM is realized where
the type II see-saw mechanism is responsible to obtain small
neutrino masses and special emphasis is put on the lepton
sector under a soft breaking of theµ ↔ τ symmetry scheme.
To do so, we use theS4 [40–44, 46–48] non-abelian discrete
group to handle the Yukawa couplings, at the same time, this
symmetry allows to treat the quark, lepton and scalar sector
in different manner. Additionally, we include aZ2 symmetry,
to have a non-renormalizable Yukawa mass term for neutri-
nos. On the other hand, the inclusion of three Higgs doublets
are required to obtain the quark and charged lepton masses
and mixings, this latter comes out being diagonal as result of
the matter assignation under the flavor symmetry. Then, an
enriched scalar (flavons) sector is included to provide desir-
able mass textures. In consequence, the mixings arises from
the spontaneous breaking of theS4 ⊗ Z2 discrete group and
theµ ↔ τ symmetry is broken in the effective neutrino mass
matrix. Eventually, the reactor and atmospheric angles come
out being different of0◦ and45◦ respectively. CP parities
phases in the neutrino masses play an important role to get
sizable values forθ13 and the deviation ofθ23 from max-
imality which turn out being consistent with neutrino data
for the inverted hierarchy. In the quark sector, under certain
assumptions, the generalized Fritzsch textures shape to the
quark mass matrices so that the CKM matrix values are guar-
anteed.

It is worthy mentioned that a similar study was carried
out [24], nonetheless there are clear differences namely. The
first one is scalar matter and the flavor symmetry, the second
one is related with the mechanism to generate small neutrino
masses and the corresponding predictions: in the aforemen-

tioned paper, they got exactµ ↔ τ symmetry. Lastly, the
NNI textures, in the quark mass matrices, appeared in a nat-
ural way so that they obtained correct values for the mix-
ings. Although our model has some limitations like the flavon
alignments and one benchmark (in the quark sector), the main
purpose of this work was to show that a simple soft breaking
of theµ ↔ τ symmetry is enough to correct the lepton mix-
ing angles.

The layout of the paper is as follows. In Sec. 2, we de-
scribe the general framework to explore theS4 discrete sym-
metry, the full assignation for the matter content is shown
and the mass matrices and the corresponding mixing matrix
are obtained. In addition, a brief analytical study is carried
out to fix some free parameters in the model. Main results
are presented in scattered plots where the set of free parame-
ters values, that fit the mixing angles, are shown. All of this
is included in Sec. 3. We give some conclusions in Sec. 4.

2. Flavored model

2.1. General framework

Although, there are fascinating theoretical frameworks that
can be good candidates to replace the SM, conforming to
our interest, a scalar extension of the SM will be considered.
Thus, apart from the SM matter content a Higgs triplet (∆) is
required to generate tiny neutrino masses by means the type
II see-saw mechanism. Furthermore, extra Higgs doublets
and flavon gauge singlets (φ, ϕ andξ) will be added to pro-
vide the CKM and PMNS matrices, respectively. In Table I,
we can see the rest of the matter fields.

The relevant gauge invariant Lagrangian is given by

−L = ydQ̄LHdR + yuQ̄LH̃uR + yeL̄HeR +
1
2
yνL̄(iσ2)∆ (L)c + V (H, ∆, φ, ϕ, ξ) + h.c. , (1)

with H̃ = iσ2H
∗ and the scalar potential

V (H, ∆, φ, ϕ, ξ) = m2
HH†H +

1
2
λH

(
H†H

)2
+ m2

∆Tr(∆†∆) +
1
2
λ∆

(
Tr(∆†∆)

)2
+ λH∆

(
H†H

)
Tr

(
∆†∆

)

+ λ′H∆HT ∆†H + m2
φ|φ|2 +

1
2
λφ|φ|4 + λHφ

(
H†H

) |φ|2 + λ∆φTr
(
∆†∆

) |φ|2 + m2
ϕ|ϕ|2 +

1
2
λϕ|ϕ|4

+ λHϕ

(
H†H

) |ϕ|2 + λ∆ϕTr
(
∆†∆

) |ϕ|2 + m2
ξ |ξ|2 +

1
2
λξ|ξ|4 + λHξ

(
H†H

) |ξ|2 + λ∆ξTr
(
∆†∆

) |ξ|2

+ λϕφ|ϕ|2|φ|2 + λξφ|ξ|2|φ|2 + λξϕ|ξ|2|ϕ|2. (2)

TABLE I. Matter content.

Matter QL =

(
u

d

)

L

dR uR L =

(
ν

`

)
eR H =

(
H+

H0

)
∆L =

(
δ+

2
δ++

δ0 − δ+

2

)

SU(3)c 3 3 3 1 1 1 1

SU(2)L 2 1 1 2 1 2 3

U(1)Y 1/3 −2/3 4/3 −1 −2 1 2
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In flavored models, the scalar potential turns out being important to get a viable model, in here, a detailed study on the
scalar potential is not the purpose of this paper however we add a comment about it. TheS4 discrete symmetry [7–10] was
selected to control the flavor mixings since it has singlet, doublet and triplet irreducible representations (see the Appendix A
for more details), this feature represents an advantage for us because the quark and Higgs sector will be assigned in doublets
and singlets whereas the lepton sector in triplets. The main achievement to do that is to get desirable mass textures in both
sectors.

Along with this, we wish to highlight the scalar potential, where the three Higgs doublets are only involved, has been study
exhaustively [49–51]. In the aforementioned paper, three Higgs doublets were assigned under theS3 group as follows: the first
and second family were put in a2 whereas the third one in11. In these circumstances the scalar potential was minimized and
the〈H2〉 = 〈H1〉 alignment is allowed by the flavor symmetry. Having commented that, we go back to our work where theS4

flavor symmetry drives the Yukawa couplings as well as the scalar potential. It is worthy mentioned that the non-abelian groups
S4 andS3 are completely different from each other (S3 is a subgroup of theS4), however, theS4 scalar potential with three
Higgs doublets can be mimicked from the previous study [49–51]. This asseveration is supported due to theS4 representation
can be decomposed in theS3 ones [7]. To be more explicit, as we can see in the appendix B, the irreducible representations11,
12 and2 of both groups coincide so that the tensor product respects the same rules among them as can be verified. Then, in
this sense, similar results are expected for the Higgs alignments because we are using the same assignation for the three Higgs
families under theS4, as one can see in Table II. On the other hand, a complete analysis of the scalar potential is beyond the
scope of this work so that the flavor alignments will be considered as a matter of fact.

Further to our previous comments, the full symmetry breaks down as follows:SU(3)C ⊗ SU(2)L ⊗U(1)Y ⊗ S4 ⊗ Z2

→ SU(3)C ⊗SU(2)L ⊗U(1)Y → SU(3)C ⊗U(1)Q, where theΛ scale of the spontaneous breaking of theS4 ⊗Z2 group
is larger than thev = 246 GeV electroweak one.

2.2. The model

Having commented briefly the theoretical framework, we put now attention to the matter field assignation under theS4 flavor
symmetry. Hence, those are assigned as follows: the first and second family of quark and Higgs are put in2 doublet; the third
family is assigned to the11 singlet. This choice has been exploited in manyS3 models with three Higgs doublets (see for
instance [52]) and interesting mass textures can be obtained, for this reason, the same assignation is used in our work. On the
other hand, the lepton sector is treated in different way since the three families ofL (eR) left-handed (right-handed) doublets
(singlets) are put in the31 triplet irreducible representations. This allows to obtain a diagonal charged lepton mass matrix so
that the mixings will arise from the neutrino sector where an enriched scalar one is needed as can be seen in Table II. Let us
add a comment on the roleZ2 symmetry, the main purpose is to prohibit the renormalizable neutrino mass term,L̄(iσ2)∆LC .

Consequently, the most relevant terms which are flavor and gauge invariant are written asi

L = yd
1

[
Q̄1L (H1d2R + H2d1R) + Q̄2L (H1d1R −H2d2R)

]
+ yd

2

[
Q̄1LH3d1R + Q̄2LH3d2R

]
+ yd

3

[
Q̄1LH1 + Q̄2LH2

]
d3R

+ yd
4Q̄3L [H1d1R + H2d2R] + yd

5Q̄3LH3d3R + yu
1

[
Q̄1L

(
H̃1u2R + H̃2u1R

)
+ Q̄2L

(
H̃1u1R − H̃2u2R

)]

+ yu
2

[
Q̄1LH̃3u1R + Q̄2LH̃3u2R

]
+ yu

3

[
Q̄1LH̃1 + Q̄2LH̃2

]
u3R + yu

4 Q̄3L

[
H̃1u1R + H̃2u2R

]
+ yu

5 Q̄3LH̃3u3R

+ ye
1

[
L̄1H3e1R + L̄2H3e2R + L̄3H3e3R

]
+ ye

2

[
L̄1H2e1R − 1

2
L̄2

(√
3H1 + H2

)
e2R +

1
2
L̄3

(√
3H1 −H2

)
e3R

]

+ yN
1

[
L̄1(iσ2)∆φLC

1 + L̄2(iσ2)∆φLC
2 + L̄3(iσ2)∆φLC

3

] 1
Λ

+ yN
2

[
L̄1(iσ2)∆ϕ2L

C
1 −

1
2
L̄2(iσ2)∆

(√
3ϕ1 + ϕ2

)
LC

2 +
1
2
L̄3(iσ2)∆

(√
3ϕ1 − ϕ2

)
LC

3

]
1
Λ

+ yN
3

[
L̄1(iσ2)∆

(
ξ2L

C
3 + ξ3L

C
2

)
+ L̄2(iσ2)∆

(
ξ1L

C
3 + ξ3L

C
1

)
+ L̄3(iσ2)∆

(
ξ1L

C
2 + ξ2L

C
1

)] 1
Λ

+ h.c. (3)

TABLE II. Assignment underS4 flavor group. Here,I = 1, 2 andi = 1, 2, 3.

Matter QIL Q3L dIR d3R uIR u3R Li eiR HI H3 ∆ φ ϕI ξi

S4 2 11 2 11 2 11 31 31 2 11 11 11 2 31

Z2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
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Once the scalar fields get their vev’s, the fermion masses are written as

Mq =




yq
2〈H3〉+ yq

1〈H2〉 yq
1〈H1〉 yq

3〈H1〉
yq
1〈H1〉 yq

2〈H3〉 − yq
1〈H2〉 yq

3〈H2〉
yq
4〈H1〉 yq

4〈H2〉 yq
5〈H3〉


 ,

Me =




ye
1〈H3〉+ ye

2〈H2〉 0 0
0 ye

1〈H3〉 − 1
2ye

2

(√
3〈H1〉+ 〈H2〉

)
0

0 0 ye
1〈H3〉+ 1

2ye
2

(√
3〈H1〉 − 〈H2〉

)


 ,

Mν =




yN
1 〈φ〉+ yN

2 〈ϕ2〉 yN
3 〈ξ3〉 yN

3 〈ξ2〉
yN
3 〈ξ3〉 yN

1 〈φ〉 − 1
2yN

2

(√
3〈ϕ1〉+ 〈ϕ2〉

)
yN
3 〈ξ1〉

yN
3 〈ξ2〉 yN

3 〈ξ1〉 yN
1 〈φ〉+ 1

2yN
2

(√
3〈ϕ1〉 − 〈ϕ2〉

)


 〈∆〉

Λ
. (4)

Evidently, there are too many free parameters in the fermion mass matrices however some ones can be reduce notably by
making an alignment in the vev’s of the scalar fields. In particular,〈H1〉 = 〈H2〉 will be assumed in the Higgs sector as we
already commented. Also, Higgs vev’s have to satisfy the relation

√
〈H1〉2 + 〈H2〉2 + 〈H3〉2 = v = 246 GeV. For the flavon

sector, the alignment that provides a good phenomenology in the neutrino mass matrix is given by

〈ξ〉 = (vξ1 , vξ, vξ) , 〈φ〉 = vφ (1, 1, 1) , 〈ϕ〉 = vϕ (1, 0) . (5)

As it is usual, each vev’s of the flavons are set to be proportional toλΛ whereλ (0.225) is the Wolfenstein parameter and the
cutoff scale of the model.

2.3. Fermion masses and mixings

2.3.1. Lepton sector

As was already commented, we put special emphasis on the lepton sector. To start with, let us focus in the charged lepton
sector which is diagonal and the physical masses can be obtained straightforwardly. Nonetheless, a particular alignment was
assumed, this is,〈H1〉 = 〈H2〉 [49–51] and the principal motivation has to do with the quark sector where outstanding mass
textures appear.

As consequence of the mentioned choice in the Higgs sector, theye
2 Yukawa coupling has to be negative and an extra

rotations in the fields are necessary to obtainM̂e = Diag.(me,mµ,mτ ) = U†
eLMeUeR with Ue(L,R) = S23ue(L,R),

thereforeM̂e = u†eLmeueR with

me =




ye
1〈H3〉+ ye

2〈H2〉 0 0
0 ye

1〈H3〉+ 1
2ye

2

(√
3− 1

) 〈H2〉 0
0 0 ye

1〈H3〉 − 1
2ye

2

(√
3 + 1

) 〈H2〉


 ,

S23 =




1 0 0
0 0 1
0 1 0


 . (6)

From Eq. (6), one can identify the charged lepton masses

me = |ye
1〈H3〉+ ye

2〈H2〉|, mµ = |ye
1〈H3〉+

1
2
ye
2

(√
3− 1

)
〈H2〉|, mτ = |ye

1〈H3〉 − 1
2
ye
2

(√
3 + 1

)
〈H2〉|. (7)

We stress that there are few parameters to adjust the three charged lepton masses and this can be a weak point. This can be
solved by including extra flavons however we want to keep the model simple so that this will not be carried out.

In the neutrino sector, on the other hand, due to phenomenological implications in the mass matrix we assume the align-
ments given in Eq. (5). Along with this, in the standard basis,Mν is diagonalized by theUν matrix such thatM̂ν =
Diag.(m1,m2,m3) = U†

νMνU∗
ν with Uν = S23uν , thenM̂ν = u†νmνu∗ν whereS23 has been shown before andmν is

given by

mν =




yN
1 vφ yN

3 vξ yN
3 vξ

yN
3 vξ yN

1 vφ +
√

3
2 yN

2 vϕ yN
3 vξ1

yN
3 vξ yN

3 vξ1 yN
1 vφ −

√
3

2 yN
2 vϕ


 〈∆〉

Λ
=




mee meµ meµ

meµ mµµ mµτ

meµ mµτ mττ


 . (8)
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Due to the charged lepton mass matrix is diagonal, one can identify clearly the physical masses, see Eq. (7). Therefore, in
the effective mass matrix,mν , theµ ↔ τ symmetry is broken because of the differencemµµ 6= mττ as one can notice. As
result of this, the reactor and atmospheric angles will be deviated from0◦ and45◦, respectively. As it is usual, in the context
of µ ↔ τ , the solar angle is a free parameter which can be fixed to the current experimental values but this will get correction
since thatmµµ 6= mττ .

In order to diagonalize the neutrino mass matrix, a perturbative analysis will be done in such a way that the matrix can be
written as

mν =

m0
ν︷ ︸︸ ︷


mee meµ meµ

meµ mµµ mµτ

meµ mµτ mµµ


 +

mε
ν︷ ︸︸ ︷


0 0 0
0 0 0
0 0 mµµε


, (9)

where the former matrix possesses exactµ ↔ τ symmetry and it is broken in the latter one where the dimensionless parameter
ε ≡ (mττ −mµµ) /mµµ has been defined and this quantify the breaking. As we observe, this can be written asε ∼ yN

2 /(yN
1 −

yN
2 ) (vev’s of the flavons are proportional toλΛ). So that, ifyN

2 was zero, theµ ↔ τ symmetry would be exact, then we
assume thatε is small such that this parameter will be treated as a perturbation, thus, a pertubative study at first order inε will
be carried out. Therefore, we demand that|ε| ≤ 0.3 as consequence quadratic (|ε|2) terms will be neglected.

As a result of having a diagonal charged lepton mass matrix, there is no contribution to the mixings, then the neutrino sector
will provide it. To see this, we go back to themν mass matrix wherem0

ν is diagonalized by the following mixing matrixii

U0
ν =




cos θ sin θ 0
− sin θ√

2
cos θ√

2
− 1√

2

− sin θ√
2

cos θ√
2

1√
2


 , (10)

Hereafter, the superscripted inU0
ν and the matrix elementsm0

αβ (α, β = e, µ, τ ), denotes quantities when theµ ↔ τ
symmetry is exact.

Going back to the expression̂Mν = u†νmνu∗ν , thenuν ≈ U0
νU

ε
ν which implies

M̂ν = Uε†
ν

[
U0†

ν m0
νU

0∗
ν + U0†

ν mε
νU

0∗
ν

]
Uε∗

ν , with U0†
ν m0

νU
0∗
ν = Diag.

(
m0

1,m
0
2,m

0
3

)
. (11)

In addition, we have

U0†
ν mε

νU
0∗
ν =

ε m0
µµ

2




sin2 θ − sin 2θ
2 − sin θ

− sin 2θ
2 cos2 θ cos θ

− sin θ cos θ 1


 , m0

µµ =
1
2

(
m0

1 sin2 θ + m0
2 cos2 θ −m0

3

)
. (12)

As we already commented, the parameterε is considered as a perturbation so that the mixing matrixUε
ν is obtained by

using perturbation theoryiii at first order in|ε|. Consequently, we obtain

Uε
ν ≈




N1 − m0
µµ

m0
2−m0

1

sin 2θ
4 εN2

m0
µµ

m0
1−m0

3

sin θ
2 εN3

m0
µµ

m0
2−m0

1

sin 2θ
4 εN1 N2 − m0

µµ

m0
2−m0

3

cos θ
2 εN3

− m0
µµ

m0
1−m0

3

sin θ
2 εN1

m0
µµ

m0
2−m0

3

cos θ
2 εN2 N3


 , (13)

where the normalization factors are written as

N1 =

[
1 +

|ε|2 sin2 θ

4

(∣∣∣∣
m0

µµ

m0
1 −m0

3

∣∣∣∣
2

+ cos2 θ

∣∣∣∣
m0

µµ

m0
2 −m0

1

∣∣∣∣
2
)]−1/2

,

N2 =

[
1 +

|ε|2 cos2 θ

4

(∣∣∣∣
m0

µµ

m0
2 −m0

3

∣∣∣∣
2

+ sin2 θ

∣∣∣∣
m0

µµ

m0
2 −m0

1

∣∣∣∣
2
)]−1/2

,

N3 =

[
1 +

|ε|2
4

(
sin2 θ

∣∣∣∣
m0

µµ

m0
1 −m0

3

∣∣∣∣
2

+ cos2 θ

∣∣∣∣
m0

µµ

m0
2 −m0

3

∣∣∣∣
2
)]−1/2

. (14)
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At last, the theoretical formulas for the mixing angles are obtained by comparing our PMNS mixing matrix,U ≈ U†
eUν =

U0
νU

ε
ν , with the standard parametrization, then we finally get

sin θ13 =
∣∣U13

∣∣ =
N3

4

∣∣∣∣
m0

µµ

(
m0

2 −m0
1

)
ε

(m0
2 −m0

3) (m0
1 −m0

3)

∣∣∣∣ sin 2θ,

sin θ12 =

∣∣U12

∣∣
√

1− sin2 θ13

= N2 sin θ

∣∣∣∣1− ε
2

(
m0

µµ

m0
2−m0

1

)
cos2 θ

∣∣∣∣
√

1− sin2 θ13

,

sin θ23 =

∣∣U23

∣∣
√

1− sin2 θ13

=
N3√

2

∣∣∣∣1 + ε
2

m0
µµ(m0

2 sin2 θ+m0
1 cos2 θ−m0

3)
(m0

2−m0
3)(m0

1−m0
3)

∣∣∣∣
√

1− sin2 θ13

. (15)

As one can realize ifε goes to zero, one would obtain the well known predictions:θ13 = 0, θ12 = θ andθ23 = π/4.
In order to figure out the set of free parameter values, an analytical study on the theoretical formulas is carried out. It

is important to note that the reactor angle depends strongly on the breaking parameter and the ratio among complex masses,
m0

i = |m0
i |eiαi . In the former factor, the associated phaseε = |ε|eiαε is irrelevant however the differencem0

2 − m0
1 and

m0
1 −m0

3 are crucial to enhance the reactor angle value, then CP parities values turn out being relevant to accommodate the
reactor angle. As result of this, we choose the following CP parities valuesm0

2 = −|m0
2|, m0

1 = |m0
1| andm0

3 = |m0
3|. To

add to it, the solar and atmospheric angles are sensitive to the associated phaseαε and the CP parities values of the neutrino
masses.

In the current analysis, the normal hierarchy is not favored as one can check straightforward, then we just focus in the
inverted ordering. Due to the CP parities in the neutrino masses, we obtain

sin θ13 =
∣∣U13

∣∣ =
N3

8

∣∣∣∣
[(|m0

2|+ |m0
1|

)
cos2 θ − (|m0

1| − |m0
3|

)] (|m0
2|+ |m0

1|
)

(|m0
2|+ |m0

3|) (|m0
1| − |m0

3|)

∣∣∣∣|ε| sin 2θ,

sin θ12 =

∣∣U12

∣∣
√

1− sin2 θ13

= N2 sin θ

∣∣∣∣1− ε
4

[
cos2 θ −

(
|m0

1|−|m0
3|

|m0
2|+|m0

1|
)]

cos2 θ

∣∣∣∣
√

1− sin2 θ13

,

sin θ23 =

∣∣U23

∣∣
√

1− sin2 θ13

=
N3√

2

∣∣∣∣1− ε
4

[
(|m0

2|+|m0
1|)

2
cos2 θ sin2 θ−(|m0

2|+|m0
1|)(|m0

1|−|m0
3|)+(|m0

1|−|m0
3|)

2
]

(|m0
2|+|m0

3|)(|m0
1|−|m0

3|)

∣∣∣∣
√

1− sin2 θ13

. (16)

Let us consider two extreme cases where the lightest neutrino mass takes part. According to the squared mass scales
∆m2

21 = |m0
2|2 − |m0

1|2 and∆m2
13 = |m0

1|2 − |m0
3|2, two neutrino masses might write as|m0

2| =
√
|m0

1|2 + ∆m2
21 and

|m0
1| =

√
|m0

3|2 + ∆m2
13.

Strict inverted hierarchy (|m0
3| = 0): In this case, we have|m0

1| =
√

∆m2
13 and

|m0
2| ≈ |m0

1|
(

1 +
1
2

∆m2
21

|m0
1|2

)
. (17)

Then, one can obtain a precise values for the mixing angles

sin θ13 ≈ N3

4
|ε| sin 2θ

∣∣∣∣
[
2(1 + rA) cos2 θ − 1

]
(1− rA)

∣∣∣∣ =
√

2
18
|ε|(1− 1

2
rA),

sin θ12 ≈ N2 sin θ

∣∣∣∣1− ε
4

[
cos2 θ − 1

2 (1− rA)
]
cos2 θ

∣∣∣∣
√

1− sin2 θ13

=
1√
3

∣∣1− ε
36

∣∣
√

1− sin2 θ13

,

sin θ23 ≈ N3√
2

∣∣∣∣1− ε
4

[
4 sin2 θ cos2 θ − 1

] ∣∣∣∣
√

1− sin2 θ13

=
1√
2

∣∣1 + ε
36

∣∣
√

1− sin2 θ13

, (18)

whererA = ∆m2
21/2∆m2

13.
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In the above expressions, we have consideredsin θ = 1/
√

3 which is a good approximation to the tribimaximal sce-
nario [53–56],|ε| = 0.3 andαε = 0 we obtainsin θ13 ≈ 0.0234, sin θ12 ≈ 0.587 andsin θ23 ≈ 0.713. In the case where
αε = π, the solar and atmospheric angles have similar values in comparison to above case.

Almost degenerate|m0
3| À

√
∆m2

13: In this limit, we obtain the following masses

|m0
1| ≈ |m0

3| [1 + rB ] , |m0
2| ≈ |m0

3| [1 + rB + rC ] , (19)

with rB ≈ ∆m2
13/2|m0

3|2 andrC ≈ ∆m2
21/2|m0

3|2.
For this reason, the mixing angles formulas are written as

sin θ13 ≈ N3

2
sin θ cos3 θ

|ε|
rB

=
√

2
9
|ε|
rB

,

sin θ12 ≈ N2 sin θ

∣∣∣∣1− ε
4 cos4 θ

∣∣∣∣
√

1− sin2 θ13

=
1√
3

∣∣1− ε
9

∣∣
√

1− sin2 θ13

,

sin θ23 ≈ N3√
2

∣∣∣∣1− ε
2rB

sin2 θ cos2 θ

∣∣∣∣
√

1− sin2 θ13

=
1√
2

∣∣1− ε
9rB

∣∣
√

1− sin2 θ13

. (20)

Remarkably, in this scheme the three angles can be accommodated with great accuracy according to the experimental data
as we will see later.

Before finishing this section, it is worthy of mentioning the relation among the reactor angle and the deviation of the solar
and atmospheric angles, respectively. To do so, in the strict hierarchy case we have

|ε| ≈ 18√
2

sin θ13, (21)

then

sin θ12 ≈ 1√
3

∣∣1± sin θ13√
8

∣∣
√

1− sin2 θ13

, sin θ23 ≈ 1√
2

∣∣1± sin θ13√
8

∣∣
√

1− sin2 θ13

. (22)

In the almost degenerate case, one can write

|ε| ≈ 9√
2
rB sin θ13, (23)

subsequently

sin θ12 ≈ 1√
3

∣∣1± rB√
2

sin θ13

∣∣
√

1− sin2 θ13

, sin θ23 ≈ 1√
2

∣∣1± sin θ13√
2

∣∣
√

1− sin2 θ13

, (24)

where the± represents theπ and0 values for theαε phase.

2.3.2. Quark sector

As we already commented, the lepton sector was studied mainly in this paper. Then, we want to address briefly the quark
sector within a particular benchmark as follows. We adopted the following alignments〈H1〉 = 〈H2〉 which is consistent with
the minimization of the scalar potential [49–51]. Hence, one gets

Mq =




Bq bq Cq

bq Aq Cq

Dq Dq Eq


 , (25)

whereq = u, d and the defined parameters can be read of Eq. (4). Let us remark thatMq has bee studied exhaustively in [52]
and significant results were released. Nonetheless, we want to address the quark mass matrices in different way so that some
assumption will be done. To do so, notice thatMq is diagonalizediv by Uq(L,R) such thatM̂q = U†

qLMqUqR with M̂q =
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Diag.(mq1 , mq2 ,mq3) denoting the quark physical masses. Then, the following rotations is realizedUq(L,R) = Uπ/4uq(L,R)

so thatM̂q = u†qLmquqR. Notice that

mq =




Aq bq 0
bq Bq

√
2Cq

0
√

2Dq Eq


 , Uπ/4 =




1√
2

1√
2

0
− 1√

2
1√
2

0
0 0 0


 . (26)

At this stage, two assumptions are madeAq = 0 andCq = Dq. To be honest, we could not eliminate the former entry
by means theS4 ⊗ Z2 discrete symmetry and the latter assumption might be realized within the left-right theory [57–60] by
invoking parity symmetry. Also, as was shown in [37], the second assumption can be realized by a suitable transformation
in the right-handed quarks fields (there are no right-handed currents in the model), which areSU(2)L singlets, such that the
resultant quark mass matrix turns out being hermitian. Due to this fact, we could have assumed thatMq is hermitian but
only the aforementioned simplification was carried out. In this benchmark the quark mass matrix has the generalized Fritzsch
textures [37–39] which fit with great accuracy the CKM mixing matrix.

As a result, the CKM mixing matrix is given byV = U†
uUd = OT

u P̄qOd whereP̄q = P†uPd and theOq orthogonal
matrix has the following form

Oq =




√
mq3 |mq2 |(|Eq|−mq1)

Rq1
−

√
mq1mq3(|Eq|+|mq2 |)

Rq2

√
mq1 |mq2 |(mq3−|Eq|)

Rq3√
mq1(|Eq|−mq1)|Eq|

Rq1

√
|mq2 |(|Eq|+|mq2 |)|Eq|

Rq2

√
mq3(mq3−|Eq|)|Eq|

Rq3

−
√

mq1(|Eq|+|mq2 |)(mq3−|Eq|)
Rq1

−
√
|mq2 |(|Eq|−mq1)(mq3−|Eq|)

Rq2

√
mq3(|Eq|−mq1)(|Eq|+|mq2 |)

Rq3




. (27)

whereq = u, d. In addition,

Rq1 = (mq3 −mq1) (|mq2 |+ mq1) |Eq|, Rq2 = (mq3 + |mq2 |) (|mq2 |+ mq1) |Eq|,
Rq3 = (mq3 + |mq2 |) (mq3 −mq1) |Eq|. (28)

As we can show in the Appendix B, in the CKM matrix there are four parameters namely|Eq| (q = u, d) and two effective
CP-violating phases (α andβ) so that a numerical study will be realized to fix them.

3. Results

3.1. Lepton sector

We have shown that our theoretical formulas on the mixing angles can accommodate the experimental data where the inverted
hierarchy is favored. In order to get a full set of free parameter values that fit the mixing angles, then some scattered plot will
be elaborated as follows.

The mixing angles depend on three free parameters, explicitly

sin θ13 = sin θ13

(
ε, θ, |m0

3|
)
, sin θ12 = sin θ13

(
ε, θ, |m0

3|
)
, sin θ23 = sin θ13

(
ε, θ, |m0

3|
)
. (29)

Hence, from the previous analytical study the three free parameters let vary on the following ranges:ε ∈ [−0.3, 0],
θ ∈ [0, π/3] and|m0

3| ∈ [0, 0.09] eV. Therefore, we demand our theoretical formulas satisfy (at3σ) the following values [4]

sin2 θ12/10−1 ∈ 2.71− 3.69, sin2 θ13/10−2 ∈ 2.018− 2.424, sin2 θ23/10−1 ∈ 4.33− 6.08, (30)

for the inverted hierarchy. Additionally,

∆m2
21

[
10−5 eV2

] ∈ 6.94− 8.14, ∆m2
13

[
10−3 eV2

] ∈ 2.37− 2.53. (31)

Having included the experimental data, the scattered plots are constructed by using the theoretical formulas given in Eq. (16)
which have to satisfy the experimental values. As a result, the mixing angles as function of the lightest neutrino mass are
displayed in Fig. 1. The allowed region of values for the|m0

3| is consistent with the previous analytical study.
As it was already commented, theθ parameter is identified with the solar angle in the limit ofµ ↔ τ exact. Then, the

following scattered plots exhibit the region whereθ parameter lies around the experimental value of the solar angle. In fact,
this value is close to tribimaximal prediction since the solar angle receives a small correction fromε.
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FIGURE 1. From left to right: the reactor, solar and atmospheric angles versus the|m0
3| lightest neutrino mass. The thick line stands for3σ

of C. L.

FIGURE 2. From left to right: the reactor, solar and atmospheric angles versus theθ parameter. The thick line stands for3σ of C. L.

FIGURE 3. From left to right: the reactor, solar and atmospheric angles versus the|ε| parameter. The thick line stands for3σ of C. L.

In the previous analytical study, we showed theε parameter must be negative and this may vary in the interval[0,−0.3].
The numerical study shows the favored region where the mixing angles are fitted at3σ, see Fig. 3. Evidently, the case with
|ε| = 0 is excluded due to this stands for the limit of exactµ ↔ τ symmetry.

As model prediction, we have calculated numerical the effective Majorana mass of electron neutrino which is defined as
follows

|mee| =
∣∣∣∣∣

3∑

i=1

miU2
ei

∣∣∣∣∣ , (32)

with mi represents the physical neutrino mass andUei PMNS matrix elements. This effective mass has been measured by
GERDA phase I [61] and II [62], and the lowest upper bound is|mee| < 0.22 eV.

In our model, CP parities have been used in the neutrino masses. In particular, we utilizedm0
2 = −|m0

2|, m0
1 = |m0

1| and
m0

3 = |m0
3| since this fit quite well the mixing angles. Consequently, the predicted region for the effective Majorana mass of

electron neutrino is shown in the following scattered plots.

3.2. Quark sector

Our numerical study consists in making scattering plots. To do so, we compare our CKM theoretical expression with the
standard parametrization one. In particular, we consider the entries(Vui)

th (i = d, s, b) and(Vcb)
th that depend on the free

parameters

| (Vui)
th | = | (Vui)

th (|Eu|, |Ed|, α, β) |, | (Vcb)
th | = | (Vui)

th (|Eu|, |Ed|, α, β) |. (33)
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FIGURE 4. The effective Majorana mass of neutrino electron versus the fitted parameters.

Therefore, we demand the magnitude of mentioned entries must satisfy the following experimental values [32]

| (Vud)
ex | = 0.97401± 0.0001, | (Vus)

ex | = 0.22650± 0.0004, | (Vub)
ex | = 0.00361+0.00011

−0.00009,

| (Vcb)
ex | = 0.04053+0.00083

−0.00061. (34)

In the current study, the physical quark masses are considered as input values. To be more precise, the normalized quark
masses (mqi

/mq3) will be used due to their ratios do not change drastically at different energy scales as one can verify directly
from [63]. So that, at the top quark mass scale we have [22]

m̃u = (1.33± 0.73)× 10−5, m̃c = (3.91± 0.42)× 10−3, m̃d = (1.49± 0.39)× 10−3,

m̃s = (2.19± 0.53)× 10−2. (35)

In addition, for simplicity, two dimensionless parameters have been definedyq ≡ |Eq|/mq3 (q = u, d), then we now have the
constraint1 > yq > m̃q2 ≡ |mq2 |/mq3 > m̃q1 . Explicitly, for the up and down sector1 > yu > m̃c ≡ |mc|/mt > m̃u and
1 > yd > m̃s ≡ |ms|/mb > m̃d.

With all the above information, we calculate the allowed regions for the four CKM entries and constrain the free param-
eter set of values. However, let us show you only the scattered plots for|Vub| and |Vcb| since that these entries usually are
complicated to fit. As we already commented the theoretical expression are required to satisfy the experimental data up to3σ.
Moreover, the normalized quark masses let vary up to2σ and the two CP-violating phases are in the range[0, 2π]. Then, as
one notices, in Fig. 5, there is a set of values in which|Vub| is fitted with great accuracy.

FIGURE 5. |Vub| as function of the four free parameters. The thick line stands for3σ of C. L.
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FIGURE 6. |Vcb| as function of the four free parameters. The thick line stands for3σ of C. L.

Focusing in the dimensionless parametersyu andyd, the favorable regions lie in[0.5, 1) approximately. Additionally, there
are two regions of values for the CP phases,α andβ, where the magnitude of|Vub| is accommodated. In the Fig. 6, we see
|Vcb| as function of the four free parameters and these have the same allowed region as the above case.

To finish this section, we want to comment our naive analysis showed a large region of values for the free parameters where
the theoretical CKM entries are in good agreement with the experimental data up to3σ. A strict study, as for example anχ2

fit, must determine better the space of values however the principal aim of this numerical study was shown the generalized
Fritzsch mass textures fit the CKM matrix as it is well known.

4. Summary and conclusions

To sum up, we have built a non-renormalizable model where the fermion mixing is driven by the spontaneous breaking of the
S4 ⊗ Z2 discrete group. An appropriated alignment of the scalar vev’s allows to break theµ ↔ τ symmetry in the effective
neutrino mass matrix. Therefore, under a perturbative study, we were able to correct the wrong predictions on the reactor and
atmospheric angles, and a set of values for the free parameters was found such that the mixing angles are consistent with the
latest neutrino data. Due to the lack of extra symmetries, in the quark sector, a benchmark allows to get consistent mass textures
that accommodate the CKM mixing matrix.

We have learned that the flavor symmetries have been useful to eliminate spurious parameters in the Yukawa sector. At
the same time, those shape the fermion mass matrices, consequently the mixing pattern can be obtained straightforwardly.
Ambitious flavored models have gone beyond of fitting the mixings and prediction on some free parameters (Majorana phases,
Dirac CP phase for instance) have been done. In conclusion, despite theµ ↔ τ is outdated, in this constrained model, we
wanted to show you that a simple soft breaking is enough to correct the mixing angles. Although the model predictions are so
limited and the favored inverted hierarchy goes against the data, a soft breaking ofµ ↔ τ is still alive from theoretical point of
view nevertheless the experiments have the verdict.

Appendix

A. S4 flavour symmetry

S4 is the group of permutations of four objects and this is the smallest non abelian group having doublet, triplet and singlet
irreducible representations [7]. Geometrically,S4 is the symmetry of a cube. This discrete group contains five irreducible
representations, this is,11,12,2,31,32 which has the following tensor product rules [7]:
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(
a1

a2

)

2

⊗
(

b1

b2

)

2

= (a1b1 + a2b2)11 ⊕ (−a1b2 + a2b1)12 ⊕
(

a1b2 + a2b1

a1b1 − a2b2

)

2 ,

(A.1)

(
a1

a2

)

2

⊗



b1

b2

b3




31

=




a2b1

− 1
2 (
√

3a1b2 + a2b2)
1
2 (
√

3a1b3 − a2b3)




31

⊕



a1b1
1
2 (
√

3a2b2 − a1b2)
− 1

2 (
√

3a2b3 + a1b3)




32 ,

(A.2)

(
a1

a2

)

2

⊗



b1

b2

b3




32

=




a1b1
1
2 (
√

3a2b2 − a1b2)
− 1

2 (
√

3a2b3 + a1b3)




31

⊕



a2b1

− 1
2 (
√

3a1b2 + a2b2)
1
2 (
√

3a1b3 − a2b3)




32 ,

(A.3)




a1

a2

a3




31

⊗



b1

b2

b3




31

= (a1b1 + a2b2 + a3b3)11 ⊕
(

1√
2
(a2b2 − a3b3)

1√
6
(−2a1b1 + a2b2 + a3b3)

)

2

⊕



a2b3 + a3b2

a1b3 + a3b1

a1b2 + a2b1




31

⊕



a3b2 − a2b3

a1b3 − a3b1

a2b1 − a1b2




32 ,

(A.4)




a1

a2

a3




32

⊗



b1

b2

b3




32

= (a1b1 + a2b2 + a3b3)11 ⊕
(

1√
2
(a2b2 − a3b3)

1√
6
(−2a1b1 + a2b2 + a3b3)

)

2

⊕



a2b3 + a3b2

a1b3 + a3b1

a1b2 + a2b1




31

⊕



a3b2 − a2b3

a1b3 − a3b1

a2b1 − a1b2




32 ,

(A.5)




a1

a2

a3




31

⊗



b1

b2

b3




32

= (a1b1 + a2b2 + a3b3)12 ⊕
(

1√
6
(2a1b1 − a2b2 − a3b3)

1√
2
(a2b2 − a3b3)

)

2

⊕



a3b2 − a2b3

a1b3 − a3b1

a2b1 − a1b2




31

⊕



a2b3 + a3b2

a1b3 + a3b1

a1b2 + a2b1




32 .

(A.6)

In this section, we remark an interesting feature between theS3 [7] andS4 non-abelian groups. As it is well known, these
are different, the former one has three irreducible representations namely two singlets,11 and12, and one doublet2. This
group is smaller thanS4 as one can see in Ref. [7]. In addition, each representation ofS4 can be decomposed in representation
of S3 as follows:11 → 11, 12 → 12, 2 → 2, 31 → 11 ⊕ 2 and32 → 12 ⊕ 2.

B. Symmetry µ ↔ τ

In the basis where the charged lepton mass matrix is diagonal, the effective neutrino mass term is given by

L = ν̄`L(Mν)``′(ν`′L)C + h.c, (B.1)

where`, `′ = e, µ, τ . If the neutrino mass matrix is invariant under the interchange labelµ ↔ τ , one would have

Mν =




mee meµ meµ

meµ mµµ mµτ

meµ mµτ mµµ


 . (B.2)

As one can notice, in the previous mass matrix the entries12 (22) and13 (33) are equals, then that matrix possesses the
µ ↔ τ symmetry [64–68] and its prediction on the mixing angles are obtained as follows. In the mentioned basis, the neutrino
mass matrix is diagonalized byUν , this means,U†

νMνU∗
ν = M̂ where the latter matrix stands for the neutrino masses,

M̂ = Diag.(m1,m2,m3), which can be complex.
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As it is well known,Uν = Uπ/4Uθ so thatU†
νMνU∗

ν = U†
θmνU∗

θ where

mν =




mee

√
2meµ 0√

2meµ mµµ + mµτ 0
0 0 mµµ −mµτ


 , Uπ/4 =




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2


 . (B.3)

In addition,mν is diagonalized byUθν
whose form is given as

Uθ =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 , (B.4)

and one condition should be satisfied

tan 2θ =
√

8meµ

mµµ + mµτ −mee
. (B.5)

Therefore, one can write the full matrix

Uν =




cos θ sin θ 0
− sin θ√

2
cos θ√

2
− 1√

2

− sin θ√
2

cos θ√
2

1√
2


 . (B.6)

Comparing the above mixing matrix with the standard parametrization of the PMNS matrix, one gets the reactor and
atmospheric angles areθ13 = 0 andθ23 = π/4, respectively. Speaking about the solar angle, this is free parameter and can be
identified byθ12 = θ.

At the same time, the matrix elements can be written in terms of the physical neutrino mass as follows

mee = m1 cos2 θ + m2 sin2 θ, meµ =
sin 2θ√

8
(m2 −m1) , mµτ =

1
2

(
m1 sin2 θ + m2 cos2 θ + m3

)
,

mµµ =
1
2

(
m1 sin2 θ + m2 cos2 θ −m3

)
. (B.7)

C. Perturbative study to obtain Uε
ν

To start with, we have to remember the stationary perturbation theory from our lectures on quantum mechanics [69]. This
method is applied to a system whose Hamiltonian is given byH = H0 + W where the eigenstates (φ0

n) and eigenvalues (E0
n)

of H0 are known, alsoW (known as a perturbation) is smaller thanH0, besides that,H0 andW are time independent. With
W = λ W̃ andλ ¿ 1, at first order in theλ perturbative parameter, one can perform the correction to the eigenstates and
eigenvalues ofH(λ) ( H(λ)|Φn(λ)〉 = En(λ)|Φn(λ)〉) which are given respectively by

|Φn(λ)〉 = |φ0
n〉+

∑

k 6=n

〈φ0
k|W |φ0

n〉
E0

n − E0
k

|φ0
k〉, En(λ) = E0

n + 〈φ0
n|W |φ0

n〉. (C.1)

Then, we adapt the above results to diagonalization problem given in the neutrino sector. As it was shown,Mν is diago-
nalized by theUν matrix such thatM̂ν = Diag.(m1,m2,m3) = U†

νMνU∗
ν with Uν = S23uν , thenM̂ν = u†νmνu∗ν . mν

can be written as

mν =

m0
ν︷ ︸︸ ︷


mee meµ meµ

meµ mµµ mµτ

meµ mµτ mµµ


 +

mε
ν︷ ︸︸ ︷


0 0 0
0 0 0
0 0 mµµε


, (C.2)

where the former matrix possesses exactµ ↔ τ symmetry and it is broken in the latter one where the dimensionless parameter
ε ≡ (mττ −mµµ) /mµµ has been defined and this quantify the breaking. In addition, this parameter will be treated as a
perturbation, thus, a pertubative study at first order inε will be carried out. It was shown in the above Appendix,m0

ν is
diagonalized byU0

ν , then,M̂ν = u†νmνu∗ν with uν ≈ U0
νU

ε
ν implies

M̂ν = Uε†
ν

[
U0†

ν m0
νU

0∗
ν + U0†

ν mε
νU

0∗
ν

]
Uε∗

ν , with U0†
ν m0

νU
0∗
ν = Diag.

(
m0

1,m
0
2,m

0
3

)
. (C.3)
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In addition,

m̃ε
ν︷ ︸︸ ︷

U0†
ν mε

νU
0∗
ν =

ε m0
µµ

2




sin2 θ − sin 2θ
2 − sin θ

− sin 2θ
2 cos2 θ cos θ

− sin θ cos θ 1


 , m0

µµ =
1
2

(
m0

1 sin2 θ + m0
2 cos2 θ −m0

3

)
. (C.4)

In here, we make contact with the perturbation theory, instead of having a Hamiltonian, we havemν = m0
ν + mε

ν where the
eigenstates (ν0

i ) and eigenvalues (m0
i ) of m0

ν are well known. In consequence,Uε
ν is built by means the adapted eigenvector,

this is,Uε
ν = (|Φ1(ε)〉, |Φ2(ε)〉, |Φ3(ε)〉) where

|Φn(ε)〉 = |ν0
n〉+

3∑

k 6=n

〈ν0
k |m̃ε

ν |ν0
n〉

m0
n −m0

k

|ν0
k〉, (C.5)

wheren = 1, 2, 3. In order to apply correctly the formula, we have to observe that matrixmε
ν has been rotated byU0

ν so that
the new perturbative matrix is denoted bym̃ε

ν . Additionally, each eigenvector|Φn(ε)〉 must be normalized. Finally, one gets

Uε
ν ≈




N1 − m0
µµ

m0
2−m0

1

sin 2θ
4 εN2

m0
µµ

m0
1−m0

3

sin θ
2 εN3

m0
µµ

m0
2−m0

1

sin 2θ
4 εN1 N2 − m0

µµ

m0
2−m0

3

cos θ
2 εN3

− m0
µµ

m0
1−m0

3

sin θ
2 εN1

m0
µµ

m0
2−m0

3

cos θ
2 εN2 N3


 , (C.6)

where the normalization factors are written as

N1 =

[
1 +

|ε|2 sin2 θ

4

(∣∣∣∣
m0

µµ

m0
1 −m0

3

∣∣∣∣
2

+ cos2 θ

∣∣∣∣
m0

µµ

m0
2 −m0

1

∣∣∣∣
2
)]−1/2

,

N2 =

[
1 +

|ε|2 cos2 θ

4

(∣∣∣∣
m0

µµ

m0
2 −m0

3

∣∣∣∣
2

+ sin2 θ

∣∣∣∣
m0

µµ

m0
2 −m0

1

∣∣∣∣
2
)]−1/2

,

N3 =

[
1 +

|ε|2
4

(
sin2 θ

∣∣∣∣
m0

µµ

m0
1 −m0

3

∣∣∣∣
2

+ cos2 θ

∣∣∣∣
m0

µµ

m0
2 −m0

3

∣∣∣∣
2
)]−1/2

. (C.7)

To sum up,Mν is diagonalized approximately byUν ≈ S23uν with uν ≈ U0
νU

ε
ν . As a result of this, the PMNS mixing

matrix,U, is defined asU = U†
eLUν whereUeL = S23ueL was performed in the lepton section. Therefore,U ≈ u†eLU0

νU
ε
ν ,

as one realizes,u†eL contains unphysical phases which are irrelevant to the magnitude for PMNS matrix elements that are
written explicitly as

(U)11 = N1 cos θ

[
1 +

ε

2
sin2 θ

(
m0

µµ

m0
2 −m0

1

)]
,

(U)12 = N2 sin θ

[
1− ε

2
cos2 θ

(
m0

µµ

m0
2 −m0

1

)]
,

(U)13 =
N3

4
sin 2θ ε

[
m0

µµ

(
m0

2 −m0
1

)

(m0
2 −m0

3) (m0
1 −m0

3)

]
,

(U)21 = −N1√
2

sin θ

[
1− ε

2
m0

µµ

{
1

m0
1 −m0

3

+
cos2 θ

m0
2 −m0

1

}]
,

(U)22 =
N2√

2
cos θ

[
1− ε

2
m0

µµ

{
1

m0
2 −m0

3

− sin2 θ

m0
2 −m0

1

}]
,

(U)23 = −N3√
2

[
1− ε

2
m0

µµ

{
cos2 θ

m0
2 −m0

3

+
sin2 θ

m0
1 −m0

3

}]
,
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(U)31 = −N1√
2

sin θ

[
1 +

ε

2
m0

µµ

{
1

m0
1 −m0

3

− cos2 θ

m0
2 −m0

1

}]
,

(U)32 =
N2√

2
cos θ

[
1 +

ε

2
m0

µµ

{
1

m0
2 −m0

3

+
sin2 θ

m0
2 −m0

1

}]
,

(U)33 =
N3√

2

[
1− ε

2
m0

µµ

{
cos2 θ

m0
2 −m0

3

+
sin2 θ

m0
1 −m0

3

}]
. (C.8)

In the limit ε → 0, one recovers theµ ↔ τ scenario.

D. DiagonalizingMq

After the spontaneous symmetry breaking and with the appropriated alignment in the vev’s, the quark mass term is given by

q̄LMqqR + h.c., (D.1)

with q = u, d. Explicit, we have

Mq =




Bq bq Cq

bq Aq Cq

Dq Dq Eq


 . (D.2)

In order to diagonalize the above mass matrixv, a transformation in the left and right-handed quarks is made such thatqL =
UqL q̃L andqR = UqR q̃R whereq̃(L,R) are the quark fields in the mass basis. Then,M̂q = U†

qLMqUqR whereM̂q =
Diag.(mq1 ,mq2 , mq3) stands for the quark physical masses. WithUqL = Uπ/4uq(L,R), one obtainsM̂q = u†qLmquqR, in
this case, we have

mq =




Aq bq 0
bq Bq

√
2Cq

0
√

2Dq Eq


 , Uπ/4 =




1√
2

1√
2

0
− 1√

2
1√
2

0
0 0 0


 . (D.3)

As it was discussed, a benchmark was considered such thatAq = 0 andCq = Dq so that we end up having a complex
symmetric mass matrix

mq =




0 bq 0
bq Bq

√
2Cq

0
√

2Cq Eq


 . (D.4)

Givenmq, this can be written in the polar form, this means,bq = |bq|eiαbq , Bq = |Bq|eiαBq and so forth. The phases can be
absorbed in the quark fields, to do so let us writemq = Pqm̄Pq with Pq = Diag.

(
eiηq1 , eiηq2 , eiηq3

)
where the following

condition must be satisfied

ηq1 =
2arg(bq)− arg(Bq)

2
, ηq2 =

arg(Bq)
2

, ηq3 =
arg(Eq)

2
, arg(Bq) + arg(Eq) = 2arg(

√
2 Cq), (D.5)

and

m̄q =




0 |bq| 0
|bq| |Bq| |√2Cq|
0 |√2Cq| |Eq|


 . (D.6)

As a result of this,uqL = PqOq anduqR = P†qOq, Oq being the orthogonal matrix that diagonalizes tom̄q. Therefore,
M̂q = u†qLmquqR = OT

q m̄qOq, this last expression is useful to fix three free parameters, in terms of the quark physical
masses and one unfixed parameter (|Eq|), through the following invariants

tr
(
M̂q

)
, tr

(
M̂2

q

)
, det

(
M̂q

)
, (D.7)
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where tr and det stand for the trace and determinant. In consequence,

|bq| =
√

mq3 |mq2 |mq1

|Eq| , |Bq| = mq3 − |mq2 |+ mq1 − |Eq|,
√

2|Cq| =
√

mq3 |mq2 |mq1

|Eq| . (D.8)

In the above parameters,mq2 = −|mq2 | has been chosen in order to have real parameters.
Once many free parameters have been fixed, theOq orthogonal matrix is built by means theXqi eigenvectors,Oq =

(Xq1 ,−Xq2 , Xq3), which are given by

Xqi
=

1
Nqi




|bq||
√

2Cq|
mqi |

√
2Cq|

mqi
(mqi

− |Bq|)− |bq|2


 . (D.9)

Here,Nqi
stands for the normalization factors whose explicit form is determined by the conditionXT

qi
Xqi

= 1. Finally, one
obtains

Oq =




√
mq3 |mq2 |(|Eq|−mq1)

Rq1
−

√
mq1mq3(|Eq|+|mq2 |)

Rq2

√
mq1 |mq2 |(mq3−|Eq|)

Rq3√
mq1(|Eq|−mq1)|Eq|

Rq1

√
|mq2 |(|Eq|+|mq2 |)|Eq|

Rq2

√
mq3(mq3−|Eq|)|Eq|

Rq3

−
√

mq1(|Eq|+|mq2 |)(mq3−|Eq|)
Rq1

−
√
|mq2 |(|Eq|−mq1)(mq3−|Eq|)

Rq2

√
mq3(|Eq|−mq1)(|Eq|+|mq2 |)

Rq3




. (D.10)

In addition

Rq1 = (mq3 −mq1) (|mq2 |+ mq1) |Eq|, Rq2 = (mq3 + |mq2 |) (|mq2 |+ mq1) |Eq|,
Rq3 = (mq3 + |mq2 |) (mq3 −mq1) |Eq|. (D.11)

Let us point out the unfixed parameter,|Eq|, has to satisfy the constraintmq3 > |Eq| > |mq2 | > mq1 in order to get a real
orthogonal matrix,Oq.

Having calculated the ingredients that take places in the CKM matrix, we haveUqL = Uπ/4uqL = Uπ/4PqOq. Conse-
quently,V = U†

uLUdL = OT
u P̄qOd with P̄q = P†uPd, Here, let us emphasize an important point, this has to do with the CP

phases that enter in the CKM matrix. Notice thatP̄q contains three phases but two of them only play an important role to fit
the mixings. At the end,V has four parameters namely|Eq| (q = u, d) and two effective CP-violating phases (α andβ).

In the CKM matrix, the involved matrices are written explicitly

Ou =




√
mt|mc|(|Eu|−mu)

Ru
−

√
mumt(|Eu|+|mc|)

Rc

√
mu|mc|(mt−|Eu|)

Rt√
mu(|Eu|−mu)|Eu|

Ru

√
|mc|(|Eu|+|mc|)|Eu|

Rc

√
mt(mt−|Eu|)|Eu|

Rt

−
√

mu(|Eu|+|mc|)(mt−|Eu|)
Ru

−
√
|mc|(|Eu|−mu)(mt−|Eu|)

Rc

√
mt(|Eu|−mu)(|Eu|+|mc|)

Rt


 ,

Od =




√
mb|ms|(|Ed|−md)

Rd
−

√
mdmb(|Ed|+|ms|)

Rs

√
md|ms|(mb−|Ed|)

Rb√
md(|Ed|−md)|Ed|

Rd

√
|ms|(|Ed|+|ms|)|Ed|

Rs

√
mb(mb−|Ed|)|Ed|

Rb

−
√

md(|Ed|+|ms|)(mb−|Ed|)
Rd

−
√
|ms|(|Ed|−md)(mb−|Ed|)

Rs

√
mb(|Ed|−md)(|Ed|+|ms|)

Rb


 ,

P̄q = Diag
(
eiη̄q1 , eiη̄q2 , eiη̄q3

)
, (D.12)

with η̄q1 = ηd − ηu, η̄q2 = ηs − ηc andη̄q3 = ηt − ηb. In addition,

Ru = (mt −mu) (|mc|+ mu) |Eu|, Rc = (mt + |mc|) (|mc|+ mu) |Eu|,
Rt = (mt + |mc|) (mt −mu) |Eu|; Rd = (mb −md) (|ms|+ md) |Ed|,
Rs = (mb + |ms|) (|ms|+ md) |Ed|, Rb = (mb + |ms|) (mb −md) |Ed|. (D.13)
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On the other hand, for the up and down quark sector we have the following constraints on the free parametersmt > |Eu| >
|mc| > mu andmb > |Ed| > |ms| > md. Having written the main ingredients that take place in the quark mixing, the CKM
matrix elements are

Vud
CKM = (Ou)11 (Od)11 eiη̄q1 + (Ou)21 (Od)21 eiη̄q2 + (Ou)31 (Od)31 eiη̄q3 ,

Vus
CKM = (Ou)11 (Od)12 eiη̄q1 + (Ou)21 (Od)22 eiη̄q2 + (Ou)31 (Od)32 eiη̄q3 ,

Vub
CKM = (Ou)11 (Od)13 eiη̄q1 + (Ou)21 (Od)23 eiη̄q2 + (Ou)31 (Od)33 eiη̄q3 ,

Vcd
CKM = (Ou)12 (Od)11 eiη̄q1 + (Ou)22 (Od)21 eiη̄q2 + (Ou)32 (Od)31 eiη̄q3 ,

Vcs
CKM = (Ou)12 (Od)12 eiη̄q1 + (Ou)22 (Od)22 eiη̄q2 + (Ou)32 (Od)32 eiη̄q3 ,

Vcb
CKM = (Ou)12 (Od)13 eiη̄q1 + (Ou)22 (Od)23 eiη̄q2 + (Ou)32 (Od)33 eiη̄q3 ,

Vtd
CKM = (Ou)13 (Od)11 eiη̄q1 + (Ou)23 (Od)21 eiη̄q2 + (Ou)33 (Od)31 eiη̄q3 ,

Vts
CKM = (Ou)13 (Od)12 eiη̄q1 + (Ou)23 (Od)22 eiη̄q2 + (Ou)33 (Od)32 eiη̄q3 ,

Vtb
CKM = (Ou)13 (Od)13 eiη̄q1 + (Ou)23 (Od)23 eiη̄q2 + (Ou)33 (Od)33 eiη̄q3 . (D.14)

Remarkable, for each entry its magnitude only depends on two effective phases, this is,αq ≡ η̄q2 − η̄q1 andβq ≡ η̄q3 − η̄q1 .
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i. We ought to comment there are terms as for exam-
ple (L̄ILC

I )11(H̃
2
I )11/Λ2, (L̄ILC

I )2(H̃
2
I )2/Λ2 and

(L̄ILC
I )11(H̃

2
3 )11/Λ2 which are invariant under all sym-

metries but these contributions are very subleading due to the
hierarchy〈∆〉 ¿ v ¿ Λ.

ii. See Appendix B for a brief overview onµ ↔ τ symmetry.

iii. In Appendix C, we detail the process to figure outUε
ν .
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Fermion Mass and Mixing in a Low-Scale Seesaw Model
based on theS4 Flavor Symmetry, PTEP 2019 (2019)
113B04, https://doi.org/10.1093/ptep/ptz119 .
[arXiv:1909.09532 [hep-ph]].

47. V. V. Vien and H. N. Long,MultiscalarB−L extension based
on S4 flavor symmetry for neutrino masses and mixing, Chin.
Phys. C45(2021) 043112,https://doi.org/10.1088/
1674-1137/abe1c7 . [arXiv:2012.01715 [hep-ph]].

48. V. V. Vien, H. N. Long and A. E. Ćarcamo Herńandez,Lepton
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