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Complex Fourier demodulation approach for the
dual rotation polarizer-analyzer polarimeter
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In this research, we propose a demodulation algorithm for the dual rotation polarizer-analyzer polarimeter. The proposal retrieves the partial
Mueller matrix from the complex coefficients, theoretically calculated from the Fourier transform of the output intensity. As calibration
parameters, the initial orientations of the polarizer-analyzer are used. Experimental results for air and a rotating dichroic film polarizer show
our proposal’s feasibility.
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1. Introduction

Polarimetry is an experimental technique focused on deter-
mining the optical properties of samples by analyzing the po-
larization response of the light reflected or transmitted by a
sample. It has been helpful to develop new measurement sys-
tems; for example, in the last decade, the atmospheric sensing
field has used polarization measurements to characterize the
pollution particles in the environment [1,2] and sense climate
variations [3]. In remote sensing detection, polarized light
also analyzes reflective objects such as metals, and glasses,
among other materials [4]. In the biomedical field, it has
been proposed as a marker to identify cancerous tissue in its
early stages [5]. In the ophthalmic field, researchers combine
polarization with OCT techniques for retinal imaging imple-
mentations [6,7].

Several designs of polarimeters can be found in the litera-
ture, for example, by using a dual rotating retarder configura-
tion [8,9], employing phase modulators [10], or liquid crystal
retarders [11,12]. The dual rotating retarder configuration is
a well-known polarimeter composed of a fixed polarizer, an-
alyzer, and two rotating linear retarders [9,13-15]. The dual
rotating retarder system measures the complete Mueller ma-
trix by analyzing the frequency response obtained through the
rotation of the retarders.

The Mueller matrix decomposition algorithms separate
the information into three parameters associated with the
sample’s physical properties as diattenuation, retardance, and
depolarization [16-18]. Diattenuation describes the polariza-
tion dependence of attenuating the light, which helps to de-
scribe scattering and chirality information. Retardance rep-
resents the phase variation dependence where its circularity
is useful for glucose measurements, and its linearity is asso-
ciated with stress analysis. Depolarization is the ability to
maintain the polarization properties of the light, and its com-
monly used for cancer detection [5-7].

Another type of polarimeter employs a rotating polarizer
and analyzer without linear retarders. Azzam R.M.A firstly
proposed this polarimeter [19], where he showed theoreti-
cally the feasibility of the implementation and its capabili-
ties to retrieve the partial Mueller matrix and Jones matrix
coefficients through common transformations. Later, several
authors followed Azzam’s approach to retrieve the ellipticity
parameter through the Jones Matrix approximation, mainly
applied for thin film analysis [20-22] at several wavelength
regions [23]. Similarly, other authors used the Jones ma-
trix approach to retrieve ellipticity phase information [24,25],
which was improved later by adding a compensator to the
system [26]. Although several authors proposed the rotat-
ing polarizer-analyzer system, the analysis from the complex
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Fourier coefficients, as far as we know, which is the main
objective of our research, has not been carried out.

The main goal of our proposal is to consider the com-
plex Fourier transform coefficients of the intensity signal to
retrieve the partial Mueller matrix and take the initial angles
as calibration parameters. The paper first explains the de-
modulation algorithm continuing with experimental results
of our implementation and ending with our conclusions. The
approach presented in this paper can improve other polari-
metric systems by considering the theoretical response of the
Fourier transform of the output intensity.

2. Complex Fourier demodulation algorithm

The approach for retrieving the partial Mueller matrix using
a dual rotating polarizer-analyzer is composed firstly of a po-
larization state generator with a light source working at wave-
lengthλ, a linear polarizer LP(0◦) oriented at angle 0◦ (used
as an orientation reference) and a linear polarizer LP(θ + ε1),
rotating at rate 4θ with an initial angle atε1. The polarization
state detection unit consists of a linear polarizer LP(4θ + ε2)
rotating at a rate 4θ with an initial angle ofε2 and an intensity

detector that could be a camera or a photodetector. The sam-
ple is mathematically represented as a Mueller matrix with
16 coefficients, but as we are employing two rotating polar-
izers, only a partial Mueller matrix can be retrieved. Figure 1
shows the diagram and the theoretical parameters involved in
the system.

FIGURE 1. Rotating polarizer-analyzer polarimeter composed of a
light source; a polarizer LP(0◦) oriented at 0◦ used as an orientation
reference; a rotating polarizer LP(θ + ε1 ) at rateθ and initial angle
ε1; a rotating analyzer LP(4θ + ε2 ) at rate 4θ and initial angleε2;
and an intensity detector that could be a camera or a photodetector.

The Mueller matrix of a linear polarizer LP(θ) for a given angleθ is represented as [17,18].

LP (θ) =
1
2




1 cos(2θ) sin(2θ) 0
cos(2θ) cos2(2θ) cos(2θ) sin(2θ) 0
sin(2θ) cos(2θ) sin(2θ) sin2(2θ) 0

0 0 0 0


 , (1)

while a general Mueller matrix (MM ) is given by

MM =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


 , (2)

Considering non-polarized light as input,Sin = [S0, 0, 0, 0]T whereS0 represents the total incoming intensity. The output
Stokes vector,Sout, is

Sout=LP (4θ+ε2) ·MM · LP (θ+ε1) · LP (0) · Sin. (3)

The total detected intensity,Iout is the first element ofSout calculated as

Iout(θ) =
S0

16

[
(2m11 + m12) + 2(m11 + m12) cos(2ε1 + 2θ) + 2m13 sin(2ε1 + 2θ) + m12 cos(4ε1 + 4θ)

+ m13 sin(4ε1 + 4θ) + (2m21 + m22) cos(2ε2 + 8θ) + (2m31 + m32) sin(2ε2 + 8θ) + (m21 + m22 −m33)

× cos(2(ε1 + ε2) + 10θ) + (m23 + m31 + m32) sin(2(ε1 + ε2) + 10θ) +
1
2
(m22 −m33) cos((2(2ε1 + ε2)

+ 12θ) +
1
2
(m32 + m23) sin(2(2ε1 + ε2) + 12θ) +

1
2
(m22 + m33) cos(2(2ε1 − ε2)− 4θ) +

1
2
(m23

−m32) sin((2(2ε1 − ε2)− 4θ) + (m21 + m22 + m33) cos((2ε1 − ε2)− 6θ)

+ (m23 −m31 −m32) sin((2ε1 − 2ε2)− 6θ)]. (4)
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TABLE I. Complex coefficients obtained from the Fourier transform of the output signal of the polarimeter.

C0 = (2m11 + m12)

C−2 = e−2iε1(m11 + m12 + im13) C+2 = e2iε1(m11 + m12 − im13)

C−4 = 1
4
e−2i(2ε1+ε2)(2e2iε2(m12 + im13)) C+4 = 1

4
e2i(2ε1+ε2)(2e−2iε2(m12 − im13)

+e8iε1(m22 − im23 + im32 + m33) +e−8iε1(m22 + im23 − im32 + m33))

C−6 = 1
2
e2i(ε1−ε2)(m21 + m22 C+6 = 1

2
e−2i(ε1−ε2)(m21 + m22

−im23 + im31 + im32 + m33) +im23 − im31 − im32 + m33)

C−8 = 1
2
e−2iε2(2m21 + m22 + i(2m31 + m32)) C+8 = 1

2
e2iε2(2m21 + m22 − i(2m31 + m32))

C−10 = 1
2
e−2i(ε1+ε2)(m21 + m22 −m33 C+10 = 1

2
e2i(ε1+ε2)(m21 + m22 −m33

+i(m23 + m31 + m32)) −i(m23 + m31 + m32))

C−12 = 1
4
e−2i(2ε1+ε2)(m22 −m33 + i(m23 + m32)) C+12 = 1

4
e2i(2ε1+ε2)(m22 −m33 − i(m23 + m32))

We can take each element of the Mueller matrix of the
sample asmij , θ is related to the rotation rate of the polarizer
and (ε1, ε2) are their initial angle used for calibration pur-
poses. The detected signal modulated by the rotation rates of
the polarizer-analyzer consist of a series of harmonics. The
typical approach for retrieving the sample information is em-
ploying the Fourier series to calculate each coefficient of the
sine-cosine terms in Eq. 4. In our proposal, we apply the
Fourier transformation to the output signal to operate directly
with the complex coefficients. The Fourier transform of the
output intensity is composed of frequency-shifted Dirac delta
functions where its complex coefficients are used for the de-
modulation. By considering the Fourier transform of a cosine
function as

F{cos(β ± nθ)}(ω)=
1
2
[e∓iβδ(ω−n)+e±iβδ(ω+n)],

F{sin(β ± nθ)}(ω)=
1
2
[e∓iβδ(ω−n)−e±iβδ(ω+n)], (5)

whereβ is the initial angle,n is the harmonic coefficient,
δ(ω ± n) is the shifted Dirac delta function andω the fre-
quency domain. The Fourier transform of the intensity de-
tectedÎout(ω) at Eq. 4 can be obtained as

Îout(ω) =
S0

16

6∑

k=−6

C2kδ(ω + 2k), (6)

whereC2k represents the complex coefficient dependent on
the sample information and the initial angle of the polarizer
ε1 and analyzerε2. The functionδ(ω + 2k) represents the
Dirac delta function displaced at each2k frequency order.
Table I shows each complex coefficient, and it is worth men-
tioning that the initial angle of the polarizer-analyzer repre-
sents a constant phase variation.

One of the advantages of our proposal is that it is possi-
ble to isolate the initial angles of the polarizer and analyzer
(ε1, ε2) as they behave as a common phase value in each
complex Fourier coefficient. In this manner, the complex co-
efficients without initial angle information are

α±2 =
1
2
(e−2iε1C+2 ± e2iε1C−2),

α±6 =
1
2
(e−2i(ε2−ε1)C+6 ± e2i(ε2−ε1)C−6),

α±8 =
1
2
(e−2iε2C+8 ± e2iε2C−8),

α±10 =
1
2
(e−2i(ε1+ε2)C+10 ± e2i(ε1+ε2)C−10),

α±12 =
1
2
(e−2i(2ε1+ε2)C+12 ± e2i(2ε1+ε2)C−12). (7)

As we are employing two rotating polarizers, we could
retrieve a partial Mueller matrix where its coefficients are

TABLE II. Mueller matrix obtained with no-sample conditions non-compensated (Mnc), and the Mueller matrix compensated (Mc); addi-
tionally, the square error compared with the ideal Mueller matrix.

Non-Compensated Compensated Sum of Square Error(E)

Mnc =




1.000 −0.835 0.550 X

0.016 0.282 0.456 X

−0.017 −0.437 −0.370 X

X X X X




Mnc =




1.000 −0.025 0.000 X

−0.032 1.029 0.003 X

−0.014 0.028 0.986 X

X X X X




0.003
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FIGURE 2. Intensity detected with a misalignment ofε1 =
−36.676◦ for the polarizer andε2 = 28.117◦ for the analyzer.

m11 = C0 − α+2, m12 = −C0 + 2α+2,

m13 = iα−2, m21 = 2α+10 − 4α+12,

m22 = 2α+8 + 8α+12 − 4α+10 m23 = i(α−10 − α−6),

m31 = i(2α−10 − 4α−12),

m32 = i(2α−8 − 4α−10 + 8α−12),

m33 = α+6 − α+10. (8)

The initial angles of the polarizer-analyzer (ε1, ε2) need
to be measured beforehand by running a measurement with-
out a sample and considering air as a non-polarizing sample.

Therefore, the calibration parameters are

tan(2ε1) =
−i(Cair+2 − Cair−2)

Cair+2 + Cair−2)
,

tan(2ε2) =
−i(Cair+8 − Cair−8)

Cair+8 + Cair−8)
. (9)

As a result, we can retrieve the partial Mueller matrix
considering the complex Fourier coefficients directly where
the initial angles of the polarizer and analyzer need to be mea-
sured beforehand, and they are a constant phase variation on
the Fourier space.

3. Experimental results

To check the feasibility of our proposal, we built an exper-
imental setup based on the dual rotating polarizer-analyzer
polarimeter as presented in Fig. 1. The system utilizes a
He-Ne laser light source working at 632.8 nm (Thorlabs-
HNLS008L); as a first polarizer and orientation reference,
we used a Wollaston prism to produce s-polarized light
(Thorlabs-WP10) with a 20◦ beam separation and extinc-
tion ratio of 1:100,000 according to the manufacturer. For
the polarizer and analyzer components, we employed two
dichroic film polarizers mounted on a motorized rotation de-
vice (Thorlabs - K10CR1) and as an intensity detector, a USB
power meter (Thorlabs - PM16-121) composed of a silicon
photodiode sensor. The system was aligned and built accord-
ing to the 30 mm Thorlabs optical cage system.

We obtained the partial Mueller matrix with no-sample
conditions for the first set of experiments, where the polar-

FIGURE 3. Variation of the partial Mueller matrix of a rotating dichroic film polarizer as a sample; asterisks represent the experimental
results while the continuous line the simulated.
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FIGURE 4. Comparison of the angle variation measured as a func-
tion of the expected value of the polarizer.

TABLE III. Root Mean Square Errors between the experimental
and simulated value of the rotating dichroic film polarizer.

Root Mean Square Errors

MRMSE =




0 0.028 0.019 X

0.080 0.128 0.052 X

0.077 0.064 0.038 X

X X X X




izer and analyzer present a minor misalignment. We ac-
quired 360 intensities by rotating the polarizers with an incre-
ment of one degree for the first polarizer and four degrees for
the second polarizer sequentially. Figure 2 shows the inten-
sity detected where the initial angles obtained by Eq. (9) are
ε1 = −36.676◦ for the polarizer andε2 = 28.117◦ for the
analyzer, asterisks represent the experimental results while
the continuous line is the simulated signal. Table II shows the
partial Mueller matrices for the non-compensated and com-
pensated cases, where the square error is

E =
3∑

i=1

3∑

j=1

(mexpij
−mmeasij )

2 = 0.003

by comparing each coefficient (i, j) of the expected,mexp

and measured,mmeasMueller matrix obtained after initial an-
gle calibration.

In the second experiment, we considered a sample that
varies all the Mueller matrix coefficients; in this manner, our
sample was a dichroic film polarizer rotated within a range
of 120◦ with steps of 10◦. Furthermore, we placed the film
in a mechanical rotation mount (Thorlabs - CRM1T). Fig-
ure 3 shows the partial Mueller matrix coefficients, asterisks
corresponding to the experimental value, and the theoretical
approach’s continuous line. Table III shows the Root Mean
Square Error (RMSE), where them13 coefficient presents the
minimum deviation while the coefficientm22 represents the
maximum deviation of the measurement.

By considering the Lu-Chipman decomposition [16], we
can analyze the angular position of the polarizer through
tan(2θ) = m13/m12. In this case, it corresponds to the an-
gular position of the linear diattenuation parameter. Figure 4
shows the angular variation comparing the expected against
the measured value resulting in aRMSE = 0.651◦.

4. Conclusions and final remarks

We developed a demodulation algorithm for the rotating
polarizer-analyzer configuration based on theoretically cal-
culating the complex Fourier transform coefficients. We fo-
cused on retrieving the partial Mueller matrix and the initial
angles of the polarizer and analyzer for calibration purposes.
Considering the complex Fourier coefficients, the initial an-
gles of the polarizer-analyzer represent a constant phase on
each complex term that can be isolated and removed from
the Mueller matrix coefficients. The theoretical approach
presented has the potential to be implemented on other types
of polarimeters. For example, by taking advantage of the
complex Fourier transform coefficients on the dual rotating
retarder polarimeter.
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