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Impact of AIN interlayer on the electronic and |-V
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Here, we study a simulation model ofol; Al s3N/GaN passivated high electron mobility transistors (HEMTSs) on SiC substrate. The
research focused systematically on the effect of AIN interlayer on the electronic and electric characteristics. The 2D-electron gas density
of Ing.17Al9.s3N/AIN/GaN HEMTs is investigated through the dependence on various AIN layer thickness. We report calculations of I-V
characteristics, with 1.5 nm AIN thickness. We find the highest maximum output current of 1.81 A/mm at Vgs = 1 V, and more than 450
mS/mm as a transconductance peak. The Results are in agreement with experimental data.
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1. Introduction The proposed model of §n-Algs3sN/AIN/GaN het-
erostructures was improved. In this work we investigate the
impact of spacer layer (AIN) thickness on the electronic prop-

Compound materials from group IlI-N achieved significant” " q I h o ing th
progress in optoelectronic devices for a broad range of apgmes and current-voltage characteristics using the nextnano

plications [1-6]. The AlGaN/GaN HEMTs have been Suc_simulator [17]. The analysis of the 2DEG interface charge

cessfully used for high power, high speed and high tempergens_'_itY was accomplished by a self-consistent solgtion of
ature operations [7, 8], because its properties are consisteﬁ?mc’dmg‘?r and Poisson equa}tlons. The energy eigenval-
for high frequency and power that allow obtaining extremely!"es and elgenv_ectors are obtained by self-consistently solv-
high power densities in RF HEMT [9]. However, by switch- ing these equations.

ing the AlGaN barrier layer with InAIN, the device perfor-

mance may still be improved [10]. 2. Self-consistently model for 2D-electron gas

Recently, it has been proven that InAIN transistors have  interface charge density

good performance for applications in power device applica-

tions due to its strong piezoelectric effect at the interfacel able lillustrate the standard definitions of used symbols. By

[11]. Meanwhile, the sheet concentration in the channel ofNite difference method (FDM) we solve the Sétingerand
10'3 cm2 by the difference in spontaneous polarization isPoisson equations self-consistently and derive the conduction

larger than the other HEMTs devices based of llI-V [12, 13]. Pand, and wave-function of 2DEG in the channel [18]. The
] ) Schibdinger equation is [19]:
The electron sheet density af9 x 10'3 cm~2 in the

proposed device [14] with 30 nm T-shaped gate length has 77172 d 1 d
m*(z) dz

been obtained with SiC substrates, and a maximum oscilla- 2 "dz’
tion frequency of 340 GHz. At Vgs = 1V, the maximum
drain saturation current density of 1.65 A/mm has been re-

ported in 70 nm gate length Jn-Aly.s3sN/AIN/GaN HEMT d < » d > . p(z) —q[Np(z)—n(z)]
€s(2 plz)=— = .

) B(=) + V() = B(z). (1)

The Poisson’s equation in one dimension is [20]:

with a 1 nm AIN spacer layer thickness [15], and the peak e (2)
transconductance above of 380 mS/mm. The device [16] has
a 13 nm thick AlInN barrier layer containing 81% Al. Hall- The potential energy expressed [21, 22]:

Effect measurements at 77 K give a sheet carrier density of
2.5 x 1013 cm2, V(2) = —qp(z) + AE(2), ®3)

€0 €0
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It can be expressed spontaneous polarization by [25]:

TABLE |. List of symbols.

Pypan,al, Ny = —0.092 — 0.042(1 — x)

Symbol Description )
w Wave function + 007x(1 — (E) C/m . (9)
E The energy The current drain-source is given by [26]:
%) The electrostatic potential
m* The effective mass Ips = WhngnsE. (10)
& The dielectric constant As the current is constant in the channel, Eq. (9) can be
h Planck’s constant divided byr2 integrated from drain-source [27]:
n(z) The electron density distribution
. . W 1,Co Vis
o The sheet charge density at the interface Ips = —T [Vas — Vin] Vbs — - ) (11)
AE, The conduction band discontinuity
Ex The Eigenenergy of the k-th state whereVps is much lower thanVgs — Vi), the Eq. (10)
Np(z) The ionized donor concentration becomes [28]:
Nk The electron occupation at k-th state Tin = (WpnCo(Vas — Vin)Vbs) /L. (12)
EAlInN The dielectric constants of AlinN barrier
EGaN The dielectric constants of GaN channel The current of drain -source saturation is given by [27]:
Py, The spontaneous polarization W n C
_ _ 2
es1, €33 Piezoelectric constants Ips.sat = 27, (Vas = Vin)” (13)
Cis, Css Elastic Co”StamS_ As we know that these equations are difficult to solve
a(0), a(z) The values of lattice constant analytically, we used the nextnano device simulation soft-
U The drift mobility of electron ware [16].
w The width of channel layer
Vin The threshold voltage 3. Device structure
wherey(z) andn(z) are related by [23]: The cross sectional view of in7Alo.s3N/GaN device is de-

picted in Fig. 1, our device is grown on an insulating Silicon
n carbide substrate (SiC), g2n undoped GaN semi-insulating
n(z) =Y Vi) (2)ns. (4)  layer, and an AIN spacer layer with various thickness (d), and
k=1 basically composed of an 8 nm undoped InAIN barrier layer,

For each state, the electron density can be describet(ﬁ‘e device structures are T-shaped passivated with SiN re-

by [24]: cessed gate length of 70 nm.
' Finally, the source-drain spacing ig:2. In our calcula-
L i tions, the AIN thickness is used as a parameter. The 2-DEG is
m .
ngy=— | ——=dE (5) formed at the heterointerface ofylip; Al y.s3N/GaN as shown
wh? | 1+ e(E=Es)/kT in Fig. 1.
Ey
m*kT Ef—E . .
= (1 +exp [fkT kD : (6) 4. Results and discussions

Eigure 2 displays the calculated band diagram, and wave-
?unction of 2DEG in the channel of §n-Alys3N/GaN
HEMT structures without and with a 1 nm AIN spacer, under

Polarization sheet charge can be deduced at interface
InAIN/GaN by [21]:

B _ zero applied voltage.
Eainneaimy — Eanecan = —0, " We found that the sheet carrier density in the 2-D electron
ando is given by the following relationship [21]: gas is in the order 01019_ cm~—3. It was observed enhanced
electron confinement with AIN spacer layer. The height of
a(0) — a(x) C3(x) a potential barrier affects how the wave function penetrates
aly) = QTx) <e31(x) —e33() 033(96)) the barrier layer. The AIN spacer significantly increases the
barrier height and therefore suppresses this effect, due to the
+ (Pp() — Pyp(0)) - (8)  factthatAlGaNis a ternary material.

Rev. Mex. Fis69 031602



IMPACT OF ALN INTERLAYER ON THE ELECTRONIC AND |-V CHARACTERISTICS OF ... 3

Passivation
5 SiN | & Sin | D Gate
AN} e e | Sam I Alg N Barrier Laver
AIN ' I d AIN Spacer Layer with various
thickaess
TGN = i z(2DEG 2um GaN 5.1

2D

FIGURE 1. The schematic structure of INAIN/GaN device studied.

x10" x103 x1013
2,0 4

—8—1Ing 37 Aly g3N/ GaN
——Ing 17 Al g3 N/AIN/ GaN ([d=1nm) 5

1,8 4

M (cm?/VS)
N
(5]
ng (cm2)

1,6

0.0

Electron concentration (cm“"’)
Gamma conduction band (ev)

1.4 T T T i T T T T T T ' 0..5 1.'0 1.'5 2.'0
5 10 15 20 25 30 35 40 45 50 55 60

A AIN Spacer thickness (nm)
Distance (nm)

FIGURE 2. Electron density (ns) and gamma conduction band en- FIGURE 3. Mobility and sheet carrier concgntration (ns) of 2D -
ergy (E.) of Ino.17Al.s3N/GaN HEMTs with and without an AIN electron gas (2DEG)Vs AIN spacer layer thickness.

spacer layer. - S
f y Also in Fig. 3, we found that the electron mobility in-

creases while increase the AIN interlayer thickness.

4.1. Sheet carrier concentration {,) For 1.5 nm AIN, we observe the highest mobility

(1380 cni/V.s) for this structure, the sheet carrier concen-
The variation of the 2D-electron gas density for different AIN tration reache®.5 x 103 cm=2. Also, we see the electron
spacer layer thicknesses is shown in Fig. 3. The higher thgobility of 1253 cnr?/V.s, which is very similar to those
spacer layer thickness the better the sheet charge density (nghtained by Tingtinget al. [15].
with an almost linear dependence on the AIN spacer layer
thickness range between 0.5 nm and 2 nm. The increase 2, Transfer characteristics
electron density is due to the effect of piezoelectric and spon-
taneous polarization. Figure 4a) illustrates the transfer characteristics of

Due to the significant polarization effect, the AIN spacerIng.17Alg.ssN/GaN HEMT forVpg = 7 V.

may cause an increase in dipole scattering and, as a result, The thickness of the AIN spacer layer increased from
the 2-D electron gas mobility will decline. Spacer enhance®.5 nm to 2 nm. It is reported here that the drain current
conduction band shift below this critical thickness, which ef-increases by increasing the AIN thickness. The maximum
fectively reduces the penetration of the wave function intodrain-source current for 1.5 nm AIN is 1.81 A/mm due to the
the AIN barrier and thus reduces the effect of alloy disordeiincrease of the mobility with spacer layer and 2D-electron
diffusion. The electron sheet densityl8l x 103 cm~2is  gas density, while it decreases to 0.82 A/mmdo= 2 nm
roughly similar to that calculated in [15] for 1 nm AIN layer. due to the mobility degradation.
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FIGURE 4. Transfer characteristics ofdn-Al.s3sN/AIN/GaN HEMTSs for different AIN spacer layer thickness valuesIay as a function
of Vs, b) g as a function oV/gs.
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FIGURE 6. Drain characteristics of n7Alg.s3N/GaN HEMTs
without an AIN spacer layer. The gate-source voltage is stepped in
+1V steps from-3Vto1lV.

FIGURE 5. Comparison between the results of simulations and ex-
perimental [15] transfer characteristics of k¥Alo.s3N/AIN/GaN
HEMTs atVpgs = 7 V.

We have determined the transconductance at each bias o
(Va:s) as in the relationship below: 4.3. Output characteristics

Figure 6 illustrates the simulated drain curref{) versus
gate voltage Wps) for different values of gate-source volt-
age Vgs) of Ing.17Alg.s3sN/GaN HEMTs without AIN spacer
layer.

When the gate-to-source voltage changed freV to

O0lps

= ——|Vpg = constant
dm aVGS| DS

(14)
The transconductance’s bias dependentfiar at Vps =
7V is shown in Fig. 4b) for different thicknesses of the AIN
spacer layer. 1V, with the gate biased equal to 1 V , the maximum drain

All the device’s maximums of transconductance saturation current density was found to be 0.96 A/mm, this
(9m. max) are in the range o219 — 460 mS/mm. With the significant drain current is due to effects of the strong po-
decrease of the AIN thickness, beyond 1.5 nm, we observiarization in Iny 17Aly s3sN/GaN barrier layer, and the In-
thatg,,. max decrease from 458 mS/mm for 1.5 nm AIN layer AIN/GaN interface reached with (2DEG) sheet carrier den-
to 219.6 mS/mm for 2 nm owing to the significant decay insity. Also, the short distance of drain-source plays an essen-
the scattering of 2D- electron gas. tial role because it reduces the parasitic resistance.

The simulated transfer characteristics (Fig. 5) with a 1 The characteristics with a 0.5 nm AIN spacer layer are il-
nm AIN interlayer show good agreement with the previouslylustrated in Fig. 7. The highest value of drain current density
reported experimental results [15]. was 1.48 A/mm (al/gs = +1 V).
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FIGURE 7. Drain characteristics of imrAlo.ssN/GaN HEMTs ¢ o g Comparison of experimental (symbols) [15] with simu-

with 0.5 nm spacer layer. The gate-source voltage is stepped in +3,104 4ata of output characteristics o i Alo.ssN/GaN HEMTS.
V steps from-3Vto1V. ’ ’

25 T T high electron density in this newly proposed structure owed
Gs- d=1.5 nm to AIN material that holds the highest spontaneous polariza-
.o  stee: +1V tion among all l11-N.

With a 1 nm AIN spacer layer, we also report an excellent
agreement between experimental data [15] and simulation re-
sults (see Fig. 9).

5. Conclusion

In summary, we have studied the electronic and electric prop-
erties of InAIN/GaN HEMT. We find that a very high electron
charge density can be produced due to the strong piezoelec-
tric effect at the interface. The electron density increases with
the increase of the AIN thickness.
Vps (V) The increase in electron density is mainly due to the

. 8. Drain characteristics of knrAl- =N/GaN HEMT higher piezoelectric charge. Furthermore, we observed that

IGURE 8. Drain characteristics of imrAlo.ssNiGa S ith the optimum thickness (1.5 nm) of the AIN spacer for
with 1.5 nm spacer layer. The gate-source voltage is stepped in + . .
v he Iy 17Al g.s3N/GaN device, the electron density extremely

steps from-3Vto1lV. ) 135 X "

raises close t8.5 x 10*° cm~=, allowing an electron mobility
As seen from Fig. 8, for 1.5 nm AIN, we find that sat- considerably over of 1350 ctiV.s.

urated drain current density was 1.81 A/mm, which reflects  The simulations results find an excellent agreement with
the the experimental data.
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