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In this study, we research the behavior of a linearly-polarized light wave in an optical fiber and the rotation of the polarization plane through
the alternative moving framgN, C, W} in Minkowski 3d-space. Then Berry’s phase equations are discussed for electromagnetic curves in
the {C} and{WW} directions along an optic fiber via alternative moving frame in Minkowski 3d-space. Moreover, electromagnetic curve’s
{C} and{W} Rytov parallel transportation laws are defined. Finally, we examine the electromagnetic curve’s Maxwellian evolution by
Maxwell's equation.
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1. Introduction volving the study of the magnetic field and magnetic flow in
complex space [11, 12], which allows new search to show

Differential geometry is one of the largest fields used byUP Py moving this field to a new space with a 3D Semi-

many disciplines in analysis. One of these fields of science i{§i€mannian [13], that showed magnetic flows in Riemma-
undoubtedly physics. Recently, the most interesting subject!an surface [14], and the other _study on Sasakian _m_anlfold
in the field of physics is electromagnetic theory. Electromagihat researched contact magnetic flows [15]. Examining the

netic theory is also studied by sub-branches of mathematicé(ajedories of geometrically charged particles also enabled
for example topology, geometry, etc. the study of curves, which is the most important subject of

eometry. In this case, the geometric properties of the curves
in the field of topol 11 Th i ormed by the magnetic helices [16] and the trajectories of the
was in the field of topology [1]. €N, a New perspec IVecharged particles are examined [17, 18]. The magnetic field

on quantum theory was developed and its geometrical pha?%s been investigated in different spaces as well as on several

\t,)vaz ef>_<an(1jirtl)edth[2]. tTr:e Ry]Ect);]/’s culrvg atr_ld R);tov’s Ia(\j/v Ca?.sun‘aces and diverse frames [19, 20]. Bjorgum [21] stated:
€ defined by the rotation of the polarization plane and partls , ;g paper, it is suggested that a study of special vector

cle’s motion along an qptipal fiber. The mqtion ofa pa.‘rtic.lefields, properly chosen, might prove as fruitful for applica-
that enters the magnetic field and the rotation of polarizatio ion to phenomena described by vector fields as has been the
through the geometric phase are examined in Refs. [3—51

These papers led to the research of the trajectory of pola; tudy of special functions for problems expressed by scalar
. : . . ) ) juantities.” Using this significant paper, vector fields can be
ized light along the optical fiber. The phase in which thequ - ng this signif paper, v !

tum th ined f th i int ftudied from many perspectives. Magnetic fields are vector
quantum theory was exam’me rom the geometric point Okq 45 and this work has formed a very important basis for
view was studied as Berry’s phase [6]. And then, the rela;

! : the mathematical investigation of Maxwell’s equations. Then
tion between Berry’s phase and Fermi-Walker transport wa g d

: . . _ Marris showed vector field relations expressing dynamical,

Exg?llamed [:.]' f.V\ﬂ;h the mttroducgzc_m of the Gfuss'tl;]"’_mdaut')electromagnetic or other considerations [22]. Later magnetic

all magnetic field concept on a Riemann surtace, this pro theory and Maxwell equations were studied by several re-
lem has begun to be studied in the field of geometry [8, 9]'searchers [23, 24]

The following article that collects and presents all this in-
formation in this field is one of the leading ones [10]. This  Recently, optical fibers have become a very important
subject, which draws attention with great momentum, is refield that receive care in mathematics and geometry. Polar-
searched by making use of all areas of geometry. Importarized light is generally thought as a transport of an electro-
studies have been presented to the scientific world with interagnetic wave. When it is assumed to propagate within the
esting results that emerged by examining the magnetic fieldptical fiber, it is well-defined, owing to the Maxwell's equa-

in different spaces. Some examples of these studies are: itions. The set of Maxwell's equations implicitly shows how

The first mathematical perspective on quantum theor
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electromagnetic field vectors propagate and explicity show2. Maxwell evolution of alternative moving
the sources of the fields. In the optical fiber configuration frame {N,C,W}

of uniform, isotropic, nonconducting, free-from charge, non-

dispersive, etc., the evolution of the space curve is a veryet E; be Minkowski 3d-space given by the standard metric
influential way to understand many physical processes such

as vortex filament, dynamics of Heisenberg spin chain, inte- {@,y) = 21y + @2y2 — T35,

grable systems, soliton equation theory, sigma models, relgynere, — (21, T2, 23) andy = (y1, v, y3) € R3 [4].

tivity, water wave theory, fluid dynamics, field theories, lin- Let v be a curve in E that has 6ne of three casual char-
ear and nonlinear optics. Evolution systems and equationgeiers depending on the tangent vector of the curve. So that
possess important geometric applications and meanings. Fgiig tangent vector being if (v,v) > 0 or v = 0, the curve
example, the sine-Gordon equation, which is used as a modgl spacelike, if(v,v) < 0, the curve is called timelike, and
in nonlinear optics, field theories, and dislocation of CrYS then (v, v) = 0 andv # 0, it is null.

tals. The Betchov-Da Rios equation or the filament equation, Let the{ N,C, W } frame with the curvatureg(s) and

is an idealized example of the evolution of the centerline ofay(s) alongy : I ¢ R — E? is a non-null regular curve in
thin vortex tube in a 3D inviscid incompressible fluid [26,27]. \1inkowski 3d-space. The alternative moving frame’s vec-
This equation also constrains the evolution of curves in maggq, g are{N,C, W}, the principal normal vector field, the
netohydrostatic and steady hydrodynamic problems of nestegkjyative of principal normal vector field, and Darboux vec-

toroidal flux surfaces [28, 29]. The relationship between the, fie|q, respectively. Derivating of the alternative moving
solutions of the cubic nonlinear Séfuinger equation and the f5me is:

localized solutions of the induction equation was discovered

by Hasimoto [30]. He described a special transformation, in{ Vs 0 f(s) 0 \/N
cluding complex curvature and torsion functions of the curve] Cs |=| —enecf(s) 0 g I ¢, @
At the same time, many application areas have been found i Wi 0 —ecewy(s) 0 w

the field of physics in this case. If we refer to the studiesypere

on the above-mentioned issues, Aritra K. Mukhopadhsty

al. found the rogue soliton equivalent in the spin system to (N,NYy=en (C,C)=¢ec (WW)=cew. (2
link about non-linear Sclkdinger equation with the contin- ) )
uum Heisenberg spin chain [31]. Banica and Milot reviewed ~ FOr all that, the vector products of alternative moving
the vortex filaments studies done so far and showed a coff@Me’s vectors are given,

lection of new situations of filaments collapse [32]. M. Gr- _ _

bovic and E. Nesovic defined Backlund transformation of a NxC=W, CxW=enewh,
null Cartan curvein Minkowski 3d-space as a transformation N x W = —ecewC, 3)
which maps a null Cartan helix to another null Cartan helix_ . ]

and via the Da Rios vortex filament equation derived the vorin Ref. [25]. In this study we assume that the curve is a non-
tex filament equation for a null Cartan curve [33]. Aner null curve. Therefo_re, f_rame’s vector f|elqls consist of tWO
al. studied the relationship between the Burgers’ equatioﬁpace“ke and one timelike vectors on which the curve lies.
and the pseudo-null vortex filament equation in Minkowski 1NUS, We can write yecew = —1.

space [34]. Hesant al, researched the evolution of two ~ 3-dimensional vectors fields and the geometry of cur-
profiles, in a positive Kerr medium and the effect of initial Vature and torsion of vector lines applications used to
beam-width [35]. Authors indicated numerically that it is 96t these vectors as nonholonomic coordinates are shown
possible to generate bright spatial quasi-solitons, in medif! Minkowski space via the alternative moving frame.
that are defined via the (1+1)-Dimensional local and nonlocaf/?s, /3¢ and §/6w are the directional derivatives in the
Nonlinear Schisdinger Equation, via initial condition field #V:C andW, directions, respectively, for the alternative mov-
distributions that are aside from the analytical solution [36].i"d frame of a non-null curve in E} [22]. Here we assume

In Ref. [37], via Nonlinear Schrodinger Equation, the rela-thaty(s ¢, w) is anon-null curve lying in the 3-D Minkowski
tionship between two higher order bright spatial solitons were?Pace.

researched by authors, where the solitons launched in a paral-

lel way. N. Qirbliz investigated the nonlinear Sélinger of Se ecCygrad,

repulsive type for timelike curves and nonlinear heat systems 5

in a general intrinsic geometric setting including a normal — =ewWygrad,

congruence in 3-dimensional Minkowski space [38]. ow
i =enNgrad. 4)
ds

Assume that a directional derivative of an arbitrary vector A
with respect to directiona} € {N,C,W} and assuming the
directional derivative) A/dn as follow:
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5A:<N-M>N+(C-6A>C+<W-6A)W7

81 o1 1) o1) divN = ecfos + ewbws, (6)
from Ref. [39]. divC = —en f(s) + EWWiC, @)
Thus, we can calculate the derivatives of the frame vec- ow
tors in the C direction and in thd/ direction, respectively , J
’ ’ d — J— 8
and choosd N, C, W} instead of the A vector in the above ww 60060W’ ®
equation, and, w, s instead of; , and write the anholonomic 5 5
coordinates. Qn =curlN - N = — <—W . %N + C'éwN) ,
Other geometric equations in terms of anholonomic coor-
dinates are given as: Qo = curlC-C = e (N- ;0 + g(s)> 7
w
0 —CaN )
8T e Qw =curllV - W =ey (—N-&W—Fg(s)). 9)
1)
Ows = W@N’ () With the help of these geometric properties and equations (1-
9) along c-directional and w-directional the derivatives of al-
| ternative moving frame’s fields are calculated as follows,
5 N 0 eclos ew(enQw —g(s)) N
67 C = —509(;3 0 ENdiUW C N (10)
C\w —Qw +eng(s)  dioW 0 w
5 N 0 —ec(enQc —g(s)) ewlws N
S C | =1 en(enQec —g(s)) 0 divC +en f(s) C (11)
v\ w —enbws endivC + f(s) 0 w

The Lorentz force of a magnetic vector fidldis defined

by the skew symmetric operat@rand is given by
B(X) =V x X Case 1.Th§ var_iation of_ the.electric field vecto_r E betv\_/een
’ any two points in the: direction for the alternative moving
When a charged-point particle enters the magnetic field unddrame{N, C, W} of the non-null curvey(s, c, w) can be ex-
the influence of the Lorentz force, it follows a new trajectory pressed as,

called a magnetic trajectory. The magnetic trajectories of the 5 —
magnetic vector field” satisfy the following equation &E(s, c,w) = AN+ XC + A3W. (12)
P(t) =V x t = Vit, The electric field is right angle t&/ and if we assume
in Ref. [40]. that because of absorption, there is no loss mechanism in the

optical fiber, we can write the following equations:

2.1. Maxwell evolution for two cases of electric field (N,E) =0 (E,E) =ec. (13)

Ber.rys phase in the d|rect|qns ¢ and w arises with the. PrOP3s e take the derivative of the first (13) and use (11), we get:
gation of an electromagnetic wave along with the optic fiber
for the alternative moving frame of the non-null curye <5N

Let optic fiber be defined as a curve that is a non-null Ss

curve~(s, ¢, w) via alternative moving frame in Minkowski .
When the necessary calculations are made, we get the fol-

,E> = —€N)\1.

space. The electromagnetic wave propagation is in the dire(]:- o

tion of N = (s, ¢, w) the polarization of the electromagnetic owing:

wave is mentioned by the_dirgctiqn of the electric field vector A = —eneclonBC — enew (enQw — g(s)EW.

E = (s, ¢, w) and magnetic field is shown &5 = (s, ¢, w).

Here basically the electric field will be shown perpendicular  Consideringe yecew = —1, that—eyew = ¢ and
to N. Then, the cases wheli€ is perpendicular to the di- —eyec = ew , We can arrange:

rection ofC' and perpendicular to the direction Bf will be

examined. )\1 = €W(90NEC + EC(ENQW — g(S))EW (14)

Rev. Mex. Fis69061301
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If we take the derivative of the second (13), we can get: where

C

bringing together (14), (13), and (11) we get Using (22) and (10), derivating (21), we can get,

sV

Ec = (5W0(;NEC + Ec(e’:‘NQW Sc = (EWQCNEW - 5CEC(_QW + 5Ng(5))N
—g(s))E")N + \(E x N), (15) + (enEY — ecdivW.EC)C
where) is a constant term. + (—scECC + divW.EWW, (23)

With the last equation, we can find the rotation of the o
electric field in thec direction around:. Moreover, we can Which satisfies

suppose that = 0, hereby we can finalize which is Rytov 5V SE
parallel transport in the direction with the conditions given <50, E> <567 V> =0,
above.
. and
E.= —en(E,N.)N. (16)
1% N ON v o
Furthermore, the Fermi-Walker transportation law is cal- ¢’ + Se’ -

culated in Minkowski space as:
When we consider all this, we can say that magnetic field
BfW = B. 4+ en(B.N.)N — (B.N)N... (17)  and electric field have alike Berry’s phase in the same condi-
) tions as follows,
Generally, we can write:

E=enECC+ewEVW, (18) Vo= —en(V-No)-N. 24)

We see that! is the Rytov parallel transported along the ¢
direction if and only if it is Fermi-Walker parallel transported
in thec direction along with optic fiber via alternative moving
frame of the non-null curve in Minkowski space.

The Lorentz force is the force acting on a charged parti-
cle moving in a non-null electromagnetic field in Minkowski

+ (enEC + ecewdivW.EW)C + (W.EC)W. (19) Space. Atthattime, the electromagnetic field in tdrec-
tion along non-null curve via alternative moving frame with

If the electric field is assumed to be Rytov parallel trans-respect to anholonomic coordinates help of Lorentz equa-
ported in c direction, then comparing (16) and (19) satisfiegion ¢(E) = X x E whereX is a Killing magnetic field

whereE¢ andE" are optionally smooth components of the
‘¢ andw. Derivating of (18) and combining of (10) we can
write:

6 —
%E = (—€N5090NEC —enew (enQw — g(s))EW)N

that; in Minkowski space and (10) is given as follows,
ES¢ 0 divWV E°€ oE
(EXV> = ( —divW 0 > (EW> (20) (¢c(E),N) = —(6(N), Ec) = <50’N>
Therefore, we can accomplish that (20) describes the ro- = —cclenEC — e (enQw — g(s))EY.
tation of the polarization plane in the c direction along the
optic fiber thus Berry’s phase= (s, ¢, w) in the c direction When necessary arrangements are made, we can write,
is defined by:
5 ¢e(N) = eclonEC
o divW. +ew(enQw — g()EY + a1 B, (25)
We can state the magnetic field vector V in relation to the 6.(C) = “AEW 4+ a,EN, (26)

ingredient of the electric field as;
(W) = AE€ + azE"N. (27)
V =enEVY.C —ecEC.W, (21)
Taking into account Egs. (25-27) and (10), the Lorentz force
that satisfies the following conditions: in the C direction along with optic fiber that is determined
non-null curve for the alternative moving frame implies the

VLIE and VLN, (22) " following matrix form:

Rev. Mex. Fis69061301
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( de(N) ) ( 0 ecbon  ew(enQw —g(s)) ) ( EY )
¢.(C) | = —enbon 0 Y EC |. (28)
—fN(ENQm/—g(S)) A 0

Case 2.The variation of the electric field vectd between
any two points in thev direction for the alternative moving 'Generally, we get;

frame{N, C, W} of the non-null curvey(s, ¢, w) can be ex- o W
pressed as, E=enE"C+ewE" W, (35)

iE’(S’ e,w) = M N + AC + AW (29) wheLeEC gndEW are optionally smgoth components of
ow andw. Derivating of (34) and combining of (11) we can cal-
The electric field is perpendicular #§ and if we assume culate:
that because of absorption there is no loss mechanism in the 5 —

optical fiber, we can get: sul = (—enewbwnEY + (enQc — g(s))EY)N (36)
(N,E)=0 (E,E) =c. (30) + (enES + ew (endivW + f(s))EV)C
Derivating of the first (29) and utilizing the (11), we com- + (cwEY + en(enf(s) + divC)EC)W.
pute P
If the electric field is presumed to be Rytov parallel trans-
<5N,E> — —enA ported in w direction, then comparing (32) and (35) implies
dw that:
If abbreviations and necessary calculations are made, we( ES ) _ ( 0 sc(sNdivC—l-f(s))) (Ec )
can write the following: B, cc(divCten f(s)) 0 EY )"
A — — O EW — O — EC. Therefore, we can accomplish that (36) describes the ro-
! ENEWIWN eneclentle - g(s)) tation of the polarization plane in the w direction along the
Consideringeyecew = —1, —enyew = ec and  optic fiber thus a Berry's phase= (s, c,w) in the w direc-
—eNEC = Ew , WE Can arrange: tion is described by:
/\1 = 509WNEW + EW(ENQC — g(S))EC (31) %7" = divC + f(S)
w

If we take the derivative of the second (29), we can orga- o . .
We can state the magnetic field vector in relation to the

nize: ingredient of the electric field as:
O0F E)—o
e, T VvV =EY.C - E°W, (37)
After that we collected (29), (30), and (11) we get that satisfies the following conditions:
E, = (ecOwnE" + ew (enQe VIE and VLN,
—9(s)EC)N + u(E x N), (32)  where
wherey is a constant term. Ve —EW YW — gC.

Considering the last equation we get the rotationEof

in the w direction aroundr. Furthermore, we assume that Using (11),V LE, V LN and derivating (37), we can get,
@ = 0, in this manner we can conclude thatis non-null

parallel transport in the direction with the above terms. gl = (Qc — eng(s)EW + enbwnEC)N
w
Ey = —(E,Ny)N. (33) + (BY — en(divC + f(s))E€)C
Additionally, this motion can be defined through the + (—ES + (divC 4 en f(s)) E™ )W, (38)

Fermi-Walker transportation law in Minkowski space is as

follows: which satisfies

BEW = B, + en(B.N)N — (B.N)N,.  (34) <‘;VE> N <<;E V> o,
w w

Rev. Mex. Fis69061301
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and

<5V N>+<5N V>=0. (bu(E), N) = ~($(N), Ew),

ow’ ow’

When we consider all this, we can say that magnetic field <6w’ N>=—€W9WNEW+€N(€NQC—9(8))EC~ (40)
and electric field have alike Berry’s phase in the same condi-

tions as follows; When necessary arrangements are made, we can write;
Viy = —(V.N,,).N. (39) bw(N) = ewbwnEY —en(enQc
Eis the_ Rytov pa_rallel transported in the w dirgction if —g(s))EC + a1 EVN, (41)
ireoton along with optic fber va the ateratve moving 0u(C) = -ABY + aaB, (2)
frame of the non-null curve in Minkowski space. buw(W) = AEC + azEN. (43)

Then, the electromagnetic field in the w direction along
non-null curve via alternative moving frame with respectTaking into account Egs. (41-43) and (11), the Lorentz force
to anholonomic coordinates help of Lorentz equation inin the w direction along with optic fiber that is determined
Minkowski space and (11) is given as follows, non-null curve for the alternative moving frame implies the
| following matrix form:

(bw(N) 0 —EN(ﬁNQC —g(S)) EWeWN EN
ou(C) | = | eclenfc —g(s)) 0 -A EC . (44)
Puw(W) —enfwn A 0 EW

2.2. Maxwell's equation for electromagnetic waves in
Minkowski 3d-space !

V.E= <N.5+c5w5> oz,
Maxwell's equations emerged by combining Faraday’s and 0s oc ow

Gauss's law and finding a new equation. It has been a ground- ~N.E LC. OF o 0E

breaking breakthrough in understanding electromagnetic the- 0s oc ow ’

ory. Maxwell’s equations, consisting of these four equations o

have been an important method for studying electromagnetiat satisfies:

field vectors. Maxwell's equations which are called Gauss’s

law, Magnetic monopoles, Ampere-Maxwell law, and Fara- ES — E) = —EdivC + EV divW. (49)
day’s law are given as follows,

In the same way, noting thd is right angle to the tan-
gent directional and (19),(35), and (46), we can compute

V.E=0, (45) s s 5
vv=(Nv.-23c2 - wl).v
V.V =0, (46) < 5s 7% 5w>
VxV= ev(;—E, 47
Y 5 5 5
VxE=-—- (48) ds dc dw
which implies that,

wheree andv have the same values at all points &8d:, w) B! — By = ECdivW — EV divC. (50)

andu space, time variables, whefeis electric field and/

is magnetic field. If we consider that the electric field is per-  If we think more (49) and (50), then it is calculated that
pendicular to the tangent direction and (19), (35), and (45)L.aplacian-like equations throughlines and w-lines of the
we can calculate, electromagnetic waves are as follows,

Rev. Mex. Fis69061301
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Case 1.In this case, it was presumed that the vediblies

52 52 on a plane perpendicular f§. Thus we have
oW 7EW _ EC . _ .
52 02 ((divWW)e — (divC)y,)

(N,E) =0.
N EW((divW)w — (diveC)e) Now taking the derivative of this equation we acquire
+ divW (ES + EY) S -
—divC(EgV—i—Eg), <55,E>—|—<68,N>:0.
This equation satisfies that:
j—;EC - %EC = EY((divW),, — (divC).) <65JZE> _ <?§N>

— EY((divW),, + (divC).) _
After that we use Eq. (51) and last equation, we can calcu-
+ divW (ES + EV) lated

s C w N
divC(E; + E,)). <655’E> — —en)L (52)
If we consider that the electric field is perpendicular to
the tangent direction and (19), (35), and (47), we get that Using Eq. (51) and Eq. (52), we can compute
A= — E,C).
vaxvea (N0 el wi) iy 1= —enf(s)(E,C)
ou ds dc ow

Presuming there is no loss mechanism due to absorption, we

oF 0 1) ) have

GUE— (NX(S,SV+CX(SCV_WX(S’IU ),
(E,FE) =c,
which satisfies that,
where c is a constant. Then taking the derivative of this equa-

E .
L (=ES+EY divW—E} +E° (f(s)+divC) N tion we get,

ou
E
+ (BS = QcEY — 0wsE™) C <‘ZS E> =0.
W c w
+ (=B + QwEY —6osET ) W. Thus, the coefficients in Eq. (51) are determined as fol-
In the same way, noting that is right angle to the tan- OWS
gent directional and (19),(35), and (48), we can write No = ME, W), s = —\E,C).
fiv =VxE= Ni + Oé — Wi x F, Lastly, from Eg. (51), we can write
ou ds oc dw
5 Ed
Ly _nxlerexiE-wxlE 557 = ~enf)E ON
ou ds oc dw
E —MFE .
which implies that, +ME,W)C = XE, )W, (3)
5 By thinking IV is parallel transported we gat= 0.
V= (BY — E€divWV + ES — EW (f(s) + divC)) N Then, if we use the equation in which the electric field
v vector is written in terms of alternative moving frames, we
+ (-EY +QcEC + 6wsE™)C have
+ (B — QwEY +0csEC)W. E = ec(B,C)C + ew (B, W)W. (54)

In the last equation, we can take the derivative and consider
alternative moving frame equations, thus we obtain
Let us consider the variation of the electric field vector 5 — ,
in the s direction by means of the alternative moving frame 5. L= —enf(s)(E,C)N + (ec(E,C)
. S
{N, C,W}.Then we can express the following

3. Electromagnetic theory

5 = —ecg(s)(E,W))C + (ew (E, W)
%E = AN + XC + A3W. (51) +eog(s)(E, )W, (55)

Rev. Mex. Fis69061301
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Now, let us take the derivative of Eq. (53) and compare withUsing Eq. (51) and Eq. (56), we compute the following

Eq. (55) to get the matrix form below:
Ay =enf(s)(E,N) +ecg(s)(E,W).

<<E7C>/> = ( 0 9(s) > (<E’C>> Presuming there is no loss mechanism due to absorption, we
(E, WY —ewecg(s) 0 (E,W))" i g ption,
On the other hand, using the definition of electromagnetic

field via alternative moving frame with respect anholo- (E,E) =c,

nomic coordinates and with the help of Lorentz equation i

. : "Where ¢ is a constant. Then taking the derivative of this equa-
Minkowski space, we get

tion we get,
)
(9(B). )= = (0(N). )= { 52 ) = = en (6)(B.C). (2.5) =0
(¢p(E),C) = —(¢(C),E) = <‘ZE, C> =ecME,W), Thus the coefficients in Eq. (51) are determined as follows
S

AL = ME, W), A3 = —\(E, N).

oF
EYW)=—{(¢(W),E)={( — W) =—ewAE,OC).
(6(E), W) (6(W), B) < ds > ew ) Lastly, from Eg. (51), we can write
If necessary calculations are made, we can write o=
/ S E = (enf(5) (B, N) + ecg(s) (E,W))C
N) = C + a1 N,
HN) = enf(5)0+ar — ME,NYW + \E,W)N
#(C) = ecAW + aaN,

E=¢en(E,N)N +ew (E,W)W. (57)
d(W) =ewAC + agN.
In the last equation, we can take the derivative and consider
Then, Lorentz force along with optical fiber that is deter-alternative moving frame equations, thus we obtain
mined non-null curve for the alternative moving frame means 5 —

the following matrix form: s-E=(en(E, NY)N + (en f(s)(E, N)
S

¢(N) 0 f(s) 0 N _ E,W)C E,WY)W. (58
(¢<c> e TN () cog(s) (B, W))C + (w (B W))W, (58)

p(W) 0 ewA 0 w Now, let us take the derivative of Eq. (57) and compare this
This matrix has a structure that relates the Lorentz force to thgerlvatwe with Eq. (58) to get the matrix form below.
{N,C,W} frame.We know that Lorentz equatiaf{ ) = (E, N}' 0 0 (E,N)
X x E where X is a Killing magnetic field in Minkowski ((E W>/> = ( 0 0 > ((E W))'

space. So we can write
On the other hand, using the definition of electromagnetic

d(N)=V x N. field via alternative moving frame with respect anholonomic

] ) coordinates help of Lorentz equation in Minkowski space, we
Also, if we express/ in terms of the framg NV, C, W} as et

follows
VN 0C bl (9(B) ) = ~{o(9). B) = (52,3} = ewh (7).
and calculate the coefficients, we obtain If necessary calculations are made, we can write
V =ecAN +ecew f(s)W. P(N) = —enAW + a1 C,
Case 2.In this case, it was presumed that the vediblies ¢(C) = —enecf(s)N — g(s)W + a2C,
on a plane perpendicular @. Thus we have (W) = ew AN + asC.
(C,E) =0. Then, Lorentz force along with optical fiber that is deter-

. - . ) ) mined non-null curve for the alternative moving frame means
Now taking the derivative of this equation and using they,, following matrix form:

derivative of the alternative moving frame, we acquire
5o $(N) 0 fls)  —enA\ [ N
<E> = —ech. (56) P(C) | =| ewf(s) 0 —9(s) N E
s d(W) ewA  —eng(s) 0 w
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This matrix has a structure that relates the Lorentz force In the last equation, we can take the derivative and con-
to the {N,C, W} frame. We know that Lorentz equation sider alternative moving frame equations, thus we obtain
¢(E) = X x E where X is a Killing magnetic field in

Minkowski space. So we can write 5—]?? = (en(E,N) —enf(s)(E,C))N + (ec(E,C)
S
V x N =¢(N). +enf(s)(E,N))C + (ecg(s)(E,C))W.  (61)
Also, if we express/ in terms of the framg N,C, W} as  Now, let us take the derivative of Eq. (60) and compare this
follows derivative with Eq. (61) to get the matrix form below:
V =N + boC + by W, (E,N)'\ _ 0 F(s) ) ((BNYY
(E,C) —ecenf(s) O (E,C)

and calculate the coefficients, we obtain On the other hand, using the definition of electromagnetic

field via alternative moving frame with respect anholonomic
coordinates help of Lorentz equation in Minkowski space, we
get

V =—g(s)N +enAC +ecew f(s)W.

Case 3.In this case, it was presumed that the vediblies

on a plane perpendicular i". Thus we have SE
(6(B), N) = ~(¢(N), B) = (5=

If necessary calculations are made, we can write

,N> = ENA<E,C>.
(W,E) =0.

Now taking the derivative of this equation and using the
derivative of the alternative moving frame, we acquire $(N) = —enAC + aiW,
$(C) = AecN + a2 W,

ow
<63’ i > T (59 H(W) = —coewg(s)C + azW.

If we take notice it using Eg. (51) and Eg. (59), we computeThen, Lorentz force along with optic fiber that is determined
the following non-null curve for the alternative moving frame means the
following matrix form:
A3 = ecg(s)(E, C).

@(N) 0 —enA 0 N
Presuming there is no loss mechanism due to absorption, w o(C) | =1 Arec 0 9(s) ¢ |.
have p(W) 0 —ewecyls) O W

This matrix has a structure that relates the Lorentz force
to the {N,C, W} frame. We know that Lorentz equation
@(E) = X x E whereX is a Killing magnetic field in
Minkowski space. So we can write

ds’ ' Also, if we expresd/ in terms of the framg N, C, W} as

follows

<E7E> =

wherec is a constant. Then taking the derivative of this equa
tion we get,

Thus the coefficients in Eq. (51) are determined as follows

V =b1N 4+ byC + bsW,
A = ME, C), Ay = —\(E, N). Y b,
and calculate the coefficients, we obtain
Lastly, from Eq. (51), we can write
5 V =g(s)N —enAW.
6—E =XME,C)N — X(E,N)C
S .
4. Conclusion
+ (en(E,N)N +ec(E,C)C)W. (60)

o _ In this study, we found the movement of polarized light along
By thinking IV is parallel transported we get= 0. Then,  optical fiber by calculating the equations of the electric field
if we use the equation in which the electric field vector isand magnetic field in cases where the frame of the space is

written in terms of alternative moving frame, we have at a right angle with respect to the vector fields. Thus, we
had the opportunity to examine the action of light in the field
E=en(E,N)N +ec(E,C)C. of geometry. In this way, the relationship of the action of

Rev. Mex. Fis69061301
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light in space with special curves, which is an important sub-evolution equations relationship between spherical coordi-
ject of geometry, can be investigated. At the same time, waates to better understand the solutions of the equations.
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