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Star shape interferometer with reduced vibration sensitivity
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An optical interferometer has a high sensitivity to displacements of the mirrors and other optical elements, something that becomes a source
of fluctuations in situations where one is only interested in the phase change due to a sample inserted in one of the paths. A Sagnac
interferometer minimizes this sensitivity by having the two beams follow opposite trajectories, so that a mirror displacement gives a similar
phase change for both paths, but makes it impossible to insert an element that affects only one path. We present a new kind of interferometer,
the Star interferometer, where the two beams still interact with all the optical elements while having different trajectories. We obtain a
common phase change in both trajectories by having a different number of turns for each path. Having independent access to both trajectories
makes it possible to determine the phase change due to a sample inserted in one of the paths, opening new possibilities for interferometric
configurations that maintain a reduced sensitivity to displacements of the optical elements.
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1. Introduction

Laser interferometry is used as a tool to measure fundamental
constants and test frontier physics [1, 2]. These interferom-
eters opened the way to incredibly sensitive measurements.
The best example is the Laser Interferometer Gravitational-
Wave Observatory (LIGO) with enough sensitivity to detect
gravitational waves [2, 3]. However, most of the interfero-
metric techniques currently used have stability problems as
they are susceptible to mechanical and thermal noise [4–8].
One exception is the Sagnac interferometer, because the two
counter-propagating beams follow the same path in oppo-
site directions, giving the interferometer good common noise
rejection, at the price of the inseparability of their beams.
Similar noise rejection is obtained with counter-propagating
Mach-Zehnder interferometers [9].

Having different paths allows one to manipulate each
beam independently [10–12]. The Mach-Zehnder interfer-
ometer using the displaced Sagnac configuration [13] has par-
allel independent paths while keeping some of the noise re-
jection properties of the Sagnac interferometer [14]. An in-
terferometer like this is useful to determine the phase change
in the light due to the presence of a sample. Any mirror dis-
placement becomes a source of noise for the measurement,
making it desirable to work with configurations that are not
sensitive to mirror motion.

Here, we present a new type of interferometer that we call
“Star” interferometer, which has good common mode noise
rejection with beams that follow completely different paths
giving rise to a new family of interferometer configurations.
The name is related to the star shape of the paths in the in-

terferometer and not to a particular use it may find for as-
tronomy. Both beams interact with the same optical elements
giving the interferometer enhanced insensitivity to displace-
ments of these components. We demonstrate experimentally
the sensitivity suppression to displacements by scanning si-
multaneously the Star and a Michelson interferometer. We
emphasize that the Star interferometer mantains full sensitiv-
ity to phase changes due to samples inserted in one of the
paths.

The phase difference between the two interferometric
paths depends on the wave vector (k) and the Optical Path
Length (OPL). The frequency fluctuations and the vibrations
and expansions become a noise source. An equal arms in-
terferometer has no frequency sensitivity. Indeed, the Free
Spectral Range (FSR) of a Michelson interferometer is given
by [15]

∆ν = c/2∆L, (1)

with ∆L the arm’s length difference andc the speed of light.
A reduced thermal sensitivity is obtained by mounting the
cavity in materials with a small thermal expansion coeffi-
cient such as Zerodur [16], ULE materials [16–18] or crys-
talline silicon [19]. These cavities use clever geometries and
mounts to minimize the coupling to the relevant vibration
modes [20, 21], and reduce the thermal noise through the
use of mirror substrates with high mechanical quality fac-
tors [18, 22, 23]. In a Sagnac interferometer a displacement
of the mirror changes the OPL of both paths by the same
amount. The elimination of the sensitivity to mirror displace-
ments is accompanied by the suppression of frequency sen-
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FIGURE 1. a) 3D view of the configuration for the Star interferometer. The laser beam is divided in two paths with the input beam splitter
(BS1). One path makes one complete turn in the star (5b, red) trajectory. The other makes two turns in the pentagon (5a, blue) path. Both
beams overlap on the output beam splitter (BS2) and interfere on the detector (D1, purple arrow). b) Top view of the interferometer.

sitivity since∆L = 0 (Eq. (1)). It is possible to recover
the frequency sensitivity by introducing an asymmetry be-
tween the counter-propagating paths of the Sagnac interfer-
ometer [11,12,24].

2. Star interferometer principle

Inspired by the Sagnac interferometer, we present here a
novel type of interferometer that has reduced vibration sen-
sitivity with a geometry that sends both beams through all
the mirrors but not following the same trajectory. We keep
the suppression coming from having a common shift of both
beams due to the mirror displacement, but now each beam is
accessible independently. Figure 1 shows the Star interfer-
ometer that has different trajectories for the two beams (pen-
tagon in blue and star in red) and still they share common
mirrors. The change in optical phase for each beam in a sin-
gle turn due to a mirror displacement byd (Fig. 1) is [25]

∆φ = 2kd cos θ, (2)

with k the magnitude of the wave vector andθ the angle be-
tween the beam and the normal to the mirror. The change
in the OPL of the two paths in Fig. 1b) is different since the
incident angle for the pentagon (θp, blue) is not the same as
that of the star (θs, red). We found that a very close match
can be achieved by havingm round trips on the pentagon
trajectory (∆φp ∝ m cos θp) andn round trips for the star
(∆φs ∝ n cos θs), that is by makingm cos θp ' n cos θs, as
we demonstrate below. Figure 1a), for example, shows the
case ofm = 2 round trips for the pentagon andn = 1 round
trip for the star. The same idea can be extended to other poly-
gons creating a new family of interferometer configurations
for each one. They need to be convex symmetric figures in
order to achieve simultaneous alignment of both trajectories
and must have an odd number of sides so that each trajectory
hits all the mirrors, that is, they must be regular polygons
with N = 5, 7, 9, ... sides.

3. Vibration sensitivity suppression

Consider a displacementd of one mirror as shown in Fig. 1b).
We calculate the phase change in the pentagon and star paths
as a function of the number of turns on each one, considering
for now that all the figure lies in one plane. The total phase
change at theD1 detector for each path is given by the phase
change right at the mirror (Eq. (2)) multiplied by the number
of turns. The difference in phase change for two paths, for
example, the pentagon (p) with m turns and the star (s) with
n turns would be

∆φp −∆φs = 2kd[m cos (θp)− n cos (θs)]. (3)

We compare this phase change with that of a Michelson in-
terferometer (∆φM = 2kd). For a comparison with a Mach-
Zehnder (with an incidence angle of 45◦), the phase change
is
√

2 times smaller than a Michelson. We define the sensi-
tivity suppression (S) as the ratio of the phase change of the
Michelson interferometer compared to that of the Star inter-
ferometer, that is

S =
∆φM

∆φp −∆φs
=

1
m cos (θp)− n cos (θs)

. (4)

The closer the denominator is to zero, the bigger the sup-
pression. This is our main result, shown here by this simple
calculation, and validated by the experimental demonstration
(and by a numerical calculation of the complete OPL). It is a
simple but elegant solution, adding multiple turns on an in-
terferometer that has different incident angles on the mirrors
in order to obtain a very good suppression to mirror displace-
ments. This result is independent of the size of the interfer-
ometer or its operating point. It is important to notice that this
works not only for a single mirror of the interferometer, but
for all the interferometer as we demonstrate below, so that the
complete interferometer has the same vibration sensitivity
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FIGURE 2. Trajectories available in the polygon withN = 7 sides,
which include the7a in blue,7b in red and7c in yellow. The cor-
rect orientation for the input beam and beam splitters (BS1 and
BS2) depends on the pair of trajectories chosen.

suppression, considering that vibrations correspond to mirror
displacements.

Table I gives the phase change rounded to three digits for
each of the possible trajectories in polygons with 5, 7 and 9
sides and different number of turns. The result is normalized
to the phase change2kd of the Michelson interferometer. In
other words, Table I computes the value ofΦm = m cos θ.
Each column in Table I is labeled by a number and a letter.
The first indicates the number of sides of the polygon. The
second determines the trajectory. Starting at the input mir-
ror, a corresponds to the figure obtained when joining each
consecutive mirror, as it is the case for the (blue) pentagon
of Fig. 1a).b corresponds to the case where we jump by two
mirrors as in the (red) star path. The jump inc is by three
mirrors, as in the yellow path of Fig. 2, and so on. The an-
gle θi = π[(1/2) − (i/N)] is the one used in Eq. (2), with
i = 1, 2, 3, ... corresponding toa, b, c, ..., andN the number
of sides of the polygon.

TABLE I. Normalized phase change for different number of turns
(Φm = m cos θ). Each column indicates the number of sides (N )
and trajectory. We highlight with the same color the pair of config-
urations that give a similar phase change. The numbers have been
rounded to three digits.

Trajectory

m 5a 5b 7a 7b 7c 9a 9b 9c 9d

1 0.59 0.95 0.43 0.78 0.97 0.34 0.64 0.87 0.98

2 1.18 1.90 0.87 1.56 1.95 0.68 1.29 1.73 1.97

3 1.76 2.85 1.30 2.34 2.92 1.03 1.93 2.60 2.95

4 2.35 3.80 1.74 3.133.90 1.37 2.57 3.46 3.94

5 2.94 4.75 2.17 3.91 4.87 1.71 3.21 4.33 4.92

Highlighted pairs of values in the table give configura-
tions with similar phase change and correspond to an inter-
ferometer with reduced sensitivity to mirror displacements.
For example, the trajectory5a (pentagon (p)) with 5 turns has
a very similar phase change to the 5b (star (s)) with 3 turns
(red in Table I). This would correspond to what is shown in
Fig. 1a) but with 5 complete turns of the blue pentagon (in-
stead of 2) and 3 of the star (instead of 1). The difference
of the two values (∆Φ = Φ5(p) − Φ3(s) = 0.086) gives
the relative phase change at the output of the interferometer,
compared to that of a Michelson interferometer, that is, such
configuration has a displacement sensitivity (Eq. (4))

S =
1

∆Φ
= 11.7 (5)

times smaller than that of a Michelson. Displacements paral-
lel to the mirror surface have no effect on the interferometer.

Improving the sensitivity suppression relies on making
the denominator of Eq. (4) as close to zero as possible, that
is, making

m

n
' cos (θs)

cos (θp)
, (6)

with θp and θs the angles corresponding to the trajectories
with m and n turns respectively (not limited to the pen-
tagon and star, but to any pair of trajectories on a particular
polygon). We need a rational number on the left hand side
of Eq. (6) to approximate the number on the right. Incre-
mentally better fractions that achieve this are found by the
method of continued fractions. Take for example the case
of a polygon withN = 5 using the pentagon (a) (blue in
Fig. 1a) and star (b) (red) trajectories. The right hand side
of Eq. (6) givescos (π/10)/ cos (3π/10) = (1 +

√
5)/2, the

well known golden ratio. The continued fraction represen-
tation is[1; 1, 1, 1, 1, ...] that corresponds to the sequence of
fractions

1
1
,
2
1
,
3
2
,
5
3
,
8
5
, ..., (7)

that get incrementally closer to the desired value. Each of
these fractions (m/n) corresponds to a particular number of
turns for the pentagon (m) and the star (n) trajectories. The
corresponding suppression (S from Eq. (4)) for each of the
above fractions is -2.8, 4.5, -7.2, 11.7, 18.9, ..., whose ab-
solute value indeed grows with consecutive fractions. The
fourth fraction (5/3) in the sequence above corresponds to
the combination highlighted in Table I with 5 turns of the
pentagon (5a − 5) and 3 turns of the star (5b − 3) (See also
Table II).

It is clear that the 4 mirrors (M2 −M5) in Fig. 1a) have
the same suppression (Eq. (5)), and now we analyze what
happens with the 3 optical elements (BS1, M1, BS2) that
are in the input/output port. We analyze first what happens
when each of them is displaced independently for the case of
the pentagon with 5 turns and the star with 3 turns. Looking
at the mirrorM1, the pentagon path hits that mirror 4 times
(instead of 5) and the star path hits it 2 times. A displacement
of this element in the direction perpendicular to the mirror
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(away from the center) gives a phase change difference (nor-
malized to that of a Michelson) of∆Φ = 0.449 and a sensi-
tivity suppression ofS = 2.2, instead of theS = 11.7 calcu-
lated for the other mirrors (Eq. (5)). It is clear that a displace-
ment parallel to the mirror surface induces no phase change at
all. Similarly, we can calculate what happens with a displace-
ment of the input splitterBS1. Here, by calculating the full
difference in optical paths of the two trajectories due to the
splitter displacement, we obtain a normalized phase change
difference of∆Φ = −0.588 with a displacement perpendicu-
lar (south-east direction) to this optical element and no phase
change with a displacement parallel to its surface. The same
happens with the output splitterBS2, with ∆Φ = −0.588
for a perpendicular (north-west) displacement.

The previous discussion shows that we do not obtain a
good vibration sensitivity suppression when displacing each
of these elements independently, but there is a good sup-
pression when they are fixed with respect to each other and
move as a single unit. Assume a displacement of the full
unit (BS1, M1 and BS2) perpendicular to the mirrorM1

away from the center. The normalized phase change dif-
ference contributions are∆Φ = 0.449, −0.588 sin (π/10)
and−0.588 sin (π/10) for M1, BS1 andBS2, respectively.
Adding them, gives∆Φ = 0.086 and a vibration sensitivity
suppression ofS = 1/∆Φ = 11.7, which is exactly the same
as any of the other 4 mirrors in the setup. Now, if the dis-
placement of the full unit is parallel to the surface ofM1, then
we have∆Φ = 0,−0.588 cos (π/10) and0.588 cos (π/10)

TABLE II. Sensitivity suppressionS, compared to a Michelson in-
terferometer from the highlighted configurations of Table I, where
the path specifies the column and the number of turns from Table I.
The value in red is the one we compare against the measurement.

Path 1 5a−5 7a−2 7b−5 9a−2 9a−3 9b−3

Path 2 5b−3 7b−1 7c−4 9b−1 9d−1 9d−2

S 11.7 11.6 105.9 24.2 24.2 24.2

for M1, BS1 andBS2, respectively, and adding them we get
∆Φ = 0, that is, perfect suppression for displacements in
the parallel direction. The conclusion is that if the three el-
ementsBS1, M1 andBS2 move together as a single unit,
they have the exact same displacement sensitivity as that of
any other mirror. The same result is obtained for any other
number of sides of the polygon or trajectories. The complete
Star interferometer has therefore the displacement sensitivity
suppression (S) that we calculate for the mirror as indicated
by Eq. (5).

The suppression valueS, for other possible pairs of tra-
jectories is shown in Table II. The third column shows a com-
bination with a suppression (S = 105.9) one order of mag-
nitude better than before, achieved by combining the Star7b
path (red in Fig. 1b) with 5 turns with the Star7c (yellow)
with 4 turns. Combinations that included paths of the9c col-
umn of Table I were not included because they do not interact
with all the mirrors. The second column shows another com-
bination that has a good suppression (S = 11.6) with a small
number of turns corresponding to the heptagon7a path (blue
in Fig. 3) with 2 turns with the Star7b (red) with 1 turn. This
particular combination is the one we demonstrate experimen-
tally (Fig. 4).

For a polygon withN = 7 using the trajectoriesa (blue
in Fig. 3) andb (red), the right hand side of Eq. (6) gives
cos (3π/14)/ cos (5π/14) ' 1.8019. The continued frac-
tion representation is [1;1,4,20,...] that corresponds to the
sequence of fractions

1
1
,
2
1
,
9
5
,
182
101

, ..., (8)

with corresponding suppressionS = −2.9, 11.6, -237.9,
537.4, ... . The second fraction in Eq. (8) corresponds to the
one we implement experimentally, with 2 turns on the hep-
tagon (7a− 2) and 1 turn in the starb (7b− 1) (See Table II).
In this case we obtain an order of magnitude improvement
with a small number of turns, making the alignment much

FIGURE 3. a) 3D view of the configuration for the Star interferometer corresponding to two turns of the heptagon7a−2 (blue) with one turn
of the Star7b− 1 (red). b) Top view of the experimental comparison between the Star and a Michelson interferometer (green). To compare
the displacement sensitivity, we move (d) mirror M5 that is common to both the Michelson and the Star interferometer. We look at the phase
change of each interferometer due to exactly the same mirror displacement on detectorsD1 andD2.
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FIGURE 4. Experimental fringes for the Michelson (blue plot, de-
tectorD2 in Fig. 3) and the Star (red plot, detectorD1) interfer-
ometers as we displace the common mirror (M5), when using the
configuration7a − 2 with 7b − 1 from Table II (blue and red tra-
jectories in Fig. 3).

simpler. For this particular polygon, another order of mag-
nitude can be obtained by going to 9 turns of the heptagon
(7a−9) and 5 for the star (b) (7b−5). The continued fractions
show that further improvement quickly becomes impractical
given the number of turns required.

Figure 4 shows the interference fringes obtained simul-
taneously for the Star (detectorD1) and the Michelson (de-
tectorD2) interferometers, while displacing a common mir-
ror (M5) with a piezo by 4.8µm in 168 ms, for the7a − 2
and7b − 1 (blue and red trajectories in Fig. 3) combination
(second column in Table II). The heptagon has a length of
41.9 ± 0.3 cm on each side and the arm’s length difference
of the Michelson interferometer of∆L = 27.3± 0.4 cm was
chosen to have a similar FSR (Eq. (1)) to that of the Star in-
terferometer (they only differ by14± 1%), so that frequency
fluctuations affect both interferometers in the same way. The
diode laser has a wavelength of 780 nm (frequency locked to
a saturation spectroscopy atomic resonance in theD2 line of
rubidium). Figure 4 shows that for exactly the same displace-
ment of the mirror we obtain a much smaller phase change at
the output of the Star interferometer in comparison with that
of a Michelson interferometer, similarly to what was done in
other reduced sensitivity experimental demonstrations [26].
The measurement clearly demonstrates the reduced sensitiv-
ity for mirror displacements, since the same mirror move-
ment gives a phase change of about 12 fringes for the Michel-
son compared with only one for the Star interferometer. The
only thing changing in the measurement is the position of
mirror M5, since the laser frequency is fixed and the fre-
quency response of both interferometers is very similar. The
value of the sensitivity suppression is obtained from the ratio
of the number of fringes in the Michelson (obtained from a
sinusoidal fit) to those of the Star interferometers, for the to-
tal displacement shown in Fig. 4. The measured value for the
sensitivity suppression is11.74 ± 0.02, which is consistent
with the expected value of 11.6 for this configuration. Sen-
sitivity suppression to a displacement is basically equivalent

to suppression of vibrations or thermal expansions given that
the mirror velocity would be much smaller than the speed of
light.

As can be seen from the 3D view in Fig. 3a), the setup
only requires off the shelf mirrors and beam splitters, care-
fully measuring their position with a ruler. We use metallic
mirrors that maintain a reasonably constant reflectivity at dif-
ferent angles, and input (BS1) and output (BS2) economy
30:70 beam splitters (model EBP1). The three elementsM1,
BS1 andBS2 are mounted in separated mounts in our imple-
mentation, to make it easier to align each one independently.
In future implementations of the Star interferometer it would
be desirable to custom machine a single holder with the cor-
rect angles for the three optical components to have it move as
a single unit, as discussed before. The alignment procedure
takes longer but is not qualitatively different than a typical in-
terferometer, and the particular combination we demonstrate
is relatively easy to align. Using polygons with a higher num-
ber of sides would affect the robustness of the interferometer
due to the increased number of optical components.

The implementation of the Star interferometer requires a
small vertical tilt (α = 0.18±0.06◦) so that the beam is low-
ered slightly at each turn (Fig. 3a). The input splitterBS1

separates the two paths of the interferometer, then a mirror
M1 right below this splitter sends the heptagon path on a sec-
ond turn and the output splitterBS2 (EBP1) just below the
mirror combines the two paths and sends the light to detector
D1 (Fig. 3). Given that the beams are no longer in a plane, a
full 3D calculation is needed. We complemented the analyti-
cal results with a numerical calculation of the full OPL.

The vibration sensitivity suppression relies on having
m cos (θp) ' n cos (θs) (Eq. (4)). Adding a vertical tilt (α) of
the input beam takes us out of the plane and changes slightly
the values ofθp andθs, resulting in a better or worse match
of the previous relation, which translates into a different vi-
bration sensitivity suppression. As an example, we show in
Fig. 5a) the vibration sensitivity suppression to displacements
as a function of the input vertical angle for the configuration
that we demonstrate experimentally (Fig. 4), that is, for the
configuration7a − 2 combined with7b − 1. The suppres-
sion deteriorates with the input beam vertical angle, but just
by very little for small input beam vertical angles. The angle
used in the measurement is indicated by the red square that
has a suppression very similar to the one at zero vertical input
beam tilt. For most of the practical configurations considered
in Table II the vertical tilt of the input beam leads to a slightly
worse match for the two paths, that is, the suppression of the
sensitivity to displacements deteriorates slowly with the tilt
angle. The only exception is the configuration of the9a − 2
and9b− 1 trajectories, where there is a suppression increase
limited to 5% at big tilt angles as we show in Fig. 5b).

4. Sensitivity to mirror rotations

To fully characterize the mirror motion, we analyze the effect
of a rotation of the mirrorM5 in Fig. 3 along an axis centered
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FIGURE 5. a) Displacement sensitivity suppression (S) as a function of the input beam tilt for the combination7a− 2 with 7b− 1 and b) for
the combination9a− 2 with 9b− 1. The red square in a) corresponds to the tilt angle used in the experimental demonstration.

on the point where the beam hits the mirror, such that the
effect is a pure beam rotation, with no displacement. Any
displacement introduced by the rotation can be taken into ac-
count following the results of the previous section. In the
case of a single turn interferometer contained in the plane,
the change in phase due to a mirror rotationβ is given by
2kD sin2 β ' 2kDβ2, whereD is the distance from the mir-
ror to the detector, similarly to what is obtained in a Michel-
son interferometer. The output signal in a Michelson interfer-
ometer is more sensitive to mirror displacements than to tilts,
and the same happens in the Star interferometer. To show this
we consider two contact points from the mirror mount sepa-
rated by a distancep. Moving both contact points by the same
amountd and in the same direction produces a displacement,
whereas if the contact point motion is in opposite directions,
we get a rotation (β = arctan (2d/p) ' 2d/p) that intro-
duces a change in phase approximately equal to8kDd2/p2.
For smalld, the ratio of phase changes from displacements to
that of rotations (R = p2/4Dd) is inversely proportional to
d, since one scales linearly and the other quadratically. Tak-
ing for example a typical mirror mount withp = 3.7 cm
andD = 50 cm gives a ratioR = 7 × 102 for d = 1 µm,
that is, rotations are much less (700 times) important than
displacements. This conclusion remains the same for multi-
ple turnsm, since the contribution from rotations scales ap-
proximately asm/2. Indeed, for2n (or 2n + 1) turns, the
change in the output phase is given by2k[n(∆Da)] sin2 β
(or 2k[n(∆Da) + ∆Db] sin2 β), with ∆Da,b the length dif-
ferences for the two paths for the case of a complete turn
(a) and for the distance from the mirror to the detector in
the last turn (b). The Star interferometer in the plane has a
smaller sensitivity to mirror rotations compared to the Mach-
Zehnder interferometer using a displaced Sagnac configura-
tion [13,27].

Figure 6 gives a numerical calculation that shows a com-
parison of the output phase change as a function of how much
we move the contact point (d) for the case of a displacement
(blue solid line, both contact points moving in the same direc-
tion), and a rotation (red dotted and green dashed line, contact

points moving in opposite direction) for the Star interferom-
eter with the combination7a − 2 with 7b − 1. We include
rotations in the plane and out of the plane of the interferom-
eter. For an interferometer that lies completely in the plane
(α = 0), both directions of rotations give a contribution sim-
ilar to the red dotted curve in Fig. 6. At these small tilts,
the variations in the overlap of the two paths at the detector
due to the beam steering is negligible. The figure confirms
that displacements have a much stronger effect than rotations
on the output phase and shows the linear and quadratic de-
pendence of each one. The Star configuration suppresses the
contributions coming from these displacements independent
if they are due to vibrations or expansions.

The tilt angleα has a negligible effect on the displace-
ment sensitivity but produces an increase in the sensitivity to
rotations. Figure 7 shows a schematic of the beams hitting
one of the mirrors in the interferometer as seen from the side.
The figure does not correspond exactly to a particular real
configuration, but it is useful to estimate the size of the ef-

FIGURE 6. Output phase change of the Star interferometer as we
move the contact points in the mirror for a pure displacement or
rotation, depending if the contact points move in the same or op-
posite directions. The numerical calculation corresponds to the ex-
perimental setup and we include the two possible rotations of the
mirror.
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FIGURE 7. Displacement on the different paths introduced by a
mirror rotation as seen from the side. The central path hits the ro-
tation pivot and is not displaced, but the paths above and below get
displaced byd and−d respectively.

fects of rotations. The blue paths may correspond to the two
turns of the path7a and the red to the one turn in path7b,
as would be the case for example for the second column in
Table II. Each trajectory hits the beam at a different heights.
Having beams hitting the mirror at different positions is what
introduces the sensitivity to rotations in the Mach-Zehnder
interferometer using displaced Sagnac configuration [27]. As
we rotate the mirror, the central path hits the pivot point and
is not displaced, but the paths above and below get displaced

by d = ±h tan β in this example, whereh = L1 sin α de-
pends on the tiltα and the round trip distanceL1. The phase
change of one path (Eq. (2)) is 2kdΦ = 2kL1Φsin α tan β,
where for small rotation angles we have a linear dependence
on β and not quadratic as before. The green dashed line in
Fig. 6 shows this linear dependence as well as the increase in
sensitivity to rotations out of the plane due to the tilt angle.
As an example, the configuration withL1 = 293.1 cm as in
our experiment, gives a similar sensitivity for displacements
and rotations at an input beam tilt ofα = 0.23◦. Residual
rotations in our measurements contribute less than1 % to the
signal shown in Fig. 4.

In summary, any mirror motion can be decomposed into
displacements and rotations. In this section we show that in
the Star interferometer in the plane the displacements have
a more important contribution to the phase than those of ro-
tations, but as one moves out of the plane, the relevance of
rotations grows. Fortunately, at small tilt angles the contribu-
tions from rotations still remain below that of displacements,
so that the Star interferometer maintains the immunity to mir-
ror motion of any kind, including expansions coming from
temperature variations.

5. Frequency sensitivity

In the previous sections we analyzed the effect of the motion
of the optical components in the output signal of the inter-
ferometer. In this section we comment on the dependence of
the interferometric signal on the laser frequency. The arm’s
length difference in the two paths of the Star interferometer
translates in a Free Spectral Range (FSR) according to Eq. (1)
Writing the path lengthL, of each trajectory in terms of the
angleθ of Eq. (2) we haveL = mL1 = 2Nrm cos θ with N
the number of sides of the polygon andr the radius of the cir-
cle enclosing the polygon. The FSR gives∆ν = (c/2Nr)S,
which is increased by the same suppression factorS. In other
words, having reduced displacement sensitivity is connected
with wider spectral features.

It may be desirable to have narrow spectral features (with
an small FSR) while keeping the insensitivity to mirror mo-
tion. Having independent access to the two paths opens the
door to novel types of sensors by acting on the phase, polar-
ization or intensity of each path, but brings the usual prob-
lems associated with having beams not following the exact
same trajectory. One could obtain a narrow frequency re-
sponse by inserting a transmissive non expanding material in
one arm that couples only high frequency vibrational noise
[28]. Also one could use the Star interferometer to study the
phase change introduced by a sample that is placed in one
of the paths of the interferometer. Examples of such mea-
surements can be found in the literature that would benefit
immediately from moving to the Star interferometer configu-
ration [10, 29–31]. The sample changes the output signal of
the interferometer by changing the phase of only one of the
paths, and this measurement will be robust against vibrations
or expansions since the mirrors and the rest of the interferom-
eter mantain the demonstrated suppression. Atomic clouds
may be placed in beam intersections, like that indicated by a
circle in Fig. 2, to implement sensors such as gravimeters or
gyroscopes. It would be interesting to extend the ideas pre-
sented here for suppressed sensitivity to vibrations in the case
of matter wave devices.

6. Conclusion

We present a new interferometer, the Star interferometer, that
has reduced sensitivity to vibrations and displacements of the
optical elements. The common noise rejection is achieved
by having the two paths of the interferometer interact with
all the mirrors in the interferometer while following differ-
ent trajectories. We demonstrate experimentally a particular
combination for the Star interferometer that has a sensitivity
to displacements 11 times smaller than a Michelson interfer-
ometer. There are other combinations available that offer a
sensitivity suppression of two orders of magnitude or more.
We show that the dominant contribution to the fluctuations
come from displacements with a smaller component from
rotations. The Free Spectral Range of the interferometer is
finite but increases with the same displacement suppression
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factor (S). The Star interferometer opens the door to new ge-
ometries where one can modify the phase, polarization or in-
tensity of each arm independently while maintaining reduced
vibration and displacement sensitivity.
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y Tecnoloǵıa (CONACyT) (157, 225019, 254460). We thank
Luis Orozco for useful discussions and Edgardo Ugalde for
pointing us to the continued fractions.

1. H. Müller et al., Modern Michelson-Morley Experiment us-
ing Cryogenic Optical Resonators,Phys. Rev. Lett. 91 (2003)
020401,https://doi.org/10.1103/PhysRevLett.
91.020401 .

2. B. P. Abbott and et al., Observation of Gravitational Waves
from a Binary Black Hole Merger,Phys. Rev. Lett. 116 (2016)
061102,https://doi.org/10.1103/PhysRevLett.
116.061102 .

3. B. P. Abbottet al., GW151226: Observation of Gravitational
Waves from a 22-Solar-Mass Binary Black Hole Coalescence,
Phys. Rev. Lett.116 (2016) 241103,https://doi.org/
10.1103/PhysRevLett.116.241103 .

4. K. Numata, A. Kemery, and J. Camp, Thermal-Noise Limit
in the Frequency Stabilization of Lasers with Rigid Cavities,
Phys. Rev. Lett.93(2004) 250602,https://doi.org/10.
1103/PhysRevLett.93.250602 .

5. L. Chenet al., Vibration-induced elastic deformation of Fabry-
Perot cavities,Phys. Rev. A74 (2006) 053801,https://
doi.org/10.1103/PhysRevA.74.053801 .

6. T. Nazarova, F. Riehle, and U. Sterr, Vibration-insensitive
reference cavity for an ultra-narrow-linewidth laser,Appl.
Phys. B83 (2006) 531, https://doi.org/10.1007/
s00340-006-2225-y .

7. S. A. Webster, M. Oxborrow, and P. Gill, Vibration insensi-
tive optical cavity,Phys. Rev. A75 (2007) 011801(R),https:
//doi.org/10.1103/PhysRevA.75.011801 .

8. A. D. Ludlow et al., Compact, thermal-noise-limited opti-
cal cavity for diode laser stabilization at1 × 10−15, Opt.
Lett. 32 (2007) 641,https://doi.org/10.1364/OL.
32.000641 .

9. Y. Chen et al., Interferometers for Displacement-Noise-Free
Gravitational-Wave Detection,Phys. Rev. Lett. 97 (2006)
151103,https://doi.org/10.1103/PhysRevLett.
97.151103 .

10. M. Xiao, et al., Measurement of Dispersive Properties of Elec-
tromagnetically Induced Transparency in Rubidium Atoms,
Phys. Rev. Lett.74 (1995) 666,https://doi.org/10.
1103/PhysRevLett.74.666 .

11. G. T. Purves, C. S. Adams, and I. G. Hughes, Sagnac in-
terferometry in a slow-light medium,Phys. Rev. A74 (2006)
023805,https://doi.org/10.1103/PhysRevA.74.
023805 .

12. G. Jundtet al., Non-linear Sagnac interferometry for pump-
probe dispersion spectroscopy,Eur. Phys. J. D27 (2003) 273.

13. T. Nagataet al., Beating the Standard Quantum Limit with
Four-Entangled Photons,Science316 (2007) 726,https:
//doi.org/10.1126/science.1138007 .
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