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Circadian cycles: A time-series approach
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The extraction of circadian cycles from experimental data can be interpreted as a specific case of time-series or signal analysis, but chrono
biology and time-series analysis appear to have developed according to separate paths. Whereas some techniques such as continuous (CV
and discrete wavelet analysis (DWT) are used frequently in rhythmobiology, other specialized methdos such as digital filters, nonlinear mode
decomposition (NMD), singular spectrum analysis (SSA), empirical mode decomposition (EMD), ensemble empirical mode decomposition
(EEMD) and complete ensemble empirical model decomposition with adaptive noise (CEEMDAN) have only occasionally been applied.
No studies are available that compare the applicability between a wide variety of different methods or for different variables, and this is the
purpose of the present contribution. These methods improve the goodness-of-fit of the circadian cycle with respect to the standard approac!
of cosinor analysis. They have the additional advantage of being able to quantify the day-to-day variability of the circadian parameters of
mesor, amplitude, period and acrophase around their average values, with potential clinical applications to distinguish between healthy anc
unhealthy populations. Finally, the circadian parameters are interpreted within the context of homeostatic regulation with distinctive statistics
for regulated and effector variables.
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1. Introduction ity and attention-deficit disorder [18], psychological vulner-
ability [19], insomnia [20], etc. Such irregularities are dif-

Circadian cycles are physical, mental and behavioral variaficult to describe using cosinor analysis, but may be quanti-
tions that follow an approximately 24-hour rhythm. The field fied using non-parametric approaches such as intradaily sta-
of chronobiology has been dominated by basic research queBility (IS) and intradaily variability (IV) [21, 22]. These non-
tions such as what biological variables obey regular circadiaRarametric approaches make no attempt however to extract
cycles, what are the central and/or peripheral anatomical sulsircadian (24h) or ultradian{24h) cyclic components from
strates that generate these rhythms [1, 2], and how one cdfe data. This may be unfortunate, because a common re-
distinguish between the rhythm of an internal circadian clocksearch method to explore an unknown system, in particu-
and the effects of masking or entraining because of extefar in electronic engineering or material science, is to stim-
nal perturbations [3,4]. It has become clear that most — itllate that system using a calibrated test signal at a specific
not all — variables of living systems obey circadian cyclesfrequency and to investigate the amplitude and phase of the
including bacteria [5], plants [6], insects [7], vertebrates infesponse signal, which in linear systems occurs at the same
general [8] and humans in particular [9-12] and cosinor analfrequency [23, 24]. Similarly, circadian cycles can be inter-
ysis was established as the standard method to quantify theBgeted as the reaction of the variables of a physiological sys-
regularities in experimental data. Cosinor analysis uses a préem to the universal forcing of the alternation between day
determined mathematical model of periodicity, in particularand night. Theircadian parametersf mesor, amplitude, pe-

a cosine function, which is fitted to the data to describe théiod and acrophase are of particular interest to evaluate this
average cyclic behaviour over a given time period [13,14]. response, which may also depend on the specific role these

Presently, since the universality of circadian cycles has’ ariables play in homeostatic regulation [25-28]. Addition-

been accepted, also more applied research questions arengqy’ not only the average values of the circadian parameters

tracting attention, such as the analysis of irregularities i ut also theirday-to-day variabilitygives valuable informa-
circadian rhythms as a proxy to assess pathological or suﬁ!—on to distinguish between healthy and unhealthy popula-
healthy conditions in the clinice.g, age-associated frailty tions [20].

[15], preclinical [16] or advanced dementia [17], hyperactiv-
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Altough the extraction of circadian cycles from experi- male young adult during 1 week of continuous monitoring.
mental data can be interpreted as a particular case of tim&hereas in previous publications the high-frequency spon-
series analysis, it would appear that chronobiology and timetaneous fluctuations of these time series were studied from
series analysis have developed according to different paththe perspective of homeostatic regulation [25, 27], the objec-
and whereas various of the specialized time series techniquése here is to analyze the circadian cycles. Figure 1 shows
have occasionally been applied to rhythmobiology, no studieactigraphy (act), which measures the number of movements
are available that compare the applicability between a varietper sample time interval or ‘epoch’, in the present case arbi-
of methods or for different variables. One of the objectives oftrarily chosen as 1min, using the Actigraph wGT3X-BT de-
time-series analysis is to decompose continuous data as thee, the cardiovascular variables of heart rate (HR) measured
sum of more simple components such as a trend, (approxin beats per minute (bpm) and systolic blood pressure (BP)
mately) periodic components and fluctuations, and/or extraaneasured in millimeters of mercury (mmHg), both registered
one or more specific components, with the presuppositiomsing the CONTEC ABPM50 device, and thermoregulatory
that these individual time-series components may reflect spesariables of skin temperature {I,,) and core temperature
cific physical or physiological phenomena or processes.  (T.ore), Measured in degrees Celsi@€f using Maxim Ther-

Different families of time-series methods exist, differing mochron DS1922L iButtons (“thermochron8k”). All time se-
in the mathematical principles by which this decompositionries have been resampled at the same rate of 1/(15 min) and
or extraction is realized. The most common decompositiorall start at midnight. Unless otherwise stated, all time-series
method is Fourier spectral analysis, where the time series ignalyses have been carried out with Wolfram Mathematica,
represented as the sum of sine and cosine periodic functiongrsion 12.0.0.0.
of different frequencies and amplitudes [29]. A drawback
of Fourier spectral analysis is that strictly it may only be 2.2. Time-series techniques
applied to stationary time serieisg., where statistical mea-
sures such as average and variance do not change over tin?e,z'l'
which may be an issue in experimental time series that of=|.

ten haveg.g, dominant trends or irregular behaviour in time. cadian rhythms is cosinor analysis, see [13, 14]. The cosinor

More _adva.nced time-series technlqueg decomplose time Sprroach is based on regression techniques and is applicable
ries either into more general mathematical functions that d?

o o 0 equidistant or non-equidistant time serigs) of N dis-
not need to be periodic, or generate the basis in a numer q q i)

Erete data points
cal and data-adaptive way from the data itself, and are in- P '

tensively used to study nonstationary time series. Examples x(n) ={z1,...,2N}. (1)
of the former strategy are wavelet-based methods [30, 31],
such as the continuous wavelet transform (CWT) or the disThe procedure consists of fitting a periodic functig() to
crete wavelet transform (DWT), and derived methods suchime seriesc(n),
as nonlinear mode decomposition (NMD) [32, 33]. Exam- N
ples of the latter strategy are subspace-based methods such y(t) = M + Acos (wt +¢), (2)
as singular spectrum analysis (SSA) [34-36], and envelopeyhere the angular frequenay= 27 f = 27 /T corresponds
based methods such as the empirical mode decompositiag the periodl’ =~ 24h of the circadian cycle. Once a value
(EMD) [37, 38] and derived methods such as the ensembleyr 7 has been fixed, minimizing the squared residual errors
empiricial mode decomposition (EEMD) [39] and the com-¢2 — (2, — 4,,)? for all data points, allows to find values
plete ensemble empirical mode decomposition with adaptivgor the rhythm-adjusted mean or mesh, the amplituded
noise (CEEMDAN) [40]. and the phase. Because specifies the fraction of the cycle
The purpose of the present contribution is to explore thezovered up tad = 0, this parameter does not give any phys-

application of the before-mentioned traditional and more rejplogical information. Instead, a more interesting variable is
cent time-series techniques to study the circadian cycles ahe acrophase, which can be defined as the time of the day
selected time series for a variety of physiological variablesyhere the circadian cycle obtains its maximum, with respect
The performance of these time-series techniques will be comp a fixed moment in time that is the same for all subjezg,
pared to standard cosinor analysis. The circadian parametegging midnight as a reference, and which can be expressed
and their day-to-day variability will be discussed and will be as hours and minutes (hh:mm), or alternatively, as an angle
interpreted within the context of homeostatic regulation (taking into account the relatios0° = 24 hrs), relative to

this reference time. The valued, T, A and ¢, obtained

Cosinor

he traditional method to study the periodic aspects of cir-

2. Materials and methods by cosinor analysis represent the average values of the circa-
dian parameters over the whole duration of the considered
2.1. Experimental time series data, which are 7 successive days in the present contribu-

tion. Algorithms to calculate cosinor have been published

The present contribution is a secondary analysis of simultangp, Python for actigraphy [41] and for biological variables in
ous time series of 5 different variables showing the effect ofyeneral [42].

the alternation of day and night on the physiology of a healthy
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FIGURE 1. 7-day continuous monitoring of a healthy male young adult showing (a) actigraphy (act) expressed as number of movements per
minute (1/min), cardiovascular variables of (b) heart rate (HR) as beats per minute (bpm) and (c) systolic blood pressure (BP) as millimeters
of mercury (mmHg), and thermoregulatory variables of (d) skin temperaturg,JTand (e) core temperature {f.) as degrees Celsius

(°C). Sample frequency is 1/(15 min) for all variables. Vertical gridlines indicate midnight. Also shown are the approx. 24h circadian cycle,
estimated by cosinor analysis which shows the 7-day average properties (dashed curve) and SSA which also reflects the day-to-day variabilit
(continuous curve).

2.2.2. Frequency domain filter (FDF) but this shift-and-multiply procedure may be very time-
o ) o consuming for longer signals. In the Fourier domain, or fre-
FFT.domam fllter,. or — more _mformglly — Fourier filter, and efficient point-to-point multiplication [44],
Fourier transform filter or FFT filter. Filtering is one of the
most common forms of signal processing which has as a goal e(w) = &(w)g(w), 4
to remove specific frequencies or frequency bands, and/or im- . N
: . ver a certain angular frequency rangeand wherez(w)
prove the magnitude, phase or group delay in some part (s) .. ;
. . X indicates the Fourier transform oft),
of the spectrum of a signal [43]. Mathematically, a filter cor-

responds to the convolution of signa(t) with the impulse 1 x® ‘
responsg(t) of the filter to obtain a filtered signal(t), I(w)=— / x(t)e™dt, (5)
Vo
c(t) =z(t) x g(t) = / x(T)g(t — 7)dr, (3) and similarlyé(w) and §(w) are the transforms af(t) and
g(t). The Fourier transform itself is also a convolution and

—00
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can be realized by very optimized techniques, such as th&here an inadequate choice may compromise the results.
fast Fourier transform (FFT) [29]. The minimal essence of TheContinuous Wavelet Transform (CWT) [30, 31] is
the FDF consists first in converting the signal to the fre-performed by convolution of the signal(t) with the two pa-
guency domain, then zeroing out all unwanted frequenciesametemwavelet function), . (t),

w, i.e., g(w) = 0, whereas desired frequencies are permit- o
ted to pass in an unalterated wag,, §(w) = 1, and finally _ / (O (Ddt 6
to apply the inverse-Fourier transform to obtain the filtered Wis,7) 2Oz, (), ©)

— 00

signal. This procedure readily allows to construct any low-
pass, high-pass, band-pass or band-stop filter. One limitavhere the asterisk denotes the complex conjugate and the
tion of the Fourier transform is that it reflects the averagewavelet function is obtained from theother wavelebr an-
frequency content of the whole time series, such that it maylyzing wavelgt

be inadequate to apply to non-stationary time series where 1 P

the statistical properties vary over time. Another particu- Vs,r(t) = ﬁ% ( ) ; (7)

larity is that using rectangular filter windows with abrupt -~ )
frequency cut-offs as described above may cause artificighere the parameterspecifies the wavelet location on the
high-frequency “ripples” or “ringing” in the filter output, also tiMme axis,~ expresses a shift or translation andorresponds
called Gibbs phenomenon, such that often it is advised to ug@ an expansion (dilation) of the width of the wavelet in the
specific filter windows that interpolate smoothly between ofime domain and represents tf:e time scale of the wavelet
and 1 [29, 43, 44]. Apart from signal analysis, FDF is alsotransform. Often, the notion of “period” is considered in-
popular in digital image analysis [45]. stead of the “time scaled since it is more suitable in many
FDF appears to have been applied to extract circadian C)f_tudies, _but one has to be very _careful_because the identity
cles from experimental data only once [46]. Other types of. — ¢ IS correct only for special choices of the mother
digital filter have occasionally been applied, such as ButterVavelet and its parameters. The main difference between
worth filters [47], finite impulse response filters (FIR) [48], EAS- ©) and ) is that the Fourier transforni(w) repre-
Kalman filters [49,50], adaptive notch filters [51], particle fil- SENtS the average contribution of the angular frequency
ters [52, 53], Bayesian filters [54] and waveform filters [55]. OV€r the whole time series, whereas the wavelet transform

Here, an FDF bandpass filter is used. In order to captur& (5-?) Preserves information with respect to the timinof
the circadian cycle ab ~ 7 (in units of number of oscilla- contributions at specific scales Generally, it is regarded

tions during 7 successive days) and the day-to-day variabilitf1at the Morlet mother wavelet offers an optimal time-scale
(frequency) resolution, but under certain conditions, the Log-

a simple rectangular filter window is applied in the arbitrary ,
range) < w < 12, excluding the ultradian oscillations which normal wavelet outperforms the Morlet wavelet in terms of

may be expected to start to appear neax 14 and where time-frequency resolution and the Lognormal wavelet is also
w = 0 corresponds to the constant DC or mesor term. inline with the logarithmic frequency resolution of the CWT

[32,56]. Of particular interest to describe approximately
periodic phenomena, such as circadian cycles, isittge
curvewhich runs along local maxima of the absolute value
of W (s, t) with respect tos (for each fixedt) and thereby

Wavelet analysis is an example time-frequencianalysis, indicates thenstantaneous frequenendanalytic amplitude
i.e, the time and frequency domains are studied simultane- quenan y P

ously, such that this approach is particularly well suited forOf the signal at each time point. Extracting that ridge cor-

the study of non-stationary processes [30, 31]. Two version esezndsutonsvj'gzggg gaotilees\?vg\l:élr: ts; Er?gcz’ S|m|Iarir:?
of wavelet analysis exist: (i) the continuous wavelet trans- g. @), (s, 7)

form (CWT), which tends to be used more in scientific re_stead of the Fourier transforir(w), such that time localiza-

search o analyze complex signals and is superor rom tid2%, = FEREEC 0 BT SEREI RS L ECE
viewpoint of visualizing results for individual signals, but has ycles, esp y b

the drawback of using a non-orthonormal basis such that thgvolve smoothly and continuously in time because of resric-
téons imposed by physiological processes, such as body tem-

CWT expresses excessive information and the values of th o ;
P erature [57]. In the present contribution, the freely available

wavelet coefficients are correlated; (ii) the discrete waveleﬁ/I : . . . :
(i) ultiscale Oscillatory Dynamics Analysis (MODA) toolkit

transform (DWT) which is preferred in order to solve techni- i .

cal real-life problems and where orthonormal bases are avai\f;\:;:ﬂj;f; t%ngall?ﬁgg IL%meigcvav?t:\e:hLénLV:ggig)r/rr[m?;zl’v?/g\’/z?gt
le that all ignal ition i ffici - . )

able that allow a signal decomposition in an efficient and ex d o extract the ridge around peridd- 24 h,

act way, with considerable advantages such as computation%? )
speed, simpler procedure for the inverse transform and ap- Discrete Wavelet Transform (DWT) [30,31] DWT uses

plication to multiple signals [30,31]. One important prob- a logarithmic discretization of thmother waveletunction of
lem when using CWT or DWT is the choice of an appropri- Eq. @,

ate mother wavelet or analizing wavelet, which will depend Gonn(t) = 1 ” (t - nToSB")
on the type of signal studied and/or the study objective, and AR NG ’

S

2.2.3. Wavelet transforms (WT)

m (8)

50
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which may constitute an orthonormal basis and where comeliminated these ultradian contributions but tended to have
monly the discrete wavelet parameters are chosey as 2 lower goodness-of-fit. The Daubechies 4-tap wavelet was
andry = 1 such that the dilation parameter specifies the found to be a good trade-off between these two opposing lim-
scale and the translation parametandicates timing. DWT itations for all variables considered here and all results will

also considers acaling functionor father wavelefunction  be presented using this specific mother wavelet. Matlab and
¢m,» Which obeys the same discretization relation as/Bg. ( Mathematica have integrated algorithms to calculate DWT,
The functionsy,, ,, and ¢,,,, are convoluted with signal and algorithms are available for Python as well [61].

z(t), similar to Eq. 6) for CWT, and serve akighpassand

lowpass filtersrespectively, where 2.2.4. Singular Spectrum Analysis (SSA)
s SSA is an example of a subspace or phase-space method and
T = / Z(t)hm,n (t)dt is closely related to embedding and attractor reconstruction
oo of dynamical systems [34]. SSA has been discussed in detail
) o o in a number of textbooks [34—-36, 62]. A standard and very
are calleddetail coefficientor wavelet coefficienfand extensive reference is [63], whereas a short and very acces-
oo sible introduction can be found in Ref. [64]. Unlike Fourier
[ / () () dE or wavelet analysis, which express a signal as a superposi-
’ w tion of predefined functions, SSA is considered todata

adaptativeor model and user independebecause the basis
areapproximation coefficient&he inverse transformations, functions are generated from the data itself. SSA can be ex-
plained as a 3-step process. First, the univariate sigfial
with lengthV is embedded into a so-callé@jectory matrix
X, by sliding a window with lengthl. over the data using
. unitary steps, such that the dimension of the matriKis L
whereK = N — L + 1. This matrix may be interpreted as a
zm(t) = Z Smn@m.n(t), (10) multivariate or multi-channel signal [Sg, 33]or an) the under-
e lying phase space of the time series [34]. By construction, the
are called thesignal detailsand thesmoothor continuous  matrix will obey a Hankel symmetry, i.e., the upsloping di-
approximationof the signal at scale». DWT works in are-  agonals consist of identical elements. Second, the matrix de-
cursive way, decomposing the signa| (¢) at scalen as the  composition method of singular value decomposition (SVD)
sum of a lowpass filtered part,, 11 () and a highpass filtered is applied to expresX as a sum of elementary or rank-1 ma-
partd,,+1(t), tricesXy, or — similarly — to express the original phase space
as a superposition of “sub phase-spaces” [65],

dm(t): Z T’rn,n¢7n,n(t)a (9)

n=—oo

T () = Tm1(t) + dint1(2), (11)

allowing to reconstruct the original signal as a multiresolu- X= Zakxk : (13)
tion series expansion, k=1
o Here,o1 > o2 > ... > o, are the ordered singular val-
2(t) = Ty (1) + Z dm (), (12)  ues, Whgr& < mm(K, L) = .ran.k(?() is the matrix rank'
of the trajectory matrix. SVD is similar to an approach with
correlation matrices or principal component analysis (PCA)
which is the sum of all the Signal details and a Single reSid‘[66], hence the alternative name of “Sing|e_channe| PCA’ for
ual continuous approximation. In the case of a power-of-twogga [32,33]. Third, the inverse of step 1 is applied, convert-
logarithmic scaling as presented here, the maximum numing the matricesX,, back into so-calledeconstructed time-
ber of Signal details in which the Signal is decomposed i%eries Componen@c(n), where in genera| the matricé§;,
mo = log,(N) where N is the length of the time series. are not Hankel such that care needs to be taken to average
The DWT has been applied to analyze circadian cycles, egver the upsloping diagonals and to apply weights to com-
pecially for variables that contain relatively Sharp diSCOﬂti-pensate for the difference in |ength of these diagona|s [64]

nuities, jumping from zero to relatively high values, such asginally, the original time series can be decomposed as a sum
physical activity and in particular actigraphy data, for which gyer reconstructed components,

it has been found that the Daubechies 4-tap mother wavelet

identifies well discontinuities in the first derivative of a sig- -

nal [60]. For the purpose of this contribution, several DWT z(n) = Z oKk (1),
mother wavelets have been explored, Haar and Daubechies =t

1-tap mother wavelets produced the best goodness-of-fit fovhere\, = o7 corresponds to thpartial varianceof the
all variables, but the resulting circadian cycles containeccomponenty,(n) and_, _; A, = Var is the total variance
f > 1/24 h contributions. Higher-order mother wavelets of time seriesz(n). Not all g, (n) correspond to independent

m=1

(14)

Rev. Mex. Fis69051101
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components, instead they should be “grouped” into “modes’ifting procedure is applied again and again, until some stop-
together with otheg;(n) with I = 1,. .. r that have similar  ping criterion is fulfilled and a sufficiently pure IMF results.
partial variance and/or average frequency, according to thin the second sifting process; is treated as the data, then
corresponding elementary matricXs, and X; with k£, = hy —mq1 = hq1. In general,

1,...,r that toghether approximate the Hankel symmetry. In

particular, approximate periodic behaviour in a time series hik—1) — mik = ha . (15)

will be described by 2 componengg(n) that share the same . . ) .

partial variance and average frequency, and that together d&lich can be repeated times untilhy, = ¢, is an IMF.
termine the phase, similar to the mathematical descriptiorruPtracting the first IMF from the signal the first residue
of periodicity, A cos(wt + ¢) = Becos(wt) + Csin (wt), 1= z(t) — 1 is obtained. This can be repeated on all subse-

where the phase can be expressed either explicitely as AUeNtj, Withasaresult; —c; =rz,... ;11 —cp =7y
(left-hand expression) or as a weighted sumsiafwt) and The sifting process is stopped when the residyud&ecomes

cos(wt) functions (right-hand expression). SSA has been ap‘f’l monotonic function and thus no further IMFs can be ex-

plied to the analysis of circadian cycles only in few occa-actéd. Then IMFs then constitute a decomposition of the
sions [20, 46, 67, 68]. Because of the ordering of the partiaPfdinal signal,

variances and given that the trend and the circadian cycle con- n

stitute the dominant features of the time series, it has been x(t) = Zci + 7. (16)
found thatg; corresponds to the mesor apg + gs to the i=1

circadian cycle [20, 46, 68]. A Python code for SSA analy3|sEMD separates different frequency scales of the signal into

is available for the particular variable of actigraphy [41] and o .
a general algoritm is available in R [69]. It is suggested toseparate IMFs, but it is not guaranteed that (when analyzing

. : - from some natural pr h IMF represen hys-
chose the length of the embedding windbvas a multiple of Qata. om some natural process) eac epresents a phys
L ical time scale of the process. Often ranges of IMFs need
the (average) periodicity of the daiee. L = mT, wherem . . .
. . ! : to be added together to reconstruct information pertaining to
is an integer number arid the period, such that an obvious

i o el paramete . — 1 240 = 11i0min, 5200 [ e s ] consitng o prove it
which is the value used also here [20, 46, 68]. 9 P Y

represent the properties of measurement noise instead of the
underlying physical process. To assist in selecting the IMFs
2.2.5. Empirical Mode Decomposition (EMD) and related with a physical meaning [70] a statistical significance test has
methods been proposed which compares the IMFs against a null hy-
pothesis of white noise. The EMD has only rarely been ap-

Similar to SSA, EMD is a data-adaptive method, but its apjieq before to analyze circadian, ultradian and infradian rhy-
proach is empirical instead of analytical and focused on th?yms [16,71].

upper and lower envelopes of the time series [37,38]. The' |, order to solve in great part the mode-mixing problem
goal of this method is to decompose the original signal into;nq extract more robust and physically meaningful IMFs, a
a collection ofintrinsic mode functiongIMFs), which are | 5riant of EMD is used, calleBnsemble Empirical Mode
simple oscillatory modes with meaningful instantaneous freDecomposition(EEMD) [39], which performs EMD over
quencies, and a residual trend. This requirement is enforcegl, ansemble of the signal plus Gaussian white noise. The
by the following conditions: (1) the number of zero crossingSEEmD has been applied before to analyze circadian and in-
and the number of local extrema of the function must differ¢ 4 4ian rhythms [72, 73]. However, the EEMD does not al-
by at most one and (2) the “the local mean” of the function|q, 5 complete reconstruction as in E@8J, since the orig-

is zero. The sifting process by which the signal is decomyng| signal cannot be exactly recovered by adding together
posed is the following: First, the local maxima are identifiedj;s EgmD components. In order to overcome this situation,
and connected by a cubic spline line, constructing the Uppet second variant called t@omplete Ensemble Empirical
envelope. This procedure is repeated with the local minimgyqqe Decomposition with Adaptive Noise(CEEMDAN)

to construct the lower envelope. Then, the average of thesg seq [40, 74], this procedure adds a particular noise at each
envelopes is designated as a local mean of the signal, deggage, and achieves a complete decomposition with no recon-

ignated asm,, which can be used as a reference that sepagirction error. Apparently, CEEMDAN has never been ap-
rates the lower frequency oscillations in the signal (the parb"ed to analyze circadian rhythms.

included in the local mean) from the highest frequency 0s- || calculations for EMD, EEMD and CEEMDAN in this

cillations (the oscillations around the local mean). The dif-.qntribution were carried out with the free Python package
ference between the signal and is the first componerity, libeemd [75].

i.e. z(t) — my = h;. By subtracting the local mean, the

high (local) frequency oscillations can be separated from the 2 6. Nonlinear mode decomposition

rest of the signal. However, this subtraction can create new

local extrema, foiling the requirements set for an IMF. ToNMD is another data-adaptive method, but in contrast to SSA
actually recover the highest frequency IMF component, theand EMD it focuses on obtaining time-series components that

Rev. Mex. Fis69051101
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have a more obvious physical meaning [32, 33]. It is basedPearson correlation coefficient is a measure of the linear cor-
on the combination of time-frequency analysis [32, 76], sur+elation between two variables. It has a value betweén
rogate data tests [77] and the idea of harmonic identificaand —1, wherel is total positive linear correlation) is no
tion [78]. Given that experimental signals are rarely pure sidinear correlation, and-1 is total negative linear correlation.
nusoidal, the NMD considers the fulbnlinear modegNM) The Pearson correlation coefficient, between time series
in the signal, which are defined as the sum of all components andy is defined as,
that correspond to the same activity,

cov(x,y)

ot) = AtV [B(t)] = A(t) ) cos [hg(t) + ¢n] ,  (17) T = T o,
h

N _ _

; r; — X i —
where A(t) and ¢(t) are the instantaneous amplitude and = szl( - )(yN ) - (20)
phase, respectively, anda(t)] is some periodic function, \/Zizl (zi — 2) \/21:1 (yi — 9)
called “wave-shape” function. The components of the NM
are referred to akarmonics with the hth harmonic being where covg, y) is the covariance between time serieand
represented by a term ay, cos [ho(t) + ¢p]. Itis assumed ¥, ando, ando, are the corresponding standard deviations.
that a signal can be represented as a sum of the NMs of thEne Spearman correlation coefficient , assesses mono-

form (17) plus some nois@(): tonic relationships (whether linear or not) and is defined as
the Pearson correlation coefficient between the rakksnd
s(t) = ei(t) +n(t). (18) 1k, of the corresponding time series,
To do this, four steps are necessary: Py = M (21)
020y

(a) Extract the fundamental harmonic of a nonlinear mode
(NM) accurately from the signal’s time-frequency rep- If there are no repeated data values, a perfect Spearman cor-
resentation (TFR), in this case, using the same Lognortelation of+1 or —1 occurs when each of the variables is a
mal wavelet as in CWT. perfect monotone function of the other.

(b) Find candidates for all its possible harmonics, based on

its properties. 3. Results

(c) Identify the true harmonicd.é., corresponding to the ' _
same mode), and confirm by surrogate testing. 3.1. Circadian parameters

(d) Reconstruct the full NM by summing together all the Approx. 24 h circadian cycles were extracted for the con-
true harmonics; subtract it from the signal, and iteratetinuous data of all variables considered: actigraphy (act),
the procedure on the residual until a preset stoppingeart rate (HR), blood pressure (BP), skin temperatusig, (T
criterion is met. and core temperature (J.), see Fig. 1 for a plot of these

cycles as extracted by cosinor analysis and SSA. Whereas

E'by construction cosinor analysis represents the circadian cy-

cle as a periodic function with constant circadian parame-

ters that reflect the average behaviour over the whole pe-
riod considered, 7 successive days in the present case, the

The coefficient of determinationr goodness of fif? is an  Other methods show a circadian cycle that varies over time

important parameter to evaluate the quality of the extracte@nd allow to extract daily estimates of the circadian param-

NMD has been applied only in a few occasions to analyz
circadian cycles [68, 79].

2.3. Goodness of fit

circadian rhythmsR2 compares the variance of the residual €%€rS:€-g, {A} = {41, A, ..., A7} for the amplitude, and
errorse,, around the estimate of the circadian cygléo the similarly for the other parameters. All mgthod; agree rather
variance of the time seriegn) around its average valuge well on the week-average values of the circadian parameters:
mean(T'}), mean{M}), mean{A4}), and mean{¢,}), see
5 Var(e) Zgzl(xn —yn)? Fig. 2 for the specific variable of actigraphy. Results are sim-
RT=1- Var(z) =T N o2 (19)  ilar for the other variables of heart rate, blood pressure and
Lon(@n = ) core and skin temperature. In particular, the average values
2.4. Correlation coefficients of the circadian parameters according to each method tend to

be within the error bars of the standard deviations {@0}{,
In the following, correlation coefficients are used to com-SD({M}), SD{A}) and SD{¢o}) as evaluated by all other
pare the circadian cycles extracted by different methods. Thmethods. These standard deviations can be interpreted as a
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FIGURE 2. Circadian parameters for actigraphy. a) period) mesorM, c) amplitudeA and d) acrophase¢,. Week-average values are
shown and, where possible, also error bars with the standard deviation of the day-to-day variability. Also the mean value for each parameter
over all methods is indicated (horizontal lines).

quantification of the day-to-day variability. There are largecompared to the other methods. Maxinf values are ob-
differences in the evaluation of the day-to-day variability ac-tained with EEMD for the particular variables of actigraphy,
cording to the different methods: some methods systemablood pressure and skin temperature, and with CEEMDAN
ically giving large estimates (EMD, EEMD, CEEMDAN), for heart rate and core temperature. On the other hand, only
whereas other methods consistently give much smaller resul&SA and FDF give a consistent above-average description in
(CWT, DWT, NMD). general for all variables.

3.2. Goodness-of-fit of circadian cycles 3.3. Spectral content of circadian cycles

Table | shows the estimations of the coefficient of determinaFigure 4 shows the spectral contem,, the Fourier power
tion R2 by the different methods considered for the circadianspectra, of the circadian cycles as found by the different
cycles for all variables. An ANOVA test indicates that the methods for actigraphy. Similar results are obtained for the
between-group variance f@t?, i.e., variance between differ- other variables of heart rate, blood pressure and core and skin
ent variables, is larger than the within-group variarice, = temperature. By construction, circadian cycles described by
the variance of?? values between different methods for the the cosinor analysis of Ec2) should correspond to a spec-
same variable (Fratio=1255 with = 10~4!) and post-hoc trum with a single peak at the circadian frequencyfof 7
tests with Bonferroni, Tukey, Duncan and Student-Newman{cyles/7 days), but because of the phenomenospeftral
Keuls all indicate that differences iR? values between dif- leakagesmall power contributions are also present at neigh-
ferent variables are statistically significant. TherefaR2,  bouring frequencies [80]. Comparing the spectra of other
primarily depends on the type of variable and only secondarmethods to the spectrum of cosinor analysis gives a measure
ily on the method applied, see Fig. 3a). of how different estimates of the circadian cycle are consti-
For specific variables, compared to cosinor analysis, théuted of different combinations of lower and higher frequen-
other methods tend to improve the description of the circacies. Frequencies of spectra of filter-based methods such as
dian cycle with up tol0 — 20 %. Exceptions are the EMD FDF and DWT cut off abruptly and are exactly 0 outside
analysis of actigraphy and skin temperature, and CEEMef a specific bandpass range. Spectra are rather narrow for
DAN for blood pressure, where the description is worseDWT, NMD and CWT, reflecting more regular circadian cy-
down to—5% than for cosinor analysis, possibly due to thecles. The spectrum for EMD, on the other hand, is very wide,
mode-mixing problem typical for these methods. Results foicorresponding to a more irregular estimate of the circadian
CWT and NMD only slightly improve the cosinor descrip- cycle. Spectra for SSA, EEMD and CEEMDAN have in-
tion, whereas DWT only gives an average performance whetermediate widths, indicating a description of the circadian
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FIGURE 3 . Selected parameters to characterize circadian cycles of actigraphy (act), heart rate (HR), blood pressure (BP), skin temperature
(Tskin) and core temperature (Tcore): a) coefficient of determinatfoand b) modulabilityd /M. The graphs illustrate that the parameter

values depend primarily on the variable and much less on the specific method used to calculate the circadian patgMeteshown in
logarithmic scale to more clearly show differences in the rather small values for core and skin temperature. Variables are separated accordin
behavioural, cardiovascular and thermoregulatory mechanisms (vertical gridlines).

TABLE |. Coefficient of determination or goodness-of-fit paramé@énf Eq. (19) shown in percentage, for the circadian cycle estimated by
different methods for all variables.

R? (%)
act (1/min) HR (omp) BP (mmHg) Tskin(°C) Teore(°C)
Cosinor 16.0 38.7 50.2 29.5 69.3
FDF 20.5 48.6 57.4 41.9 75.2
CWT 17.8 39.3 51.9 31.4 68.4
DWT 19.9 44.3 56.4 35.1 74.9
SSA 21.3 49.4 57.4 42.7 76.7
NMD 16.7 43.3 53.3 28.9 74.9
EMD 14.6 42.5 52.7 24.0 76.0
EEMD 27.2 51.7 66.3 49.9 72.0
CEEMDAN 20.5 53.1 45.1 33.8 80.1

cycles that may be moderately irregular. EMD, EEMD andwith those of other methods are EMD, EEMD and CEEM-
CEEMDAN also tend to have frequency contributions thatDAN.
are not contained within the original signal.

_ o 4. Discussion
3.4. Correlation between circadian cycles extracted by

different methods 4.1. Time-series description of circadian cycles

Table Il shows the Spearman correlation coefficients betwee@Gompared to standard cosinor analysis, the other methods in
circadian cycles as estimated by the different methods apgeneral improve the goodness-offit of the circadian cy-
plied to actigraphy data. Similar results are obtained for thecle. Comparing between all methods, SSA, EEMD, FDF and
other variables of heart rate, blood pressure and core and skbEEMDAN perform above average, DWT on average, and
temperature. The correlation coefficients are rather large andMD, EMD and CWT below average. In particular, the good
mostly in the range 0.75-0.95, which is unsurprising becausperformance of FDF is surprising given that it is one of the
it is always the same process of the circadian cycle that isimplest filter techniques available and that here a crude rect-
described and which is only observed from the perspectiveangular filter window was applied. This good performance
of different methods. For all variables, DWT and SSA aremay be explained by the broad bandpass frequency range that
the methods for which the circadian cycles correlate alwaysvas chosen. An alternative approach in the literature is to de-
above average with the other methods. Another method foscribe the circadian cycle by the fundamental frequency of
which the circadian cycles tend to correlate above average: 1/24h together with its higher harmonics [17]. Also the
with those of other methods are CWT and NMD. MethodsNMD description is based on harmonics, but appears to un-
for which extracted cycles tend to correlate less than averaggerperform in comparison with other methods. A possible
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FIGURE 4. Fourier power spectra of time series of actigraphy (green shaded curves), circadian cycles as extracted by different methods
(black continuous curves), and compared to standard cosinor analysis (black dashed curve). All spectra are presented in semilogarithmic
scale. Angular frequenciesare shown in units of number of cycles for 7 consecutive days.

reason is that all frequency-based methods utilized foDAN generate their time-series components and the corre-
rhythm detection suffer from tHack of specificatiofi71,81],  sponding frequency ranges in a data-adaptive way. These fre-
such that harmonics may be due to ultradian rhythms or nonguency ranges are moderately wide, and appear to maximize
stationarities and may not be appropriate to describe the citR? in comparison with either narrower (cosinor, CWT, DWT
cadian cycle. Whereas in the case of FDF and other digitehnd NMD) or wider frequency ranges (EMD), see Fig. 4. The
filters the frequency range needs to be defined by the user amitcadian cycles derived by EEMD and CEEMDAN correlate
may be arbitrary, methods such as SSA, EEMD and CEEMless well with the cycles extracted by other methods, itis
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TABLE Il. Spearman’s rank correlation coefficignof Eq. (21) for circadian cycles estimated by different methods for actigraphy.

p
Cosinor FDF CWT DWT SSA NMD EMD EEMD CEEM-
DAN
Cosinor 1 0.876 0.936 0.936 0.938 0.950 0.814 0.767 0.822
FDF 0.876 1 0.930 0.945 0.950 0.908 0.745 0.852 0.893
CWT 0.936 0.930 1 0.971 0.979 0.949 0.865 0.867 0.938
DWT 0.936 0.945 0.971 1 0.982 0.971 0.789 0.868 0.895
SSA 0.938 0.950 0.979 0.982 1 0.960 0.813 0.874 0.911
NMD 0.950 0.908 0.949 0.971 0.960 1 0.753 0.837 0.877
EMD 0.814 0.745 0.865 0.789 0.813 0.753 1 0.729 0.812
EEMD 0.767 0.852 0.867 0.868 0.874 0.837 0.729 1 0.895
CEEM-DAN 0.822 0.893 0.938 0.895 0.911 0.877 0.812 0.895 1

is therefore possible that these EMD-based techniques capeopulations must be due to physiological effects. If this con-
ture more specific features of experimental data which arélition is fulfilled, then day-to-day variability may indeed be
not accessible to other methods, and it seems that EEMD arapplied for diagnostic purposes as proposed before [20].
CEEMDAN are more applicable to some variables than to
others. In contrast, circadian cycles described by SSA cor-
relate above average with results from other methods an
therefore appear to capture ge”e”?" properties of experime "he range ofk? for the circadian cycles for all variables con-
tal data. Also, SSA appears to give a good description o idered here is very wide5 — 80%. see Table I, and in the
circadian cycles independently from the specific variable thaf y o !

is studied, perhaps because the circadian cycle may be g%:Iowing this wide range will be interpreted. Refs. [25—-28,
limit circle [82] or a chaotic attractor [83] which subspace —86] proposed that physiological variables that play dif-

or phase-space methods such as SSA may detect very Wé‘ﬁrent roles in homeostatic regulation exhibit different time-

Overall, it appears that data-adaptive methods are particularlse”es behavior with distinct statistical properties. In partic-

suited to extract the circadian cycle from experimental data.glar' itwas suggested thedgulated variablesuch as blood

In this section, the goodness-of-fit obtained by specific methPressure and core temperature fluctuate within a narrow range

. o , around a specific setpoint representing Claude Bernard’s con-
ods was emphasized because it is hypothesized that larger_ . . ) .
5 ; - L . “stant internal environment; on the other haaflectorvari-
R* values will allow to statistically distinguish more easily : .
: L .ables such as heart rate and skin temperature are responsible
between healthy and unhealthy populations in clinical appli- , . .
. . . for Walter Cannon’s adaptive responses to internal and ex-
cations of circadian cycles. . .
ternal perturbances and are much less restricted in space and
4.2. Circadian parameters and day-to-day variability time. Therefore, it was proposed that in optimal conditions
of youth and health effector variables are more variable and
All methods considered agree rather well on the average valess regular than regulated variables. This paradigm was in-
ues of the circadian parameters for all methods. These avevestigated for the spontaneous fluctuations of physiological
age values are mostly within the error bars representing theariables in rest and in absence of dominant stimuli. It is un-
day-to-day variability according to each method. Ref. [20]clear whether a similar phenomenology can be expected in
presented evidence that not only the average values of tHbe presence of an external forcing such as the alternation of
circadian parameters but also the day-to-day variability conday and night. The coefficient of determinatié&? as de-
tribute to distinguish between healthy and unhealthy populatermined by the different methods appears to respond affir-
tions. The present contribution demonstrates that one of theatively to this question, see Table | and Fig. 3a), the regu-
main differences between various methods is their quantifilated variables considered in this contribution (blood pressure
cation of the day-to-day variability. It is not clear what part and core temperature) indeed appear to be associated to more
of this variability is due to the data itself (intrinsic) and what regular time series (highdt? values), and effector variables
part may be artificially produced by the specific method ap{heart rate and skin temperature) to more irregular or vari-
plied (extrinsic). Here, it is hypothesized that if a methodable time series (lowek? values). Actigraphy could be an
is consistent in the quantification of day-to-day variability, example of a third category of variable relatedohavior
and the extrinsic part of the variability is similar for different or conductomgsee Ref. [87], corresponding to very irregular
populations, then differences in this variability between thetime series (minimak? values). To investigate this paradigm

.3.  Homeostatic interpretation of circadian parameters
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TaABLE IIl. Modulability A/M shown in percentage, for the circadian cycles estimated by different time-series techniques for all variables.

AIM (%)
act (1/min) HR (bmp) BP (mmHg) Tskin(°C) Teore(°C)
Cosinor 66.9 204 15.6 3.07 1.39
FDF 71.4 22.2 16.1 3.21 1.44
CWT 65.2 18.0 13.2 2.64 1.09
DWT 56.7 17.7 13.3 2.76 1.25
SSA 67.8 20.6 15.8 3.07 1.35
NMD 64.8 21.6 14.1 341 1.25
EMD 63.0 24.1 15.4 2.75 1.40
EEMD 65.9 21.1 13.7 3.44 1.15
CEEMDAN 61.4 225 11.8 1.92 1.23

further, a derived measuré/M is proposed, calledhodu- presented as hypotheses which should be rather straightfor-
lability for the purpose of this contribution, which expressesward to verify and which may inspire further investigations.
amplitude A as a percentage of mesdf, and therefore is

dimensionless allowing comparisons between different vari- ]

ables. Table Il and Fig. 3b) show that for a specific home5. Conclusion

ostatic mechanism, modulability appears to be larger for the

effector variable than for the corresponding regulated vari/A good description of circadian cycles appears to depend on
able. For the thermoregulatory mechanistyid/ ~ 3 for including an adequate broad frequency range around the cen-
skin temperature vsy 1.3 for core temperature. For the car- tral frequency of 1/24h, rather than including harmonics of
diovascular mechanism/M ~ 21 for heart rate vsa 15 this fundamental frequency. Recent time-series techniques
for blood pressure. This sounds very reasonable because rei{ch as SSA, EEMD and CEEMDAN generate their com-
ulation tries to maintain regulated variables within a very naronents and the corresponding frequency content in a data-
row homeostatic range, whereas the range of regulating var@daptive way, maximize goodness-of-fif values and ap-
ables is contained only by what is physiologically possiblePear to be particularly suited to extract circadian cycles from
and what not. Modulability for behavioural variables such€xperimental data. Whereas EEMD and CEEMDAN may be
as actigraphy is even larget,/M ~ 65, because here there more applicable to some variables than to others, the appli-
are no physiological limitations that must be respected. It i€ability of SSA appears to be more independent of the spe-
hypothesized that there may be a relation between this hom@lflc variable under Study. Another advantage with reSpeCt to
ostatic time-series paradigm and the phenomena of maskiﬁﬂe traditional cosinor approach is that these time-series tech-
and entrainment in rhythmobiology. In particular, it is sug- Niques allow to describe the day-do-day variability of the cir-
gested that effector variables are more prone to the effects §@dian parameters apart from their average values. Finally,
masking and entrainment than regulated variables, such thgeveral of the circadian parameters were interpreted within

the latter may be expected to reflect more easily the “truethe context of homeostatic regulation and a possible link was
cycles of the internal circadian clocks. proposed with the phenomena of masking and entrainment in

rhythmobiology.
4.4. Strengths and limitations

The strengths of the present contribution are the inclusiocknowledgements

of 5 different variables (actigraphy, heart rate, blood pres-

sure, skin temperature and core temperature) from 3 differFinancial funding for this work was supplied by the Dirguti

ent mechanisms (behavior, cardiovascular and thermoregéeneral de Asuntos del Personal Aeatico (DGAPA) from
latory) and 9 different methods (cosinor, FDF, CWT, DWT, the Universidad Nacional AGhoma de Mxico (UNAM)
SSA, EMD, EEMD, CEEMDAN, NMD) from at least 4 dif- with grant PAPIIT IN110321 and IN110321. We are also
ferent domains (mathematical model, time-frequency, analytgratefully acknowledge grants Fronteras 2020/263377 and
ical data-adaptive and empirical data-adaptive). The limita2020/610285 and 610285 from the Consejo Nacional de Hu-
tion is obviously that only data of a single subject was in-manidades Ciencia y Tecnolag (CONAHCyT). The au-
cluded. Therefore, the results of the present contribution arthors are thankful to Markus Mler for fruitful discussions.
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