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Circadian cycles: A time-series approach
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The extraction of circadian cycles from experimental data can be interpreted as a specific case of time-series or signal analysis, but chrono-
biology and time-series analysis appear to have developed according to separate paths. Whereas some techniques such as continuous (CWT)
and discrete wavelet analysis (DWT) are used frequently in rhythmobiology, other specialized methdos such as digital filters, nonlinear mode
decomposition (NMD), singular spectrum analysis (SSA), empirical mode decomposition (EMD), ensemble empirical mode decomposition
(EEMD) and complete ensemble empirical model decomposition with adaptive noise (CEEMDAN) have only occasionally been applied.
No studies are available that compare the applicability between a wide variety of different methods or for different variables, and this is the
purpose of the present contribution. These methods improve the goodness-of-fit of the circadian cycle with respect to the standard approach
of cosinor analysis. They have the additional advantage of being able to quantify the day-to-day variability of the circadian parameters of
mesor, amplitude, period and acrophase around their average values, with potential clinical applications to distinguish between healthy and
unhealthy populations. Finally, the circadian parameters are interpreted within the context of homeostatic regulation with distinctive statistics
for regulated and effector variables.
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1. Introduction

Circadian cycles are physical, mental and behavioral varia-
tions that follow an approximately 24-hour rhythm. The field
of chronobiology has been dominated by basic research ques-
tions such as what biological variables obey regular circadian
cycles, what are the central and/or peripheral anatomical sub-
strates that generate these rhythms [1, 2], and how one can
distinguish between the rhythm of an internal circadian clock
and the effects of masking or entraining because of exter-
nal perturbations [3, 4]. It has become clear that most – if
not all – variables of living systems obey circadian cycles,
including bacteria [5], plants [6], insects [7], vertebrates in
general [8] and humans in particular [9–12] and cosinor anal-
ysis was established as the standard method to quantify these
regularities in experimental data. Cosinor analysis uses a pre-
determined mathematical model of periodicity, in particular
a cosine function, which is fitted to the data to describe the
average cyclic behaviour over a given time period [13,14].

Presently, since the universality of circadian cycles has
been accepted, also more applied research questions are at-
tracting attention, such as the analysis of irregularities in
circadian rhythms as a proxy to assess pathological or sub-
healthy conditions in the clinic,e.g., age-associated frailty
[15], preclinical [16] or advanced dementia [17], hyperactiv-

ity and attention-deficit disorder [18], psychological vulner-
ability [19], insomnia [20], etc. Such irregularities are dif-
ficult to describe using cosinor analysis, but may be quanti-
fied using non-parametric approaches such as intradaily sta-
bility (IS) and intradaily variability (IV) [21,22]. These non-
parametric approaches make no attempt however to extract
circadian (24h) or ultradian (<24h) cyclic components from
the data. This may be unfortunate, because a common re-
search method to explore an unknown system, in particu-
lar in electronic engineering or material science, is to stim-
ulate that system using a calibrated test signal at a specific
frequency and to investigate the amplitude and phase of the
response signal, which in linear systems occurs at the same
frequency [23, 24]. Similarly, circadian cycles can be inter-
preted as the reaction of the variables of a physiological sys-
tem to the universal forcing of the alternation between day
and night. Thecircadian parametersof mesor, amplitude, pe-
riod and acrophase are of particular interest to evaluate this
response, which may also depend on the specific role these
variables play in homeostatic regulation [25–28]. Addition-
ally, not only the average values of the circadian parameters
but also theirday-to-day variabilitygives valuable informa-
tion to distinguish between healthy and unhealthy popula-
tions [20].
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Altough the extraction of circadian cycles from experi-
mental data can be interpreted as a particular case of time-
series analysis, it would appear that chronobiology and time-
series analysis have developed according to different paths,
and whereas various of the specialized time series techniques
have occasionally been applied to rhythmobiology, no studies
are available that compare the applicability between a variety
of methods or for different variables. One of the objectives of
time-series analysis is to decompose continuous data as the
sum of more simple components such as a trend, (approxi-
mately) periodic components and fluctuations, and/or extract
one or more specific components, with the presupposition
that these individual time-series components may reflect spe-
cific physical or physiological phenomena or processes.

Different families of time-series methods exist, differing
in the mathematical principles by which this decomposition
or extraction is realized. The most common decomposition
method is Fourier spectral analysis, where the time series is
represented as the sum of sine and cosine periodic functions
of different frequencies and amplitudes [29]. A drawback
of Fourier spectral analysis is that strictly it may only be
applied to stationary time series,i.e., where statistical mea-
sures such as average and variance do not change over time,
which may be an issue in experimental time series that of-
ten have,e.g., dominant trends or irregular behaviour in time.
More advanced time-series techniques decompose time se-
ries either into more general mathematical functions that do
not need to be periodic, or generate the basis in a numeri-
cal and data-adaptive way from the data itself, and are in-
tensively used to study nonstationary time series. Examples
of the former strategy are wavelet-based methods [30, 31],
such as the continuous wavelet transform (CWT) or the dis-
crete wavelet transform (DWT), and derived methods such
as nonlinear mode decomposition (NMD) [32, 33]. Exam-
ples of the latter strategy are subspace-based methods such
as singular spectrum analysis (SSA) [34–36], and envelope-
based methods such as the empirical mode decomposition
(EMD) [37, 38] and derived methods such as the ensemble
empiricial mode decomposition (EEMD) [39] and the com-
plete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) [40].

The purpose of the present contribution is to explore the
application of the before-mentioned traditional and more re-
cent time-series techniques to study the circadian cycles of
selected time series for a variety of physiological variables.
The performance of these time-series techniques will be com-
pared to standard cosinor analysis. The circadian parameters
and their day-to-day variability will be discussed and will be
interpreted within the context of homeostatic regulation

2. Materials and methods

2.1. Experimental time series

The present contribution is a secondary analysis of simultane-
ous time series of 5 different variables showing the effect of
the alternation of day and night on the physiology of a healthy

male young adult during 1 week of continuous monitoring.
Whereas in previous publications the high-frequency spon-
taneous fluctuations of these time series were studied from
the perspective of homeostatic regulation [25,27], the objec-
tive here is to analyze the circadian cycles. Figure 1 shows
actigraphy (act), which measures the number of movements
per sample time interval or ‘epoch’, in the present case arbi-
trarily chosen as 1min, using the Actigraph wGT3X-BT de-
vice, the cardiovascular variables of heart rate (HR) measured
in beats per minute (bpm) and systolic blood pressure (BP)
measured in millimeters of mercury (mmHg), both registered
using the CONTEC ABPM50 device, and thermoregulatory
variables of skin temperature (Tskin) and core temperature
(Tcore), measured in degrees Celsius (◦C) using Maxim Ther-
mochron DS1922L iButtons (“thermochron8k”). All time se-
ries have been resampled at the same rate of 1/(15 min) and
all start at midnight. Unless otherwise stated, all time-series
analyses have been carried out with Wolfram Mathematica,
version 12.0.0.0.

2.2. Time-series techniques

2.2.1. Cosinor

The traditional method to study the periodic aspects of cir-
cadian rhythms is cosinor analysis, see [13, 14]. The cosinor
approach is based on regression techniques and is applicable
to equidistant or non-equidistant time seriesx(n) of N dis-
crete data points,

x(n) = {x1, . . . , xN}. (1)

The procedure consists of fitting a periodic functiony(t) to
time seriesx(n),

y(t) = M + A cos (ωt + φ) , (2)

where the angular frequencyω = 2πf = 2π/T corresponds
to the periodT ≈ 24h of the circadian cycle. Once a value
for T has been fixed, minimizing the squared residual errors
e2
n = (xn − yn)2 for all data points, allows to find values

for the rhythm-adjusted mean or mesorM , the amplitudeA
and the phaseφ. Becauseφ specifies the fraction of the cycle
covered up tot = 0, this parameter does not give any phys-
iological information. Instead, a more interesting variable is
the acrophaseφ0 which can be defined as the time of the day
where the circadian cycle obtains its maximum, with respect
to a fixed moment in time that is the same for all subjects,e.g.
taking midnight as a reference, and which can be expressed
as hours and minutes (hh:mm), or alternatively, as an angle
(taking into account the relation360◦ = 24 hrs), relative to
this reference time. The valuesM , T , A andφ0 obtained
by cosinor analysis represent the average values of the circa-
dian parameters over the whole duration of the considered
data, which are 7 successive days in the present contribu-
tion. Algorithms to calculate cosinor have been published
in Python for actigraphy [41] and for biological variables in
general [42].
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FIGURE 1. 7-day continuous monitoring of a healthy male young adult showing (a) actigraphy (act) expressed as number of movements per
minute (1/min), cardiovascular variables of (b) heart rate (HR) as beats per minute (bpm) and (c) systolic blood pressure (BP) as millimeters
of mercury (mmHg), and thermoregulatory variables of (d) skin temperature (Tskin) and (e) core temperature (Tcore) as degrees Celsius
(◦C). Sample frequency is 1/(15 min) for all variables. Vertical gridlines indicate midnight. Also shown are the approx. 24h circadian cycle,
estimated by cosinor analysis which shows the 7-day average properties (dashed curve) and SSA which also reflects the day-to-day variability
(continuous curve).

2.2.2. Frequency domain filter (FDF)

Also called spectral domain filter, Fourier domain filter or
FFT domain filter, or – more informally – Fourier filter,
Fourier transform filter or FFT filter. Filtering is one of the
most common forms of signal processing which has as a goal
to remove specific frequencies or frequency bands, and/or im-
prove the magnitude, phase or group delay in some part (s)
of the spectrum of a signal [43]. Mathematically, a filter cor-
responds to the convolution of signalx(t) with the impulse
responseg(t) of the filter to obtain a filtered signalc(t),

c(t) = x(t) ∗ g(t) ≡
∞∫

−∞
x(τ)g(t− τ) dτ, (3)

but this shift-and-multiply procedure may be very time-
consuming for longer signals. In the Fourier domain, or fre-
quency domain, the convolution reduces to a much simpler
and efficient point-to-point multiplication [44],

ĉ(ω) = x̂(ω)ĝ(ω), (4)

over a certain angular frequency rangeω, and wherêx(ω)
indicates the Fourier transform ofx(t),

x̂(ω) =
1√
2π

∞∫

−∞
x(t)eiωtdt, (5)

and similarly ĉ(ω) and ĝ(ω) are the transforms ofc(t) and
g(t). The Fourier transform itself is also a convolution and
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can be realized by very optimized techniques, such as the
fast Fourier transform (FFT) [29]. The minimal essence of
the FDF consists first in converting the signal to the fre-
quency domain, then zeroing out all unwanted frequencies
ω, i.e., ĝ(ω) = 0, whereas desired frequencies are permit-
ted to pass in an unalterated way,i.e., ĝ(ω) = 1, and finally
to apply the inverse-Fourier transform to obtain the filtered
signal. This procedure readily allows to construct any low-
pass, high-pass, band-pass or band-stop filter. One limita-
tion of the Fourier transform is that it reflects the average
frequency content of the whole time series, such that it may
be inadequate to apply to non-stationary time series where
the statistical properties vary over time. Another particu-
larity is that using rectangular filter windows with abrupt
frequency cut-offs as described above may cause artificial
high-frequency “ripples” or “ringing” in the filter output, also
called Gibbs phenomenon, such that often it is advised to use
specific filter windows that interpolate smoothly between 0
and 1 [29, 43, 44]. Apart from signal analysis, FDF is also
popular in digital image analysis [45].

FDF appears to have been applied to extract circadian cy-
cles from experimental data only once [46]. Other types of
digital filter have occasionally been applied, such as Butter-
worth filters [47], finite impulse response filters (FIR) [48],
Kalman filters [49,50], adaptive notch filters [51], particle fil-
ters [52, 53], Bayesian filters [54] and waveform filters [55].
Here, an FDF bandpass filter is used. In order to capture
the circadian cycle atω ≈ 7 (in units of number of oscilla-
tions during 7 successive days) and the day-to-day variability,
a simple rectangular filter window is applied in the arbitrary
range0 ≤ ω ≤ 12, excluding the ultradian oscillations which
may be expected to start to appear nearω ≈ 14 and where
ω = 0 corresponds to the constant DC or mesor term.

2.2.3. Wavelet transforms (WT)

Wavelet analysis is an example oftime-frequencyanalysis,
i.e., the time and frequency domains are studied simultane-
ously, such that this approach is particularly well suited for
the study of non-stationary processes [30, 31]. Two versions
of wavelet analysis exist: (i) the continuous wavelet trans-
form (CWT), which tends to be used more in scientific re-
search to analyze complex signals and is superior from the
viewpoint of visualizing results for individual signals, but has
the drawback of using a non-orthonormal basis such that the
CWT expresses excessive information and the values of the
wavelet coefficients are correlated; (ii) the discrete wavelet
transform (DWT) which is preferred in order to solve techni-
cal real-life problems and where orthonormal bases are avail-
able that allow a signal decomposition in an efficient and ex-
act way, with considerable advantages such as computational
speed, simpler procedure for the inverse transform and ap-
plication to multiple signals [30, 31]. One important prob-
lem when using CWT or DWT is the choice of an appropri-
ate mother wavelet or analizing wavelet, which will depend
on the type of signal studied and/or the study objective, and

where an inadequate choice may compromise the results.
TheContinuous Wavelet Transform (CWT) [30,31] is

performed by convolution of the signalx(t) with the two pa-
rameterwavelet functionψs,τ (t),

W (s, τ) =

∞∫

−∞
x(t)ψ∗s,τ (t)dt, (6)

where the asterisk denotes the complex conjugate and the
wavelet function is obtained from themother waveletor an-
alyzing wavelet,

ψs,τ (t) =
1√
s
ψ0

(
t− τ

s

)
, (7)

where the parametert specifies the wavelet location on the
time axis,τ expresses a shift or translation ands corresponds
to an expansion (dilation) of the width of the wavelet in the
time domain and represents the time scale of the wavelet
transform. Often, the notion of “period”T is considered in-
stead of the “time scale”s since it is more suitable in many
studies, but one has to be very careful because the identity
T = s is correct only for special choices of the mother
wavelet and its parameters. The main difference between
Eqs. (5) and (6) is that the Fourier transform̂x(ω) repre-
sents the average contribution of the angular frequencyω
over the whole time series, whereas the wavelet transform
W (s, t) preserves information with respect to the timingt of
contributions at specific scaless. Generally, it is regarded
that the Morlet mother wavelet offers an optimal time-scale
(frequency) resolution, but under certain conditions, the Log-
normal wavelet outperforms the Morlet wavelet in terms of
time-frequency resolution and the Lognormal wavelet is also
inline with the logarithmic frequency resolution of the CWT
[32, 56]. Of particular interest to describe approximately
periodic phenomena, such as circadian cycles, is theridge
curvewhich runs along local maxima of the absolute value
of W (s, t) with respect tos (for each fixedt) and thereby
indicates theinstantaneous frequencyandanalytic amplitude
of the signal at each time point. Extracting that ridge cor-
responds to a filtering process of the signalx(t), similar to
Eq. (4), but now based on the wavelet transformW (s, τ) in-
stead of the Fourier transform̂x(ω), such that time localiza-
tion is conserved. The CWT has been applied to analyze cir-
cadian cycles, especially for variables that can be expected to
evolve smoothly and continuously in time because of restric-
tions imposed by physiological processes, such as body tem-
perature [57]. In the present contribution, the freely available
Multiscale Oscillatory Dynamics Analysis (MODA) toolkit
for Matlab and Python from Lancaster University [32,58,59]
was used to calculate the CWT with the Lognormal wavelet
and to extract the ridge around periodT = 24 h.

Discrete Wavelet Transform (DWT) [30,31] DWT uses
a logarithmic discretization of themother waveletfunction of
Eq. (7),

ψm,n(t) =
1√
sm
0

ψ

(
t− nτ0s

m
0

sm
0

)
, (8)
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which may constitute an orthonormal basis and where com-
monly the discrete wavelet parameters are chosen ass0 = 2
andτ0 = 1 such that the dilation parameterm specifies the
scale and the translation parametern indicates timing. DWT
also considers ascaling functionor father waveletfunction
φm,n which obeys the same discretization relation as Eq. (8).
The functionsψm,n and φm,n are convoluted with signal
x(t), similar to Eq. (6) for CWT, and serve ashighpassand
lowpass filters, respectively, where

Tm,n =

∞∫

−∞
x(t)ψm,n(t)dt

are calleddetail coefficientsor wavelet coefficients, and

Sm,n =

∞∫

−∞
x(t)ψm,n(t)dt

areapproximation coefficients. The inverse transformations,

dm(t) =
∞∑

n=−∞
Tm,nψm,n(t), (9)

xm(t) =
∞∑

n=−∞
Sm,nφm,n(t), (10)

are called thesignal detailsand thesmoothor continuous
approximationof the signal at scalem. DWT works in a re-
cursive way, decomposing the signalxm(t) at scalem as the
sum of a lowpass filtered partxm+1(t) and a highpass filtered
partdm+1(t),

xm(t) = xm+1(t) + dm+1(t), (11)

allowing to reconstruct the original signal as a multiresolu-
tion series expansion,

x(t) = xm0(t) +
m0∑

m=1

dm(t), (12)

which is the sum of all the signal details and a single resid-
ual continuous approximation. In the case of a power-of-two
logarithmic scaling as presented here, the maximum num-
ber of signal details in which the signal is decomposed is
m0 = log2(N) whereN is the length of the time series.
The DWT has been applied to analyze circadian cycles, es-
pecially for variables that contain relatively sharp disconti-
nuities, jumping from zero to relatively high values, such as
physical activity and in particular actigraphy data, for which
it has been found that the Daubechies 4-tap mother wavelet
identifies well discontinuities in the first derivative of a sig-
nal [60]. For the purpose of this contribution, several DWT
mother wavelets have been explored, Haar and Daubechies
1-tap mother wavelets produced the best goodness-of-fit for
all variables, but the resulting circadian cycles contained
f > 1/24 h contributions. Higher-order mother wavelets

eliminated these ultradian contributions but tended to have
lower goodness-of-fit. The Daubechies 4-tap wavelet was
found to be a good trade-off between these two opposing lim-
itations for all variables considered here and all results will
be presented using this specific mother wavelet. Matlab and
Mathematica have integrated algorithms to calculate DWT,
and algorithms are available for Python as well [61].

2.2.4. Singular Spectrum Analysis (SSA)

SSA is an example of a subspace or phase-space method and
is closely related to embedding and attractor reconstruction
of dynamical systems [34]. SSA has been discussed in detail
in a number of textbooks [34–36, 62]. A standard and very
extensive reference is [63], whereas a short and very acces-
sible introduction can be found in Ref. [64]. Unlike Fourier
or wavelet analysis, which express a signal as a superposi-
tion of predefined functions, SSA is considered to bedata
adaptativeor model and user independent, because the basis
functions are generated from the data itself. SSA can be ex-
plained as a 3-step process. First, the univariate signalx(n)
with lengthN is embedded into a so-calledtrajectory matrix
X, by sliding a window with lengthL over the data using
unitary steps, such that the dimension of the matrix isK ×L
whereK = N − L + 1. This matrix may be interpreted as a
multivariate or multi-channel signal [32, 33] or as the under-
lying phase space of the time series [34]. By construction, the
matrix will obey a Hankel symmetry, i.e., the upsloping di-
agonals consist of identical elements. Second, the matrix de-
composition method of singular value decomposition (SVD)
is applied to expressX as a sum of elementary or rank-1 ma-
tricesXk, or – similarly – to express the original phase space
as a superposition of “sub phase-spaces” [65],

X =
r∑

k=1

σkXk . (13)

Here,σ1 ≥ σ2 ≥ . . . ≥ σr are the ordered singular val-
ues, wherer ≤ min(K, L) = rank(X) is the matrix rank
of the trajectory matrix. SVD is similar to an approach with
correlation matrices or principal component analysis (PCA)
[66], hence the alternative name of “single-channel PCA” for
SSA [32,33]. Third, the inverse of step 1 is applied, convert-
ing the matricesXk back into so-calledreconstructed time-
series componentsgk(n), where in general the matricesXk

are not Hankel such that care needs to be taken to average
over the upsloping diagonals and to apply weights to com-
pensate for the difference in length of these diagonals [64].
Finally, the original time series can be decomposed as a sum
over reconstructed components,

x(n) =
r∑

k=1

σkgk(n), (14)

whereλk = σ2
k corresponds to thepartial varianceof the

componentgk(n) and
∑r

k=1 λk = Var is the total variance
of time seriesx(n). Not all gk(n) correspond to independent
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components, instead they should be “grouped” into “modes”
together with othergl(n) with l = 1, . . . , r that have similar
partial variance and/or average frequency, according to the
corresponding elementary matricesXk andXl with k, l =
1, . . . , r that toghether approximate the Hankel symmetry. In
particular, approximate periodic behaviour in a time series
will be described by 2 componentsgk(n) that share the same
partial variance and average frequency, and that together de-
termine the phase, similar to the mathematical description
of periodicity, A cos(ωt + φ) = B cos (ωt) + C sin (ωt),
where the phase can be expressed either explicitely asφ
(left-hand expression) or as a weighted sum ofsin(ωt) and
cos(ωt) functions (right-hand expression). SSA has been ap-
plied to the analysis of circadian cycles only in few occa-
sions [20, 46, 67, 68]. Because of the ordering of the partial
variances and given that the trend and the circadian cycle con-
stitute the dominant features of the time series, it has been
found thatg1 corresponds to the mesor andg2 + g3 to the
circadian cycle [20,46,68]. A Python code for SSA analysis
is available for the particular variable of actigraphy [41] and
a general algoritm is available in R [69]. It is suggested to
chose the length of the embedding windowL as a multiple of
the (average) periodicity of the data,i.e. L = mT , wherem
is an integer number andT the period, such that an obvious
choice for theL parameter isL = T = 24 h = 1440 min,
which is the value used also here [20,46,68].

2.2.5. Empirical Mode Decomposition (EMD) and related
methods

Similar to SSA, EMD is a data-adaptive method, but its ap-
proach is empirical instead of analytical and focused on the
upper and lower envelopes of the time series [37, 38]. The
goal of this method is to decompose the original signal into
a collection ofintrinsic mode functions(IMFs), which are
simple oscillatory modes with meaningful instantaneous fre-
quencies, and a residual trend. This requirement is enforced
by the following conditions: (1) the number of zero crossings
and the number of local extrema of the function must differ
by at most one and (2) the “the local mean” of the function
is zero. The sifting process by which the signal is decom-
posed is the following: First, the local maxima are identified
and connected by a cubic spline line, constructing the upper
envelope. This procedure is repeated with the local minima
to construct the lower envelope. Then, the average of these
envelopes is designated as a local mean of the signal, des-
ignated asm1, which can be used as a reference that sepa-
rates the lower frequency oscillations in the signal (the part
included in the local mean) from the highest frequency os-
cillations (the oscillations around the local mean). The dif-
ference between the signal andm1 is the first componenth1,
i.e. x(t) − m1 = h1. By subtracting the local mean, the
high (local) frequency oscillations can be separated from the
rest of the signal. However, this subtraction can create new
local extrema, foiling the requirements set for an IMF. To
actually recover the highest frequency IMF component, the

sifting procedure is applied again and again, until some stop-
ping criterion is fulfilled and a sufficiently pure IMF results.
In the second sifting process,h1 is treated as the data, then
h1 −m11 = h11. In general,

h1(k−1) −m1k = h1k . (15)

which can be repeatedk times until h1k ≡ c1 is an IMF.
Subtracting the first IMF from the signal the first residue
r1 = x(t)−c1 is obtained. This can be repeated on all subse-
quentrj , with as a resultr1− c2 = r2 , . . . , rn−1− cn = rn.
The sifting process is stopped when the residuern becomes
a monotonic function and thus no further IMFs can be ex-
tracted. Then IMFs then constitute a decomposition of the
original signal,

x(t) =
n∑

i=1

ci + rn . (16)

EMD separates different frequency scales of the signal into
separate IMFs, but it is not guaranteed that (when analyzing
data from some natural process) each IMF represents a phys-
ical time scale of the process. Often ranges of IMFs need
to be added together to reconstruct information pertaining to
a single natural time scale [39], constituting a problem with
the so-calledmode mixing, and some IMF components may
represent the properties of measurement noise instead of the
underlying physical process. To assist in selecting the IMFs
with a physical meaning [70] a statistical significance test has
been proposed which compares the IMFs against a null hy-
pothesis of white noise. The EMD has only rarely been ap-
plied before to analyze circadian, ultradian and infradian rhy-
tyms [16,71].

In order to solve in great part the mode-mixing problem
and extract more robust and physically meaningful IMFs, a
variant of EMD is used, calledEnsemble Empirical Mode
Decomposition (EEMD) [39], which performs EMD over
an ensemble of the signal plus Gaussian white noise. The
EEMD has been applied before to analyze circadian and in-
fradian rhythms [72, 73]. However, the EEMD does not al-
low a complete reconstruction as in Eq. (16), since the orig-
inal signal cannot be exactly recovered by adding together
its EEMD components. In order to overcome this situation,
a second variant called theComplete Ensemble Empirical
Mode Decomposition with Adaptive Noise(CEEMDAN)
is used [40,74], this procedure adds a particular noise at each
stage, and achieves a complete decomposition with no recon-
struction error. Apparently, CEEMDAN has never been ap-
plied to analyze circadian rhythms.

All calculations for EMD, EEMD and CEEMDAN in this
contribution were carried out with the free Python package
libeemd [75].

2.2.6. Nonlinear mode decomposition

NMD is another data-adaptive method, but in contrast to SSA
and EMD it focuses on obtaining time-series components that
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have a more obvious physical meaning [32, 33]. It is based
on the combination of time-frequency analysis [32, 76], sur-
rogate data tests [77] and the idea of harmonic identifica-
tion [78]. Given that experimental signals are rarely pure si-
nusoidal, the NMD considers the fullnonlinear modes(NM)
in the signal, which are defined as the sum of all components
that correspond to the same activity,

c(t) = A(t)v [φ(t)] = A(t)
∑

h

cos [hφ(t) + φh] , (17)

whereA(t) and φ(t) are the instantaneous amplitude and
phase, respectively, and v[φ(t)] is some periodic function,
called “wave-shape” function. The components of the NM
are referred to asharmonics, with the hth harmonic being
represented by a term∼ ah cos [hφ(t) + φh]. It is assumed
that a signal can be represented as a sum of the NMs of the
form (17) plus some noiseη(t):

s(t) =
∑

i

ci(t) + η(t) . (18)

To do this, four steps are necessary:

(a) Extract the fundamental harmonic of a nonlinear mode
(NM) accurately from the signal’s time-frequency rep-
resentation (TFR), in this case, using the same Lognor-
mal wavelet as in CWT.

(b) Find candidates for all its possible harmonics, based on
its properties.

(c) Identify the true harmonics (i.e., corresponding to the
same mode), and confirm by surrogate testing.

(d) Reconstruct the full NM by summing together all the
true harmonics; subtract it from the signal, and iterate
the procedure on the residual until a preset stopping
criterion is met.

NMD has been applied only in a few occasions to analyze
circadian cycles [68,79].

2.3. Goodness of fit

The coefficient of determinationor goodness of fitR2 is an
important parameter to evaluate the quality of the extracted
circadian rhythms.R2 compares the variance of the residual
errorsen around the estimate of the circadian cycley to the
variance of the time seriesx(n) around its average valuēx,

R2 = 1− Var(e)
Var(x)

= 1−
∑N

n=1(xn − yn)2∑N
n=1(xn − x̄)2

. (19)

2.4. Correlation coefficients

In the following, correlation coefficients are used to com-
pare the circadian cycles extracted by different methods. The

Pearson correlation coefficient is a measure of the linear cor-
relation between two variables. It has a value between+1
and−1, where1 is total positive linear correlation,0 is no
linear correlation, and−1 is total negative linear correlation.
The Pearson correlation coefficientrx,y between time series
x andy is defined as,

rx,y =
cov(x, y)

σxσy

=
∑N

i=1 (xi − x̄) (yi − ȳ)√∑N
i=1 (xi − x̄)2

√∑N
i=1 (yi − ȳ)2

(20)

where cov(x, y) is the covariance between time seriesx and
y, andσx andσy are the corresponding standard deviations.
The Spearman correlation coefficientρx,y assesses mono-
tonic relationships (whether linear or not) and is defined as
the Pearson correlation coefficient between the ranksrkx and
rky of the corresponding time series,

ρx,y =
cov(rkx, rky)

σxσy
(21)

If there are no repeated data values, a perfect Spearman cor-
relation of+1 or −1 occurs when each of the variables is a
perfect monotone function of the other.

3. Results

3.1. Circadian parameters

Approx. 24 h circadian cycles were extracted for the con-
tinuous data of all variables considered: actigraphy (act),
heart rate (HR), blood pressure (BP), skin temperature (Tskin)
and core temperature (Tcore), see Fig. 1 for a plot of these
cycles as extracted by cosinor analysis and SSA. Whereas
by construction cosinor analysis represents the circadian cy-
cle as a periodic function with constant circadian parame-
ters that reflect the average behaviour over the whole pe-
riod considered, 7 successive days in the present case, the
other methods show a circadian cycle that varies over time
and allow to extract daily estimates of the circadian param-
eters,e.g., {A} = {A1, A2, . . . , A7} for the amplitude, and
similarly for the other parameters. All methods agree rather
well on the week-average values of the circadian parameters:
mean({T}), mean({M}), mean({A}), and mean({φ0}), see
Fig. 2 for the specific variable of actigraphy. Results are sim-
ilar for the other variables of heart rate, blood pressure and
core and skin temperature. In particular, the average values
of the circadian parameters according to each method tend to
be within the error bars of the standard deviations SD({T}),
SD({M}), SD({A}) and SD({φ0}) as evaluated by all other
methods. These standard deviations can be interpreted as a
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FIGURE 2. Circadian parameters for actigraphy. a) periodT , b) mesorM , c) amplitudeA and d) acrophaseφ0. Week-average values are
shown and, where possible, also error bars with the standard deviation of the day-to-day variability. Also the mean value for each parameter
over all methods is indicated (horizontal lines).

quantification of the day-to-day variability. There are large
differences in the evaluation of the day-to-day variability ac-
cording to the different methods: some methods systemat-
ically giving large estimates (EMD, EEMD, CEEMDAN),
whereas other methods consistently give much smaller results
(CWT, DWT, NMD).

3.2. Goodness-of-fit of circadian cycles

Table I shows the estimations of the coefficient of determina-
tion R2 by the different methods considered for the circadian
cycles for all variables. An ANOVA test indicates that the
between-group variance forR2, i.e., variance between differ-
ent variables, is larger than the within-group variance,i.e.,
the variance ofR2 values between different methods for the
same variable (Fratio=1255 withp = 10−41) and post-hoc
tests with Bonferroni, Tukey, Duncan and Student-Newman-
Keuls all indicate that differences inR2 values between dif-
ferent variables are statistically significant. Therefore,R2

primarily depends on the type of variable and only secondar-
ily on the method applied, see Fig. 3a).

For specific variables, compared to cosinor analysis, the
other methods tend to improve the description of the circa-
dian cycle with up to10 − 20 %. Exceptions are the EMD
analysis of actigraphy and skin temperature, and CEEM-
DAN for blood pressure, where the description is worse
down to−5% than for cosinor analysis, possibly due to the
mode-mixing problem typical for these methods. Results for
CWT and NMD only slightly improve the cosinor descrip-
tion, whereas DWT only gives an average performance when

compared to the other methods. MaximalR2 values are ob-
tained with EEMD for the particular variables of actigraphy,
blood pressure and skin temperature, and with CEEMDAN
for heart rate and core temperature. On the other hand, only
SSA and FDF give a consistent above-average description in
general for all variables.

3.3. Spectral content of circadian cycles

Figure 4 shows the spectral content,i.e., the Fourier power
spectra, of the circadian cycles as found by the different
methods for actigraphy. Similar results are obtained for the
other variables of heart rate, blood pressure and core and skin
temperature. By construction, circadian cycles described by
the cosinor analysis of Eq. (2) should correspond to a spec-
trum with a single peak at the circadian frequency off ≈ 7
(cyles/7 days), but because of the phenomenon ofspectral
leakagesmall power contributions are also present at neigh-
bouring frequencies [80]. Comparing the spectra of other
methods to the spectrum of cosinor analysis gives a measure
of how different estimates of the circadian cycle are consti-
tuted of different combinations of lower and higher frequen-
cies. Frequencies of spectra of filter-based methods such as
FDF and DWT cut off abruptly and are exactly 0 outside
of a specific bandpass range. Spectra are rather narrow for
DWT, NMD and CWT, reflecting more regular circadian cy-
cles. The spectrum for EMD, on the other hand, is very wide,
corresponding to a more irregular estimate of the circadian
cycle. Spectra for SSA, EEMD and CEEMDAN have in-
termediate widths, indicating a description of the circadian
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FIGURE 3 . Selected parameters to characterize circadian cycles of actigraphy (act), heart rate (HR), blood pressure (BP), skin temperature
(Tskin) and core temperature (Tcore): a) coefficient of determinationR2 and b) modulabilityA/M . The graphs illustrate that the parameter
values depend primarily on the variable and much less on the specific method used to calculate the circadian parameters.A/M is shown in
logarithmic scale to more clearly show differences in the rather small values for core and skin temperature. Variables are separated according
behavioural, cardiovascular and thermoregulatory mechanisms (vertical gridlines).

TABLE I. Coefficient of determination or goodness-of-fit parameterR2 of Eq. (19) shown in percentage, for the circadian cycle estimated by
different methods for all variables.

R2 (%)

act (1/min) HR (bmp) BP (mmHg) Tskin(◦C) Tcore(◦C)

Cosinor 16.0 38.7 50.2 29.5 69.3

FDF 20.5 48.6 57.4 41.9 75.2

CWT 17.8 39.3 51.9 31.4 68.4

DWT 19.9 44.3 56.4 35.1 74.9

SSA 21.3 49.4 57.4 42.7 76.7

NMD 16.7 43.3 53.3 28.9 74.9

EMD 14.6 42.5 52.7 24.0 76.0

EEMD 27.2 51.7 66.3 49.9 72.0

CEEMDAN 20.5 53.1 45.1 33.8 80.1

cycles that may be moderately irregular. EMD, EEMD and
CEEMDAN also tend to have frequency contributions that
are not contained within the original signal.

3.4. Correlation between circadian cycles extracted by
different methods

Table II shows the Spearman correlation coefficients between
circadian cycles as estimated by the different methods ap-
plied to actigraphy data. Similar results are obtained for the
other variables of heart rate, blood pressure and core and skin
temperature. The correlation coefficients are rather large and
mostly in the range 0.75–0.95, which is unsurprising because
it is always the same process of the circadian cycle that is
described and which is only observed from the perspectives
of different methods. For all variables, DWT and SSA are
the methods for which the circadian cycles correlate always
above average with the other methods. Another method for
which the circadian cycles tend to correlate above average
with those of other methods are CWT and NMD. Methods
for which extracted cycles tend to correlate less than average

with those of other methods are EMD, EEMD and CEEM-
DAN.

4. Discussion

4.1. Time-series description of circadian cycles

Compared to standard cosinor analysis, the other methods in
general improve the goodness-of-fitR2 of the circadian cy-
cle. Comparing between all methods, SSA, EEMD, FDF and
CEEMDAN perform above average, DWT on average, and
NMD, EMD and CWT below average. In particular, the good
performance of FDF is surprising given that it is one of the
simplest filter techniques available and that here a crude rect-
angular filter window was applied. This good performance
may be explained by the broad bandpass frequency range that
was chosen. An alternative approach in the literature is to de-
scribe the circadian cycle by the fundamental frequency of
≈ 1/24h together with its higher harmonics [17]. Also the
NMD description is based on harmonics, but appears to un-
derperform in comparison with other methods. A possible
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FIGURE 4. Fourier power spectra of time series of actigraphy (green shaded curves), circadian cycles as extracted by different methods
(black continuous curves), and compared to standard cosinor analysis (black dashed curve). All spectra are presented in semilogarithmic
scale. Angular frequenciesω are shown in units of number of cycles for 7 consecutive days.

reason is that all frequency-based methods utilized for
rhythm detection suffer from thelack of specification[71,81],
such that harmonics may be due to ultradian rhythms or non-
stationarities and may not be appropriate to describe the cir-
cadian cycle. Whereas in the case of FDF and other digital
filters the frequency range needs to be defined by the user and
may be arbitrary, methods such as SSA, EEMD and CEEM-

DAN generate their time-series components and the corre-
sponding frequency ranges in a data-adaptive way. These fre-
quency ranges are moderately wide, and appear to maximize
R2 in comparison with either narrower (cosinor, CWT, DWT
and NMD) or wider frequency ranges (EMD), see Fig. 4. The
circadian cycles derived by EEMD and CEEMDAN correlate
less well with the cycles extracted by other methods, it is
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TABLE II. Spearman’s rank correlation coefficientρ of Eq. (21) for circadian cycles estimated by different methods for actigraphy.

ρ

Cosinor FDF CWT DWT SSA NMD EMD EEMD CEEM-

DAN

Cosinor 1 0.876 0.936 0.936 0.938 0.950 0.814 0.767 0.822

FDF 0.876 1 0.930 0.945 0.950 0.908 0.745 0.852 0.893

CWT 0.936 0.930 1 0.971 0.979 0.949 0.865 0.867 0.938

DWT 0.936 0.945 0.971 1 0.982 0.971 0.789 0.868 0.895

SSA 0.938 0.950 0.979 0.982 1 0.960 0.813 0.874 0.911

NMD 0.950 0.908 0.949 0.971 0.960 1 0.753 0.837 0.877

EMD 0.814 0.745 0.865 0.789 0.813 0.753 1 0.729 0.812

EEMD 0.767 0.852 0.867 0.868 0.874 0.837 0.729 1 0.895

CEEM-DAN 0.822 0.893 0.938 0.895 0.911 0.877 0.812 0.895 1

is therefore possible that these EMD-based techniques cap-
ture more specific features of experimental data which are
not accessible to other methods, and it seems that EEMD and
CEEMDAN are more applicable to some variables than to
others. In contrast, circadian cycles described by SSA cor-
relate above average with results from other methods and
therefore appear to capture general properties of experimen-
tal data. Also, SSA appears to give a good description of
circadian cycles independently from the specific variable that
is studied, perhaps because the circadian cycle may be a
limit circle [82] or a chaotic attractor [83] which subspace
or phase-space methods such as SSA may detect very well.
Overall, it appears that data-adaptive methods are particularly
suited to extract the circadian cycle from experimental data.
In this section, the goodness-of-fit obtained by specific meth-
ods was emphasized because it is hypothesized that larger
R2 values will allow to statistically distinguish more easily
between healthy and unhealthy populations in clinical appli-
cations of circadian cycles.

4.2. Circadian parameters and day-to-day variability

All methods considered agree rather well on the average val-
ues of the circadian parameters for all methods. These aver-
age values are mostly within the error bars representing the
day-to-day variability according to each method. Ref. [20]
presented evidence that not only the average values of the
circadian parameters but also the day-to-day variability con-
tribute to distinguish between healthy and unhealthy popula-
tions. The present contribution demonstrates that one of the
main differences between various methods is their quantifi-
cation of the day-to-day variability. It is not clear what part
of this variability is due to the data itself (intrinsic) and what
part may be artificially produced by the specific method ap-
plied (extrinsic). Here, it is hypothesized that if a method
is consistent in the quantification of day-to-day variability,
and the extrinsic part of the variability is similar for different
populations, then differences in this variability between the

populations must be due to physiological effects. If this con-
dition is fulfilled, then day-to-day variability may indeed be
applied for diagnostic purposes as proposed before [20].

4.3. Homeostatic interpretation of circadian parameters

The range ofR2 for the circadian cycles for all variables con-
sidered here is very wide,15 − 80%, see Table I, and in the
following this wide range will be interpreted. Refs. [25–28,
84–86] proposed that physiological variables that play dif-
ferent roles in homeostatic regulation exhibit different time-
series behavior with distinct statistical properties. In partic-
ular, it was suggested thatregulated variablessuch as blood
pressure and core temperature fluctuate within a narrow range
around a specific setpoint representing Claude Bernard’s con-
stant internal environment; on the other hand,effectorvari-
ables such as heart rate and skin temperature are responsible
for Walter Cannon’s adaptive responses to internal and ex-
ternal perturbances and are much less restricted in space and
time. Therefore, it was proposed that in optimal conditions
of youth and health effector variables are more variable and
less regular than regulated variables. This paradigm was in-
vestigated for the spontaneous fluctuations of physiological
variables in rest and in absence of dominant stimuli. It is un-
clear whether a similar phenomenology can be expected in
the presence of an external forcing such as the alternation of
day and night. The coefficient of determinationR2 as de-
termined by the different methods appears to respond affir-
matively to this question, see Table I and Fig. 3a), the regu-
lated variables considered in this contribution (blood pressure
and core temperature) indeed appear to be associated to more
regular time series (higherR2 values), and effector variables
(heart rate and skin temperature) to more irregular or vari-
able time series (lowerR2 values). Actigraphy could be an
example of a third category of variable related tobehavior
or conductome, see Ref. [87], corresponding to very irregular
time series (minimalR2 values). To investigate this paradigm
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TABLE III. Modulability A/M shown in percentage, for the circadian cycles estimated by different time-series techniques for all variables.

A/M (%)

act (1/min) HR (bmp) BP (mmHg) Tskin(◦C) Tcore(◦C)

Cosinor 66.9 20.4 15.6 3.07 1.39

FDF 71.4 22.2 16.1 3.21 1.44

CWT 65.2 18.0 13.2 2.64 1.09

DWT 56.7 17.7 13.3 2.76 1.25

SSA 67.8 20.6 15.8 3.07 1.35

NMD 64.8 21.6 14.1 3.41 1.25

EMD 63.0 24.1 15.4 2.75 1.40

EEMD 65.9 21.1 13.7 3.44 1.15

CEEMDAN 61.4 22.5 11.8 1.92 1.23

further, a derived measureA/M is proposed, calledmodu-
lability for the purpose of this contribution, which expresses
amplitudeA as a percentage of mesorM , and therefore is
dimensionless allowing comparisons between different vari-
ables. Table III and Fig. 3b) show that for a specific home-
ostatic mechanism, modulability appears to be larger for the
effector variable than for the corresponding regulated vari-
able. For the thermoregulatory mechanismA/M ≈ 3 for
skin temperature vs.≈ 1.3 for core temperature. For the car-
diovascular mechanismA/M ≈ 21 for heart rate vs.≈ 15
for blood pressure. This sounds very reasonable because reg-
ulation tries to maintain regulated variables within a very nar-
row homeostatic range, whereas the range of regulating vari-
ables is contained only by what is physiologically possible
and what not. Modulability for behavioural variables such
as actigraphy is even larger,A/M ≈ 65, because here there
are no physiological limitations that must be respected. It is
hypothesized that there may be a relation between this home-
ostatic time-series paradigm and the phenomena of masking
and entrainment in rhythmobiology. In particular, it is sug-
gested that effector variables are more prone to the effects of
masking and entrainment than regulated variables, such that
the latter may be expected to reflect more easily the “true”
cycles of the internal circadian clocks.

4.4. Strengths and limitations

The strengths of the present contribution are the inclusion
of 5 different variables (actigraphy, heart rate, blood pres-
sure, skin temperature and core temperature) from 3 differ-
ent mechanisms (behavior, cardiovascular and thermoregu-
latory) and 9 different methods (cosinor, FDF, CWT, DWT,
SSA, EMD, EEMD, CEEMDAN, NMD) from at least 4 dif-
ferent domains (mathematical model, time-frequency, analyt-
ical data-adaptive and empirical data-adaptive). The limita-
tion is obviously that only data of a single subject was in-
cluded. Therefore, the results of the present contribution are

presented as hypotheses which should be rather straightfor-
ward to verify and which may inspire further investigations.

5. Conclusion

A good description of circadian cycles appears to depend on
including an adequate broad frequency range around the cen-
tral frequency of 1/24h, rather than including harmonics of
this fundamental frequency. Recent time-series techniques
such as SSA, EEMD and CEEMDAN generate their com-
ponents and the corresponding frequency content in a data-
adaptive way, maximize goodness-of-fitR2 values and ap-
pear to be particularly suited to extract circadian cycles from
experimental data. Whereas EEMD and CEEMDAN may be
more applicable to some variables than to others, the appli-
cability of SSA appears to be more independent of the spe-
cific variable under study. Another advantage with respect to
the traditional cosinor approach is that these time-series tech-
niques allow to describe the day-do-day variability of the cir-
cadian parameters apart from their average values. Finally,
several of the circadian parameters were interpreted within
the context of homeostatic regulation and a possible link was
proposed with the phenomena of masking and entrainment in
rhythmobiology.
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with grant PAPIIT IN110321 and IN110321. We are also
gratefully acknowledge grants Fronteras 2020/263377 and
2020/610285 and 610285 from the Consejo Nacional de Hu-
manidades Ciencia y Tecnologı́as (CONAHCyT). The au-
thors are thankful to Markus M̈uller for fruitful discussions.

Rev. Mex. Fis.69051101



CIRCADIAN CYCLES: A TIME-SERIES APPROACH 13

1. U. Schibler and P. Sassone-Corsi, A Web of Circadian Pace-
makers,Cell 111(2002) 919.

2. J. Mohawk, C. Green, and T. JS, Central and peripheral circa-
dian clocks in mammals,Annu Rev Neurosci.35 (2012) 445.

3. W. J. Rietveld, D. S. Minors, and J. M. Waterhouse, Circadian
Rhythms and Masking: An Overview,Chronobiology Interna-
tional 10 (1993) 306.

4. A. Martinez-Nicolas,et al., Uncovering Different Masking
Factors on Wrist Skin Temperature Rhythm in Free-Living
Subjects,PLoS ONE8 (2013) e61142.

5. J. L. Ditty, S. R. Mackey, and C. H. Johnson, Bacterial Circa-
dian Programs (Springer, Heidelberg, 2009).

6. D. Staiger, Plant Circadian Networks Methods and Protocols
(Humana Press, New York, 2014).

7. D. Denlinger, J. Giebultowicz, and D. Saunders, Insect tim-
ing: Circadian rhythmicity to seasonality (Elsevier, Amster-
dam, 2001).

8. J. Aschoff, S. Daan, and G. G. (eds.), Vertebrate Circadian Sys-
tems: Structure and Physiology (Springer-Verlag, Heidelberg,
Berlin, 1982).

9. D. S. Minors and J. M. Waterhouse, Circadian Rhythms and the
Human (Wright PSG, Bristol, 1981).

10. R. Refinetti, Circadian Rhythms and the Human, 2nd ed. (CRC
Press, Boca Rato, 2006).

11. M. L. Gumz, Physiology in Health and Disease (Springer, Hei-
delberg, 2016).

12. S. M. Jazwinski, V. P. Belancio, and S. M. H. (eds.), Circa-
dian Rhythms and Their Impact on Aging (Springer, Heidel-
berg, 2017).

13. F. Halberg, Y. L. Tong, and E. A. Johnson, Circadian System
Phase - An Aspect of Temporal Morphology ; Procedures and
Illustrative Examples, In Springer Berlin Heidelberg, pp. 20-48
(1967).

14. G. Cornelissen, Cosinor-based rhythmometry,Theoretical Bi-
ology and Medical Modelling11 (2014) 1.
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