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On the radiative and multiple reflection corrections of the
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We present a theoretical formalism based on fluctuational electrodynamics and the Maxwell-stress tensor for describing the impact of ra-
diative and multiple reflections corrections on the van der Waals force between two nanoscale spherical particles and a pair of atoms in the
dipolar approximation. Particularly, we examine the van der Waals forces for two metallic particles whose dielectric constant is represented
by the Drude model, for two dielectric particles in which their material response has phononic resonances, and for two atoms with dynamic
polarizabilities containing a single resonant frequency. For the metallic particles, in relation to the case in which the aforementioned effects
are omitted, the van der Waals force is unchanged by the radiative corrections of the polarizabilities, whereas the mechanism of multiple
reflections perturbs force about a few percentage points when the spheres nearly touch each other. In contrast to the metallic case, the radia-
tive corrections of the polarizabilities of the dielectric particles modify peculiarly the van der Waals force in comparison to the case where
such corrections are neglected; there is a critical interparticle separation that divides two regimes: when the interparticle separation is smaller
(larger) than this critical distance the force with radiative corrections is smaller (greater) than that without these corrections. Moreover, the
van der Waals force is practically unchanged when effect of multiple reflections is taken into account. For the atomic case, the deviation of
the van der Waals force due to multiple reflections is about a few percentage points when the interatomic separation corresponds to twice the
van der Waals radius, and this deviation can reach about seventeen percent at a separation of 2.5 times the atomic radius. This work might
have implications concerning the fine-tuning between theoretical and experimental outcomes of the van der Waals forces.
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1. Introduction

The presence of electromagnetic fluctuations in matter and
space is ineludible; they still exist at absolute zero tempera-
ture, which are the so-called vacuum fluctuations. As a con-
sequence of these fluctuations, forces between neutral atoms
or macroscopic objects arise [1,2], and they are denominated
as van der Waals or Casimir forces. We mention that van
der Waals forces are usually associated with interaction of
particles or atoms, whereas Casimir forces involve macro-
scopic objects. The van der Waals forces take part in sta-
bility of some inorganic materials [3, 4] as well in biolog-
ical elements [5, 6]. Also Casimir forces can impact the
performance of the motion on micro- and nano-mechanical
devices [7]. Recent research of Casimir forces is related
to new materials such as metamaterials [8], graphene [9],
topological insulators [10], Weyl-semimetals [11], complex
geometries [12, 13], as well as conditions out of thermal
equilibrium [14, 15]. Since there exists a very vast litera-
ture about this topic, we refer to the reader to the following
texts [16–19].

The current technological capabilities for manipulating
and fabricating nano- and atomic-structures have allowed the
continuous improving of the accuracy for measuring van der
Waals or Casimir forces. However, there are still discrep-
ancies between the experimental outcomes and theoretical
predictions. There is a long list of causes that gives rise to

such discrepancies. For example, since the theoretical for-
malism of these forces demands the a priori knowledge of the
dielectric function of the particles in the whole electromag-
netic spectrum, sometimes this information is not available,
in other cases, the models of the dielectric function can yield
inaccurate estimations of the dielectric response of the mate-
rial in some spectral ranges [20,21]. Moreover, the superficial
roughness of realistic objects can yield significant deviation
of experimental outcomes of the Casimir force from the cal-
culation of the force arising from a smooth surface [22, 23].
Moreover, the van der Waals force between two noble gas
atoms was measured with a functionalized tip of an atomic
force microscope, obtaining, in comparison with the case of
isolated atoms, a stronger interaction due to adsorption ef-
fects in the setup; also the van der Waals potential energy
deviates from the theoretical power law when heavy atoms
interact [24].

Herein we explore another mechanisms that could influ-
ence the theoretical outcome. Our aim is to analyze until
what extent the van der Waals force between two spherical
particles is perturbed when multiple scattering and radiative
corrections of the polarizabilities are considered; the influ-
ence on the van der Waals force due to the multiple reflections
is also examined for two atoms.

Our paper is organized as follows. Section 2 presents the
theoretical formalism for obtaining the van der Waals force
between two spherical particles when the effect of multiple
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reflections and radiative corrections of the polarizabilities are
taken into account. This section is complemented by two Ap-
pendices. In Sec. 3, the results for three different scenarios
are shown; van der Waals forces for metallic and dielectric
particles, and for a pair of atoms. Section 4 contains the con-
clusions.

2. Theory

We consider a spherical particle that is located atrs = dnz

(center), and it has radiusas and frequency-dependent dielec-
tric functionεs(ω); ω is the angular frequency andnz is the
Cartesian unit vector in the direction of thez-axis. In the
vicinity of this particle, there exists another spherical parti-
cle, whose center position, radius, and dielectric function are
rp = 0, ap, andεp(ω), respectively. The nonabsorbing en-
vironment in which the particles are embedded has dielectric
constantε1. Furthermore, we assume that the environment
and particles are non-magnetic, and they are held at temper-
atureT , that is, the whole system is at thermal equilibrium.
This setup is depicted in Fig. 1a).

To calculate the van der Waals force due to vacuum and
thermal fluctuations that is exerted on any of these particles,
we require the electric response of an arbitrary electric dipole
located at the background medium in presence of the two par-
ticles; as will be seen, the electromagnetic field correlations
of vacuum and thermal fluctuations are needed for obtaining
the force and they depend on this response. Then, the electric
response is expressed as

E(r) =
k2
1

ε0ε1

↔
G(r, r0, ω) · p, (1)

whereE(r) is the electric field generated by the dipole,ε0

is the vacuum permittivity,k1 = ω
√

ε1/c (c is the speed of
light in vacuum),

↔
G is the Green tensor, andp andr0 are the

FIGURE 1. a) Setup. b) The five interacting path of the Green
tensor.

moment and position of the dipole, respectively. It turns out
that the Green tensor for our setup is explicitly

Gil(r, r0, ω) = G0il(r, r0, ω) +
k2
1

ε0ε1

αp(ω)
βj(k1d)

×G0ij(r,0, ω)G0jl(0, r0, ω) +
k2
1

ε0ε1

× αs(ω)
βj(k1d)

G0ij(r, dnz, ω)G0jl(dnz, r0, ω)

+
1
4π

k5
1

(ε0ε1)2
αp(ω)αs(ω)

ξj(k1d)
βj(k1d)

×
[
G0ij(r,0, ω)G0jl(dnz, r0, ω)

+ G0ij(r, dnz, ω)G0jl(0, r0, ω)
]
, (2)

wherei, j, l = x, y, z, G0il is the Green tensor of the bulk
medium (background without particles) which is explicitly

↔
G0(r, r′, ω) =

[
↔
I +

∇∇
k2
1

]
exp(ik1|r− r′|)

4π|r− r′| , (3)

(
↔
I is the unit dyadic). Here,αν(ω) (ν = p, s) is the polariz-

ability with radiative correction, given by

αν(ω) = α̃ν(ω)/Γν , (4)

whereα̃ν(ω) is the static polarizability andΓν is the radiative
correction factor, which are given by

α̃ν(ω) = 4πa3
νε0ε1

(εν − ε1)
εν + 2ε1

, (5)

Γν = 1− i
k3
1

6πε0ε1
α̃ν(ω). (6)

The factorsξi(k1d) are defined as

ξx(k1d) = ξy(k1d)=
exp(ik1d)

(k1d)3
[(k1d)2 + ik1d− 1)], (7)

ξz(k1d) = 2
exp(ik1d)

(k1d)3
(−ik1d + 1), (8)

andβi are the factors arising from multiple scattering which
are given by

βi(k1d) = 1− k6
1

(4πε0ε1)2
αp(ω)αs(ω)ξ2

i (k1d). (9)

The five additive terms of the right-hand side of (2) corre-
spond respectively to the interacting paths I, II, III, IV, and
V of Fig. 1b). The derivation of Green tensor (2) is found in
Appendix A.

2.1. Force

The background medium is vacuum hereafter, thusε1 = 1.
The force (along the axis joining the centers of the particles)
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that is exerted on the particle located at the origin is calcu-
lated from

Fz =
∮

∂V

[〈Txz〉dax + 〈Tyz〉day + 〈Tzz〉daz] . (10)

Here,〈. . .〉 denotes ensemble average,Tij (i, j = x, y, z) are
the Cartesian components of the Maxwell stress tensor which
are given by

Tij = ε0EiEj − δ̃ijε0E
2/2+µ0HiHj − δ̃ijµ0H

2/2, (11)

whereδ̃ij is the Kronecker-δ tensor,µ0 is the vacuum per-
meability, Ei and Hi are the Cartesian components of the
fluctuating electric and magnetic fields, respectively. The in-
tegration is carried over the spherical surfacerc = bnr (ap <
b < d− as) which encloses the aforementioned particle;dai

(i =, x, y, z) are the Cartesian components of a differential
segment of area of this surface, that is,da = b2 sin θdθdφnr

wherenr is the unit vector along the radial direction, andθ
andφ are the polar and azimuthal angles, respectively.

By using the properties of the stochastic thermal fields
corresponding to our environment, the force (10) turns out to
be

Fz =
~

4π3ε2
0d

7

∞∫

0

Im
{

αp(ω)αs(ω)e2ikd

×
[ g1(kd)
γ1(k, d)

+
g2(kd)
γ2(k, d)

]}[
1/2 + Θ(ω, T )

]
dω. (12)

Here,Im{. . .} denotes imaginary part,k = ω/c, Θ(ω, T ) =
{exp[~ω/(kBT )]− 1}−1 is the mean photon number,

g1(kd) = −i(kd)5 + 3(kd)4

+ 6i(kd)3 − 8(kd)2 − 6ikd + 3, (13)

g2(kd) = 2(i(kd)3 − 4(kd)2 − 6ikd + 3), (14)

γ1(k, d) = 1− 1
(4πε0)2d6

αp(ω)αs(ω)e2ikd
[
(kd)4

+ 2i(kd)3 − 3(kd)2 − 2ikd + 1
]
, (15)

γ2(k, d) = 1− 4
(4πε0)2d6

αp(ω)αs(ω)e2ikd

× [− (kd)2 − 2ikd + 1
]
, (16)

~ andkB are the reduced Planck and Boltzmann constants, re-
spectively. Equation (12) is derived in Appendix B. We men-
tion that if the multiple scattering effect is neglected, that is,
second terms of the right-hand side of (15) and (16) are dis-
regarded, then the conventional formula of the van der Waals
force is recovered.

3. Results

To determine how strong is the impact of the polarizabilities
with radiative corrections and the effect of multiple reflec-
tions on the van der Waals force, we examine three particular

cases. The first one considers that the particles are metallic,
whereas the second case involves the interaction between di-
electric particles. The last case deals with the force between a
pair of atoms. The temperature for all cases is set toT = 0 K,
thus only the contribution arising from vacuum fluctuations is
considered.

3.1. Metallic Particles

We consider that the size and dielectric functions of the
metallic particles are the same, namely,a = ap = as and
ε = εp = εs. Furthermore, the dielectric function of the
metallic particles is described by the Drude model as

ε(ω) = ε∞ − ω2
p

ω2 + iγω
, (17)

whereωp is the plasma frequency,γ is the collision rate, and
ε∞ is the dielectric function in the limitω → ∞. In par-
ticular, we assume that these parameters have the following
values:ωp/c = 5 × 10−2 nm−1 γ/ωp = 2.4 × 10−3, and
ε∞ = 1; these values are of the order of those that correspond
to the dielectric function of noble metals due to free-charge
carriers [25].

Figure 2 depicts the forceFz for several radii of parti-
cles as a function of the separationd; three curves are shown
for each particle size: (1) the curve that considers only the
static polarizabilities of particles without the effect of multi-
ple reflections, denominated simply as “static case”; (2) the
curve that comes from polarizabilities with radiative correc-
tions and excludes multiple reflections, denominated as “ra-
diative case”; (3) the curve that takes into account both polar-
izabilities with radiative corrections and the effect of multi-
ple reflections, named “multireflection case”. As seen in the
curves of Fig. 2, the information of the forceFz versus sepa-
rationd is indirectly provided since the vertical axis of these
curves isFzd

7, thus this information is extracted by dividing
the strength of the curves by the factord7. The reason for this
presentation is that the deviation of the force from the Lon-
don dispersion force law (∝ d−7) can be easily visualized;
this applies for the rest of the curves that are shown ahead.

By disregarding the effect of the multiple reflections,
whena = 2 nm (Fig. 2a)), we notice that there is practically
no difference between the curves corresponding to the static
and radiative cases. However, by comparing Figs. 2a)-d), as
the radius of the particles increases, the difference between
these curves grows; the strength force for the radiative case is
larger than that for the static case. By considering the effect
of multiple reflections, we notice that, in comparison with the
radiative case, the force is perturbed; as seen in Figs. 2a)-d),
the multireflection effect becomes appreciable in the range
2a < d . 4a and the deviation between these curves is ap-
proximately3% when the spheres almost touch each other
(d → 2a). We mention that asd approaches to the contact
point (d = 2a) of the spheres, multipolar contributions of
high-order must be taken into account.
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FIGURE 2. Van der Waals forces for metallic particles; static, radiative, and multireflection cases.Fzd7 versusd. a)a = 2 nm. b)a = 5 nm.
c) a = 10 nm. d)a = 15 nm. For these plots,2a < d < 8a.

3.2. Dielectric particles

We now consider two identical dielectric particles; the
nomenclature is the same as previous case (a = ap = as

andε = εp = εs). For this case, we assume that the dielec-
tric function of the particles has phononic resonances. This
material can be described by a single oscillator model, that
is,

ε(ω) = ε∞

[
1 +

ω2
A

ω2
T − ω2 − iΓω

]
, (18)

whereωT is the resonant frequency of the transverse-optical
phonon,ω2

A = ω2
L − ω2

T (ω2
L being the frequency of the

longitudinal-optical phonon),Γ is the damping factor. The
parameters are set to those that correspond approximately
to SiC [26]: ωT/c = 5 × 10−4 nm−1, Γ/ωT = 0.006,
ωA/c = 3.5× 10−4 nm−1, andε∞ = 6.7.

We keep the same shorthand as in previous subsection
when we refer to “static”, “radiative”, and “multireflection”
cases. Figure 3 illustrates the forceFz versus the separation
d for the static, radiative, and multireflection cases and dif-
ferent particle sizes.

We notice that the curves for the static and radiative cases
intersect; the crossing point is denoteddc. Whend < dc, the
strength of the force is larger for the static case than that for
the radiative case. For a particular particle size, the largest
difference occurs whend = 2a and it is about34.6%. On
the contrary, whend > dc, the magnitude of the force for the

radiative case exceeds the one for the static case; maximum
difference is about14.7% and it happens whend = 3.61a.
Moreover, the crossing point of the aforementioned curves is
located atdc ≈ 8a/3. In comparison to the radiative curve,
the impact of the multiple reflections is practically null; there
is a slight perturbation when particles nearly touch. The com-
parison of the figures for different sizes of particles, together
with the aforementioned features, suggests a proportionality
connection among them. By definingΦ(d, a) ≡ Fz(d, a)d7

and two different sets of two-equal-size particles (radiia1 and
a2), we found the relation:

Φ(fa1, a1)/Φ(fa2, a2) = (a1/a2)5, (19)

that applies, at least, in the range2 < f < 8 wheref is a
dimensionless factor.

3.3. Atoms

We extrapolate the Eq. (12) for calculating the van der Waals
force between two identical atoms due to vacuum fluctua-
tions. Consequently, we replaced the polarizabilitiesαs and
αp by the atomic polarizabilityα(ω) which is expressed
as [27]

α(ω) =
|µ|2
~

[
1

ω0 − ω − iΥ/2
+

1
ω0 + ω + iΥ/2

]
, (20)

Rev. Mex. Fis.69040403
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FIGURE 3. Van der Waals forces for dielectric particles; static, radiative, and multireflection cases.Fzd7 versusd. a) a = 2 nm. b)
a = 5 nm. c)a = 10 nm. d)a = 15 nm. For these plots,2a < d < 8a.

whereµ is the transition dipole moment,ω0 is the resonant
frequency with linewidthΥ; this description assumes only a
single resonance.

To find the impact of multiple reflections, we consider the
atomic pair Ca-Ca. The atomic radius of Ca isRa = 180 pm,
whereas, for this pair of atoms, the van der Waal radius is
Rw = 262 pm [28]. The experimental dipole-dipole van
der Waals coefficient isC6 = 2188 Eha6

0 (Eh is the Hartree
energy anda0 is the Bohr radius) [29]; the interacting po-
tential is U = −C6/(d6). For the atomic force, we con-
sider two cases: the first one in which the multireflection
terms are neglected, denominated as the “conventional case”;
the second takes into account the effect of multiple reflec-
tions, known as the “multireflection case”. Figure 4 depicts
the van der Waals force against the interatomic separationd
for the conventional and multireflection cases. We have set
ω0/c = 0.01 nm−1, Υ/ω0 = 0.001, andµ = 1.2922 eÅ
(e is the electron’s charge); these parameters yield a force
curve for the conventional case that coincides exactly with
the curve that arises from the aforementioned interaction in-
volving coefficientC6, as seen in Fig. 4. In comparison
with the conventional case, the effect of multiple reflection
influences noticeably the van der Waals force in the range
d < 2Rw. When the separation isd = 2Rw, the deviation
from curve corresponding to the conventional case is about

5.88%, whereas this deviation grows to17% for an inter-
atomic separationd = 2.5Ra. However, when the atoms get
closer, contributions of high-order become important [29];
also if the atomic clouds overlap, the electronic interaction
becomes complex [18,19].

FIGURE 4. Van der Waals force for a Ca-Ca pair.Fzd7 versus sep-
arationd for conventional and multireflection cases. The distances
2.5Ra and2Rw are indicated with vertical dashed lines.

Rev. Mex. Fis.69040403
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3.4. Additional remarks

The frequency-integrals have been carried out numerically by
the methods of [30, 31]. For illustrative purposes, we have
considered simple models for describing the dielectric func-
tion of a metal or dielectric. However, the modelling of the
dielectric function for a realistic material is more complex.
For example, the electric response of a noble metal, in ad-
dition to the the contribution of free-electrons, comes from
bound electrons (interband transitions) which are important
in the optical spectrum; this contribution can be described by
using the expression (18). With this limitation, our results are
intended for presenting an estimation of the impact of the ef-
fect of multiple reflection and the radiative corrections of the
polarizabilities of particles.

4. Conclusions

We have derived the analytical expression for calculating the
van der Waals force in a setup composed of two spherical
particles that takes into account the multiple reflections and
the radiative correction of the polarizabilities (dipole-dipole
interaction). To determine the influence of these effects, we
have obtained the van der Waals for three particular cases:
metallic particles, dielectric particles, and a pair of atoms.

The dielectric response of the metal was described by
the Drude metal. In comparison with the case where the
aforementioned mechanisms are neglected, the van der Waals
force is practically unperturbed by radiative correction of
the polarizabilities, whereas the effect of multiple reflections
causes a deviation of the force at most of a few percentage
points when the spheres are close to each other (2a<d<3a).

A single oscillator model was considered for the dielec-
tric particles. The van der Waals force suffers a noticeable
and peculiar perturbation when the radiation corrections to
the polarizabilities are considered. The van der Waals force
with these corrections is smaller than that without them when
d . 8a/3, whereas, the opposite happens whend & 8a/3.
Different from the case of metallic particles, the van der
Waals force practically is unchanged with the inclusion of
multiple reflections.

In the atomic case, the polarizability of each of the atoms
is described by a single resonance. The effect of multiple re-
flections changes with respect to the van der Waals force law
d−7; the force difference between these curves at equilibrium
separation (d = 2Rw) is also a few percentage points and it
grows to about17% whend = 2.5Ra.

Our work might have repercussions related to fine adjust-
ments between theory and experiments of the van der Waals
interaction between particles.

Appendix

A. Green tensor derivation

When there is an external dipole with momentp atr0, the electric field that excites the particles is

E0(r) =
k2
1

ε0ε1

↔
G0(r, r0, ω) · p, (A.1)

we recall that
↔
G0 is the Green tensor of the bulk medium (see Eq. (3)). Then, we solve the scattering problem with the dipolar

excitation field (A.1). By using the volume integral method [27], it turns out that the electric field outside the particles is

E(r) = E0(r) +
k2
1

ε1
P

∫

Vs

(εs − ε1)
↔
G0(r, r′, ω) ·E(r′)d3r′ +

k2
1

ε1
P

∫

Vp

(εp − ε1)
↔
G0(r, r′, ω) ·E(r′)d3r′. (A.2)

Here,P denotes principal part and tensor
↔
G0 is [32]

↔
G0(r, r′, ω) =

↔
G0(r, r′, ω)−

↔
I

3k2
1

δ(r− r′), (A.3)

whereδ(. . .) is the Dirac-δ function; the last two terms of the right hand side of (A.2) correspond to the electric field that is
scattered by each particle. As seen in (A.2), to obtain the electric field elsewhere outside the scatterers, we require to find the
electric field inside each particle. From (A.2), the following equations are found

E(rp) = E0(rp) + i
4πa3

p

3
k3
1

6πε1
E(rp)− εp − ε1

3ε1
E(rp) +

4πa3
s

3
k2
1

ε1
(εs − ε1)

↔
G0(rp, rs, ω) ·E(rs), (A.4)

E(rs) = E0(rs) + i
4πa3

s

3
k3
1

6πε1
E(rs)− εs − ε1

3ε1
E(rs) +

4πa3
p

3
k2
1

ε1
(εp − ε1)

↔
G0(rs, rp, ω) ·E(rp). (A.5)

Rev. Mex. Fis.69040403
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We mention that (A.4) and (A.5) follow from the fact that, in the limitr → r′, the real part of
↔
G0 is dominated by the Dirac-δ

function of (A.3) whereas the imaginary part of
↔
G0 is

Im[
↔
G0(r, r, ω)] = Im[

↔
G0(r, r, ω)] =

↔
I

k1

6π
. (A.6)

Equations (A.4) and (A.5) can be rearranged as

3ε1E0(rp)
(εp + 2ε1)Γp

= E(rp)− 4πa3
sk

2
1

εs − ε1
(εp + 2ε1)Γp

↔
G0(rp, rs, ω) ·E(rs), (A.7)

3ε1E0(rs)
(εs + 2ε1)Γs

= E(rs)− 4πa3
pk2

1

εp − ε1
(εs + 2ε1)Γs

↔
G0(rs, rp, ω) ·E(rp). (A.8)

In (A.7), we solve forE(rp) and then it is substituted in (A.8), obtaining that the electric field inside the particle located atrs

can be found by solving

Ei(rs)− k4
1αp(ω)αs(ω)

(ε0ε1)2
G0il(rs, rp, ω)G0lj(rp, rs, ω)Ej(rs)

=
3ε1

(εs + 2ε1)Γs

[
E0i(rs) +

k2
1αp(ω)
ε0ε1

G0ij(rs, rp, ω)E0j(rp)
]

, (A.9)

i, j, l = x, y, z and this notation of indices is used for the remaining parts of the derivation;αp(ω) andαs(ω) have been already
defined in (4). By using a similar procedure, the internal electric field inside of the particle placed atrp can be obtained by
solvingE(rs) from (A.8) and then substituting this result into (A.7), leading to

Ei(rp)− k4
1αp(ω)αs(ω)

(ε0ε1)2
G0il(rp, rs, ω)G0lj(rs, rp, ω)Ej(rp)

=
3ε1

(εp + 2ε1)Γp

[
E0i(rp) +

k2
1αs(ω)
ε0ε1

G0ij(rp, rs, ω)E0j(rs)
]

. (A.10)

Without loss of generality, we consider thatrp = 0 andrs = dnz (d > 0). By using the fact that

G0ij(dnz,0, ω) = G0ij(0, dnz, ω) =
δ̃ijk1ξi(k1d)

4π
, (A.11)

the electric fields inside the particles are

Ei(dnz) =
3ε1

(εs + 2ε1)Γsβi(kd)
k2
1

ε0ε1

[
G0ij(dnz, r0, ω) +

k3
1

4πε0ε1
αp(ω)ξi(k1d)G0ij(0, r0, ω)

]
pj , (A.12)

Ei(0) =
3ε1

(εp + 2ε1)Γpβi(k1d)
k2
1

ε0ε1

[
G0ij(0, r0, ω) +

k3
1

4πε0ε1
αs(ω)ξi(k1d)G0ij(dnz, r0, ω)

]
pj , (A.13)

we mention that the explicit factorsξi(k1d) andβi(k1d) are found in (7)-(9). By substituting (A.12) and (A.13) into (A.2), the
electric field can written as (1) where the Green tensor is expressed as (2).

B. Force derivation

Any Cartesian component of the electric fieldEi(r, t) can be decomposed in terms of its spectralEi(r, ω) content as

Ei(r, t) =

∞∫

0

Ei(r, ω) exp(−iωt)dω +

∞∫

0

E∗
i (r, ω) exp(iωt)dω. (B.1)

Thus, the average between two signals is

〈Ei(r, t)Ej(r′, t)〉 =

∞∫∫

0

〈E∗
i (r, ω′)Ej(r′, ω)〉 exp[i(ω′ − ω)t]dωdω′

+

∞∫∫

0

〈Ei(r, ω′)E∗
j (r′, ω)〉 exp[−i(ω′ − ω)t]dωdω′. (B.2)

Rev. Mex. Fis.69040403



8 JORGE R. ZURITA-ŚANCHEZ

According to the fluctuation-dissipation theorem [33,34]

〈E∗
i (r, ω′)Ej(r′, ω)〉 = WE

ij(r, r
′, ω)Θ(ω, T )δ(ω − ω′), (B.3)

〈Ei(r, ω′)E∗
j (r′, ω)〉 = WE

ij(r, r
′, ω){1 + Θ(ω, T )}δ(ω − ω′), (B.4)

where

WE
ij(r, r

′, ω) =
~ω2

πε0c2
Im[Gij(r, r′, ω)]. (B.5)

Notice that the vacuum and thermal correlations of the electric field depend on the Green tensor (2), that is, the electric response
due to an electric dipole (1). Thus,

〈Ei(r, t)Ej(r′, t)〉 = 2

∞∫

0

WE
ij(r, r

′, ω){1/2 + Θ(ω, T )}dω. (B.6)

A similar procedure for the magnetic fields yields

〈Hi(r, t)Hj(r′, t)〉 = 2

∞∫

0

WH
ij (r, r′, ω){1/2 + Θ(ω, T )}dω. (B.7)

Here,

WH
ij (r, r′, ω) =

~
πµ0

Im[Gij(r, r′, ω)], (B.8)

whereGij is the magnetic Green tensor, namely, the magnetic response due to a magnetic dipole. However, the magnetic Green
tensor can be related to electric Green tensor by [35]

↔
G (r, r′, ω) = ∇×

[
∇′ × ↔

G
T

(r, r′, ω)
]T

, (B.9)

(T denotes transpose). Hence, the spectral vacuum and thermal correlations of the magnetic field are now related to such a
magnetic response as

〈H∗
i (r, ω′)Hj(r′, ω)〉 =WH

ij (r, r′, ω)Θ(ω, T )δ(ω − ω′), (B.10)

〈Hi(r, ω′)H∗
j (r′, ω)〉 =WH

ij (r, r′, ω){1 + Θ(ω, T )}δ(ω − ω′). (B.11)

From (B.6) and (B.7), the elements of Maxwell-stress tensor can be found, and the force (10) becomes

Fz =
∑

ν=E,H

2b2(ε0δ̃νE + µ0δ̃νH)

∞∫

0

[ π∫

0

2π∫

0

{
W ν

xz(rc, rc, ω) sin2 θ cosφ + W ν
yz(rc, rc, ω) sin2 θ sin φ

+
[
W ν

zz(rc, rc, ω)−W ν
xx(rc, rc, ω)−W ν

yy(rc, rc, ω)
]
sin θ cos θ/2

}
dφdθ

]
[1/2 + Θ(ω, T )] dω. (B.12)

By using the explicit expression of the Green tensor (2), after a laborious algebraic manipulation, (B.12) becomes (12).
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