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In this paper, the improved and modified version of the Sardar sub-equation method (IMSSEM) and the improved generalized Riccati
equation mapping method (IGREMM) are manipulated effectively and generously to determine the exact solitary wave soliton solutions
of the improved modified KdV (mKdV) equation. The purpose of this study is to provide novel exact solutions to the improved mKdV
equation. Specifically, we utilized IMSSEM and IGREMM to study different solutions of the nonlinear improved mKdV equation, focusing
on exponential, trigonometric, and trigonometric hyperbolic type solutions. Furthermore, the plotting of various solutions for direct viewing
analysis is provided in two and three-dimensional graphs. The new strategies are straightforward, quick, and efficient and have many other
advantages, whereas, they provide the most accurate and unique solution to many other types of nonlinear partial differential equations
(NPDEs), which usually arise in engineering and applied sciences. It should be noted that these methodologies are novel mathematical
instruments that have shown to be the most effective mathematical tools for solving higher-order nonlinear partial differential equations in
mathematical physics. Symbolic computation was used to validate all of the solutions that were established. Thus, it is also hoped that these
techniques will ultimately reduce the cumbersome workload involved during the process of solutions to complicated NLPDEs.
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1. Introduction

The nonlinear partial differential equations (NLPDEs) have
been used extensively for the simulation of many problems
of physical nature, whereas, they have exactly described and
controlled the behavior of such phenomena. However, such
NLPDEs are used frequently for the simulation of prob-
lems in fluid mechanics, structural engineering, optical fiber,
plasma physics, biology, solid state, and physical sciences.
Besides that the techniques for finding the exact solutions to
NLPDEs are rare. On the other hand, few handsome strate-
gies have been devised for the solutions of NLPDEs in recent
years, however, it is a big miracle in the world of mathemat-
ics. Note that the details of such techniques can be found in
the literature,e.g. Tan-cot [1, 2], sine-cosine [3, 4, 12], ex-
tended trail method [5, 6], new auxiliary equation [7–9], Ja-
cobi elliptic ansatz [10,11], Hirota’s direct [14,15], extended
direct algebraic [13, 16, 17], generalizes Bernoulli sub-ODE

[18,19], function variable [20,21], sub-function [22,23], and
others [24–37]. Strictly speaking, we categorically empha-
sized the effectiveness of the two important and modified
techniques,i.e. IMSSEM and IGREMM and they are uti-
lized here wisely to produce the solitary wave solutions of
the nonlinear improved mKdV equation. These solitary wave
solutions of the improved mKdV equation are important in
the application of KdV equations in science, engineering, and
physics. The improved mKdV equation is:

ut+au2ux+buxxt+βuxxx= 0, (1)

where the unknown functionu(x, t) is the dependent vari-
able and it has varied withx and t. The improved mKdV
equation has an extra dispersive term,i.e. the part of Eq. (1)
which containsb This modification creates many significant
changes in the solution structure. The improved mKdV equa-
tion is one of the perfect models useful in electromagnetic
and elastic media, whereas, it explains the nonlinear wave
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propagation in polarity and symmetric systems. Therefore,
we focused its solutions on improved and modified algo-
rithms which are very effective and efficient, whereas, they
may solve other nonlinear problems of a complex nature in a
very easy way and preserve the physical characteristics of the
problem.

Furthermore, the article is briefly managed: In Sec. 2,
we explained the description of the proposed methodology
IMSSEM and IGREMM. In Sec. 3, we applied the IMSSEM
and IGREMM to construct the novel exact, most accurate
solitary wave solutions of the improved mKdV equation. In
Sec. 4, the2D and3D graphs are plotted for direct viewing
study and in Sec. 5, we outlined the conclusion.

2. Methodology of the proposed improved
techniques

Analyze the nonlinear PDEs

F(u,ut, ux, uxx, . . . ), (2)

where the functionu = u(x, t) is an unknown function. At
the moment, we introduced the following wave transforma-
tion

u = u (ξ) , ξ= x−ct, (3)

wherec 6= 0, by using the transformation in (3) into (2) to
reduce the nonlinear PDE and to convert it into a nonlinear
ODE with an integral order.

N
(
u
′
,u

′′
, u

′′′
, . . .

)
. (4)

We have solved the above non-linear ODE by using IMSSEM
and IGREMM these techniques have the following standard
forms:

u (ξ)=a0+
N∑

j=1

ajφ
j(ξ) aN 6=0, (5)

where,aj (j = 0, 1, 2, 3, . . . .N).
The value ofN can be determined by balancing the high-

est order derivative term and the highest order nonlinear term
in Eq. (5). Therefore, the highest degree ofdru/dξr is classi-
fied as:

O
(

dru
dξr

)
= n + r, r = 1, 2, 3, . . . . (6)

O
(

uq dru
dξr

)
=(q + 1) n + r, q = 0, 1, 2, . . ., (7)

and r = 1, 2, 3, . . ..

2.1. The enhanced Sardar sub-equation approach

Theφ(ξ) in Eq. (5) is considered the solution to the following
equation:

(
φ
′)2

(ξ) =δ2φ
4 (ξ)+δ1φ

2 (ξ)+δ0, (8)

whereδi, i = 0, 1, 2 are constants to be determined. The
following set of solutions satisfies Eq. (8) whereC is the
integration constant:

1. For δ0 = δ1 = 0 andδ2 > 0, we obtained the rational
solutions:

φ±1 (ξ) = ± 1√
δ2(ξ+C)

, (9)

2. Forδ0= 0 andδ1> 0, the exponential solutions will be
of the form:

φ±2 (ξ) =
4δ1e±

√
δ1(ξ+C)

e±2
√

δ1(ξ+C)−4δ1δ2

, (10)

φ±3 (ξ) =
±4δ1e±

√
δ1(ξ+C)

1−4δ1δ2e±2
√

δ1(ξ+C)
. (11)

3. The trigonometric hyperbolic solutions are as follows:

4. For δ0= 0, δ1> 0 andδ2 6=0, we have

φ±4 (ξ) = ±
√
−δ1

δ2
sech

(√
δ1 (ξ+C)

)
, (12)

φ±5 (ξ) = ±
√

δ1

δ2
csch

(√
δ1 (ξ+C)

)
. (13)

5. For δ0=δ1
2/4δ2, δ1< 0 andδ2> 0, we have

φ±6 (ξ) = ±
√
− δ1

2δ2
tanh

(√
−δ1

2
(ξ+C)

)
, (14)

φ±7 (ξ) = ±
√
− δ1

2δ2
coth

(√
−δ1

2
(ξ+C)

)
, (15)

φ±8 (ξ) = ±
√
− δ1

2δ2
(tanh

(√
−2δ1 (ξ+C)

)

± isech
(√

−2δ1 (ξ+C)
)

, (16)

φ±9 (ξ) = ±
√
− δ1

2δ2
(coth

(√
−2δ1 (ξ+C)

)

± csch
(√

−2δ1 (ξ+C)
)

, (17)

φ10(ξ) = ±
√
− δ1

8δ2
(tanh

(√
−δ1

8
(ξ+C)

)

+ coth

(√
−δ1

8
(ξ+C)

)
. (18)

6. The solutions which have the form of trigonometric
functions are presented below:
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7. For δ0= 0, δ1< 0 andδ2 6=0, we have

φ±11(ξ) = ±
√
−δ1

δ2
sec

(√
−δ1 (ξ+C)

)
, (19)

φ±12(ξ) = ±
√
−δ1

δ2
csc

(√
−δ1 (ξ+C)

)
. (20)

8. For δ0=δ1
2/4δ2, δ1> 0 andδ2> 0, we have

φ±13(ξ) = ±
√

δ1

2δ2
tan

(√
δ1

2
(ξ+C)

)
, (21)

φ±14(ξ) = ±
√

δ1

2δ2
cot

(√
δ1

2
(ξ+C)

)
, (22)

φ±15(ξ) = ±
√

δ1

2δ2
(tan

(√
2δ1 (ξ+C)

)

±sec
(√

2δ1 (ξ+C)
)

, (23)

φ±16(ξ) = ±
√

δ1

2δ2
(cot

(√
2δ1 (ξ+C)

)

±csc
(√

2δ1 (ξ+C)
)

, (24)

φ±17(ξ) = ±
√

δ1

8δ2

(
tan

(√
δ1

8
(ξ+C)

)

− cot

(√
δ1

8
(ξ+C)

) )
, (25)

Remember that we have substituted Eqs. (5)-(8) into
Eq. (4) and equated all the coefficients of each power ofφ(ξ)

to zero and solved the resultant system of algebraic equations
with the help of Maple. Eventually, we incorporated these
constants (coefficients) into Eq. (5) and obtained the solution
of distinct types as shown in Eqs. (9)-(25). As a result, we
obtained different exact solutions for NPDEs.

2.2. The enhanced generalized Riccati equation map-
ping method

Theφ(ξ) in Eq. (5) is the solution of

φ
′
(ξ)=β2φ

2 (ξ) +β1φ (ξ)+β0, (26)

whereβi, i = 0, 1, 2 are constants and they need to be deter-
mined later. The following set of solutions is obtained with
the integration constantc :

1. Forβ0=β1= 0 andβ2 6=0, the rational solutions will be
of the form:

φ±1 (ξ) = ± 1
β2(ξ+C)

, (27)

2. Forβ0= 0, the solution of the exponential type is sim-
ply obtained as:

φ2 (ξ)= − β1φ

β1(e
−β1(ξ+C)+ϕ)

, (28)

φ3 (ξ)= − β1eβ1(ξ+C)

β2(e
β1(ξ+C)+ϕ)

, (29)

3. Forρ=β2
1−4β0β1> 0, β1β2 6=0 or β0β2 6=0, andp and

q be nonzero real constants, the solutions presented
in the form of trigonometric hyperbolic functions are
given below:

φ4 (ξ)= −
√

ρ

2β2

tanh
(√

ρ

2
(ξ+C)

)
− β1

2β2
, (30)

φ5 (ξ)= −
√

ρ

2β2

coth
(√

ρ

2
(ξ+C)

)
− β1

2β2
, (31)

φ±6 (ξ)= −
√

ρ

2β2

(tanh (
√

ρ (ξ+C)) ±isech (
√

ρ (ξ+C))− β1

2β2

, (32)

φ±7 (ξ)= −
√

ρ

2β2

(
coth (

√
ρ (ξ+C))±csch (

√
ρ (ξ+C))

)− β1

2β2

, (33)

φ8 (ξ)= −
√

ρ

4β2

(tanh
(√

ρ

4
(ξ+C)

)
+coth

( √
ρ

4
(ξ+C)

)
− β1

2β2

, (34)

φ±9 (ξ) =
±

√
ρ(p2+q2)−p

√
ρcosh(

√
ρ (ξ+C) )

2β2

(
p sinh

(√
ρ (ξ+C)

)
+q

) − β1

2β2

, (35)

φ10(ξ) =
2β0cosh

( √
ρ

2 (ξ+C)
)

√
ρ sinh

(√
ρ

2 (ξ+C)
)
−β1cosh

(√
ρ

2 (ξ+C)
) , (36)
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φ11 (ξ)=
2β0sinh

( √
ρ

2 (ξ+C)
)

√
ρcosh

(√
ρ

2 (ξ+C)
)
−β1sinh

(√
ρ

2 (ξ+C)
) , (37)

φ±12 (ξ)=
2β0cosh

( √
ρ (ξ+C)

)
√

ρsinh
(√

ρ (ξ+C)
) −β1cosh

(√
ρ (ξ+C)

) ±i
√

ρ
, (38)

φ±13 (ξ)=
2β0sinh

( √
ρ (ξ+C)

)
√

ρcosh
(√

ρ(ξ+C)
)−β1sinh

(√
ρ (ξ+C)

) ±√ρ
, (39)

φ14 (ξ)=
2β0sinh

(√
ρ

4 (ξ+C)
)

cosh
(√

ρ

4 (ξ+C)
)

2
√

ρcosh2
(√

ρ

4 (ξ+C)
)
−2β1sinh

(√
ρ

4

√
ρ (ξ+C)

)
cosh

(√
ρ

4 (ξ+C)
)
−√ρ

. (40)

4. Forρ=β2
1−4β0β2< 0, β1β2 6=0 or β0β2 6=0, the solutions of the trigonometric form are demonstrated as follows:

φ15 (ξ)=
√−ρ

2β2
tan

(√−ρ

2
(ξ+C)

)
− β1

2β2
, (41)

φ16 (ξ)= −
√−ρ

2β2
cot

(√−ρ

2
(ξ+C)

)
− β1

2β2
, (42)

φ±17 (ξ)=
√−ρ

2β2

(
tan

(√−ρ (ξ+C)
) ±sec

(√−ρ (ξ+C)
))− β1

2β2
, (43)

φ±18 (ξ)= −
√−ρ

2β2

(
cot

(√−ρ (ξ+C)
) ±csc

(√−ρ (ξ+C)
) )− β1

2β2
, (44)

φ19(ξ) =
√−ρ

4β2

(
tan

(√−ρ

2
(ξ+C)

)
−cot

(√−ρ

4
(ξ+C)

) )
− β1

2β2
, (45)

φ±20 (ξ)=
±

√
−ρ(p2−q2)−p

√−ρcos (
√−ρ (ξ+C))

2β2 (psin(
√−ρ (ξ+C)+q)

− β1

2β2
, (46)

φ21 (ξ)= −
2β0cos

(√−ρ
2 (ξ+C)

)

√−ρsin
(√−ρ

2 (ξ+C)
)

+β1cos
(√−ρ

2 (ξ+C)
) , (47)

φ22 (ξ)=
2β0sin

(√−ρ
2 (ξ+C)

)

√−ρcos
(√−ρ

2 (ξ+C)
)
−β1sin

(√−ρ
2 (ξ+C)

) , (48)

φ±23 (ξ)= − 2β0cos (
√−ρ(ξ+C))

β1cos (
√−ρ(ξ+C))+

√−ρsin (
√−ρ (ξ+C))±√−ρ

, (49)

φ±24 (ξ)=
2β0sin (

√−ρ(ξ+C))
β1sin (

√−ρ(ξ+C))−√−ρcos (
√−ρ (ξ+C))±√−ρ

, (50)

φ25 (ξ)=
4β0sin

(√−ρ
4 (ξ+C)

)
cos

(√−ρ
4 (ξ+C)

)

2
√−ρcos2

(√−ρ
4 (ξ+C)

)
−2β1sin

(√−ρ
4 (ξ+C)

)
cos

(√−ρ
4 (ξ+C)

)
−√−ρ

. (51)

Note that we have substituted Eqs. (5) and (26) into Eq. (4) and equated all the coefficients of each power ofφi(ξ) to zero
and solved the resultant system of algebraic equations with the help of Maple. Eventually, we incorporated these constants
(coefficients) into Eq. (5) and obtained the solution of distinct types as shown in Eqs. (27)-(51). As a result, we obtained
different exact solutions for NPDEs.
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3. Improved Modified KdV Equation and its
solutions

In this section, IMSSEM and IGREMM are used to find the
new exact solitary solution of the improved mKdV equa-
tion. The KdV equation describes the development of lengthy
waves on the surface of the fluid. The nonlinear and dis-
persive term in the KdV equation is quantifying the distribu-
tion of long waves, which are of small but finite amplitude in
dispersive media. The KdV equation comes from a generic
model to study weakly non-linear long waves, to incorporate
the leading order, non-linearity, and diffusion. The non-linear
KdV equation has a vital role to study the dispersion of water
waves having a low amplitude in shallow water bodies and
the arrangement of long internal ocean waves in separate lay-
ers.

Consider the improved modified KdV Eq. (1) and it has
been usually expressed as:

ut+au2ux+buxxt+βuxxx= 0. (52)

The modified KdV equation explains nonlinear wave
propagation in a polarity symmetric system. The Improved
mKdV equation is useful in electromagnetic, wave propaga-
tion in size quantized films and elastic media. One of the
best models for examining the characteristics and behavior
of shallow water waves is the Improved Modified Kortewege
de Vries (mKdV) equation. The equation also depicts phe-
nomena that are frequently observed in plasma physics.

Consider the wave variable

u = u (ξ) , ξ= x−ct. (53)

We use the wave variableξ= x−ct, wherec6=0, the vari-
ableξ transforms the equation under consideration into the
ordinary differential equation (ODE):

−c
du
dξ

+au2 du
dξ

+ (β−bc)
d3u
dξ3

= 0 (54)

Integrating once and taking the constant as zero, the
above equation becomes

−cu+
a

3
u3+(β−bc)

d2u
dξ2

= 0 (55)

By balancing procedure, we obtained thatn = 1 , thus the
value of ”n ” is substituted in Eq. (5) and finally we get

u (ξ)=a0+a1φ (ξ) (56)

3.1. New exact solutions using enhanced Sardar sub-
equation method

Now, the Eqs.(8 & 55) are substituted into Eq. (55) and we
get

−ca0−ca1φ (ξ) +
1
3
aa3

0+aa2
0a1φ (ξ)+aa0a

2
1φ (ξ)2

+
1
3
aa3

1φ (ξ)3 + 2a1φ (ξ)3βδ2+a1φ (ξ)βδ1

−2a1φ (ξ)3bcδ2−a1φ (ξ) bcδ1= 0. (57)

By collecting various power ofφ (ξ)i, we get the system
below:

φ (ξ)0: −ca0+
1
3
aa3

0= 0, (58)

φ (ξ)1: −ca1+aa2
0a1+a1βδ1−a1bcδ1= 0, (59)

φ (ξ)2: aa0a
2
1= 0, (60)

φ (ξ)3:
1
3
aa3

1+2a1βδ2−2a1bcδ2= 0. (61)

The above system has been solved with the help of Maple
and finally, we get the coefficients involved in the series (55)
as:

a0= 0, (62)

a1=a1, (63)

δ1=
c

β−bc
, (64)

δ2=
−aa2

1

6(β−bc)
. (65)

Using Eq.(61−64) in combination with Eq.(9−25) & (55),
we get the following solutions.

1. For δ0= 0 andδ1> 0,

u±1 (x, t)=
4a1

(
c

β−bc

)
e±
√

c
(β−bc) (ξ+C)

e±2
√

c
(β−bc) (ξ+C)+ 4caa2

1
(β−bc)2

, (66)

u±2 (x,t)=
± 4a1c

(β−bc)e
±√ c

(β−bc) (ξ+C)

1+ 4caa2
1

(β−bc)2
e
±2
√

c
(β−bc) (ξ+C)

. (67)

2. For δ0= 0, δ1> 0 andδ2 6=0 we have

u±3 (x, t)= ±
√

6c
a

sech
(√

c

(β−bc)
(ξ+C)

)
, (68)

u±4 (x, t)= ±
√
−6c
a

csch
(√

c

(β−bc)
(ξ+C)

)
. (69)

3. For δ0=δ1
2/4δ2, δ1< 0 and δ2> 0 we have

u±5 (x, t)= ±
√

3c
a

tanh

(√
− 2c

(β−bc)
(ξ+C)

)
, (70)

u±6 (x, t)= ±
√

3c
a

coth

(√
− 2c

(β−bc)
(ξ+C)

)
, (71)
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u±7 (x, t)= ±
√

3c
a

(tanh

(√
− 2c

(β−bc)
(ξ+C)

)
±sech

(√
− 2c

(β−bc)
(ξ+C)

)
, (72)

u±8 (x, t)= ±
√

3c
a

(coth

(√
− 2c

(β−bc)
(ξ+C)

)
±csch

(√
− 2c

(β−bc)
(ξ+C)

)
, (73)

u9 (x, t)= ±
√

3c
4a

(tanh

(√
− 8c

(β−bc)
(ξ+C)

)
+coth

(√
− 8c

(β−bc)
(ξ+C)

)
, (74)

u±10 (x, t)= ±
√

6c
a

sec
(√

− c

(β−bc)
(ξ+C)

)
, (75)

u±11 (x, t)= ±
√

6c
a

csc
(√

− c

(β−bc)
(ξ+C)

)
, (76)

u±12 (x, t)= ±
√
−3c
a

tan

(√
2c

(β−bc)
(ξ+C)

)
, (77)

u±13 (x, t)= ±
√
−3c
a

cot

(√
2c

(β−bc)
(ξ+C)

)
, (78)

u±14 (x, t)= ±
√
−3c

a

(
tan

(√
2c

(β−bc)
(ξ+C)

)
±sec

(√
2c

(β−bc)
(ξ+C)

) )
, (79)

u±15 (x, t)= ±
√
−3c

a

(
cot

(√
2c

(β−bc)
(ξ+C)

)
±csc

(√
2c

(β−bc)
(ξ+C)

) )
, (80)

u±16 (x, t)= ±
√
−3c
4a

(
tan

(√
8c

(β−bc)
(ξ+C)

)
−cot

(√
8c

(β−bc)
(ξ+C)

) )
. (81)

3.2. New exact solutions using enhanced generalized Riccati equation mapping method

Now, the Eqs.(26 & 55) are substituted into Eq. (55) and we obtained the following equations with the help of Maple:

−ca1−ca1φ (ξ)+
1
3
aa3

0+aa2
0a1φ (ξ)+aa0a

2
1φ

2 (ξ)+
1
3
aa3

1φ
3 (ξ)+a1ββ1β0+a1ββ2

1φ (ξ)+3a1ββ1β2φ
2 (ξ)

+2a1ββ2φ (ξ) β0+2a1ββ2
2φ3 (ξ)−a1bcβ1β0−a1bcβ

2
1φ (ξ)−3a1bcβ1β2φ

2 (ξ)

−2a1bcβ2φ (ξ)β0−2a1bcβ
2
2φ3 (ξ)= 0. (82)

By collecting the various coefficients ofφi(ξ), we obtain

φ0 (ξ): −ca0+
1
3
aa3

0+a1ββ1β0−a1bcβ1β0= 0, (83)

φ1 (ξ): −ca1+aa2
0a1+a1ββ2

1+2a1ββ2β0−a1bcβ
2
1−2a1bcβ2β0= 0, (84)

φ2 (ξ): aa0a
2
1+3a1ββ1β2−3a1bcβ1β2= 0, (85)

φ3 (ξ):
1
3
aa3

1+2a1ββ2
2−2a1bcβ

2
2= 0. (86)

Solving the above system of Eq. (83)-(86) with the help of Maple, we get the following coefficients involved in series (55)

a0=± 3β1 (−β+bc)

a
√
− 6β−6bc

a

, (87)
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a1= ±
√
−6β−6bc

a
β2, (88)

β1=β1, (89)

β2=β2, (90)

β0=
1
4

bcβ2
1−2c−ββ2

1

β2(−β+bc)
. (91)

Using Eq.(86− 90) in combination with Eq. (27), (51) and (55) we get the following solutions

1. Forρ=β2
1−4β0β1> 0, β1β2 6=0 or β0β2 6=0, the trigonometric hyperbolic form solutions of Eq. (1) are

u17 (x, t)=± 3β1 (β+bc)√
−6a (β+bc)

±
√
−6β−6bc

a

(√
ρ

2
tanh

(√
ρ

2
(ξ+C)

) )
−β1

2
, (92)

u±18 (x, t)=± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√
ρ

2
coth

(√
ρ

2
(ξ+C)

)
−β1

2

)
, (93)

u±19 (x, t)= ± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√
ρ

2

(
tanh (

√
ρ (ξ+C)) ±isech (

√
ρ (ξ+C))−β1

2

))
, (94)

u±20 (x, t)= ± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√
ρ

2

(
coth (

√
ρ (ξ+C)) ±csch (

√
ρ (ξ+C))−β1

2

))
, (95)

u±21(x, t) = ± 3β1 (−β+bc)√
−6a (β+bc)

±
√
−6β−6bc

a

(√
ρ

4

(
tanh

(√
ρ

4
(ξ+C)

)
+coth

( √
ρ

4
(ξ+C)

)))
−β1

2
. (96)

2. Forρ=β2
1−4β0β2< 0, β1β2 6=0 or β0β2 6=0, the trigonometric form solutions of Eq. (1) are as follows:

u22 (x, t)= ± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√−ρ

2
tan

(√−ρ

2
(ξ+C)

)
−β1

2

)
, (97)

u23 (x, t)= ± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√−ρ

2
cot

(√−ρ

2
(ξ+C)

)
−β1

2

)
, (98)

u±24 (x, t)= ± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√−ρ

2

(
tan

(√−ρ (ξ+C)
)±sec

(√−ρ (ξ+C)
) −β1

2

))
, (99)

u±25 (x, t)= ± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√−ρ

2

(
cot

(√−ρ (ξ+C)
)±csc

(√−ρ (ξ+C)
) −β1

2

))
, (100)

u26 (x, t)=± 3β1 (−β+bc)√
−6a(β+bc)

±
√
−6β−6bc

a

(√−ρ

4

(
tan

(√−ρ

2
(ξ+C)

)
−cot

(√−ρ

4
(ξ+C)

) )
−β1

2

)
. (101)

4. Figures and discussion of the solutions

In this section, we have plotted the graphs of the solitary wave solutions. At the moment, we assigned a set of appropriate
values to obtain different soliton structures. Moreover, for the Sardar sub-equation solutions, and also for justification, we
usedβ= 1, a = 0.1, b = 2, c = 4,b1 = 4, β1=β3=1, β2 = −0.5, andC = 1 uniformly to plot Figs. 1-5. Similarly, for the
solutions derived via Ricatti, weβ= 1, a = 0.1, b = 2, c = 4,b1 = 4, β1=β3 = 1, β2 = −0.5, ρ = 1, andC = 1. We finally
derived the following soliton structures.

The recovered soliton structures in Figs. 1-24 for both approaches included singular, dark, bright, kink, anti-kink, and
mixed solitons. For example,u1 (x, t) andu2 (x, t) correspond to kink soliton solutions,u3 (x, t) corresponds to bright soliton
solution,u5 (x, t) andu17 (x, t) correspond to dark soliton solutions,u6 (x, t) and u18 (x, t) correspond to singular soliton
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8 R. K. ALHEFTHI, M. ISHFAQ KHAN, J. SABI’U, D. NAWAZ KHAN MARWAT, AND M. INC

FIGURE 1. The 3D plot ofRe
(
u±2 (x, t)

)
.

FIGURE 2. The contour plot ofRe
(
u±2 (x, t)

)
.

FIGURE 3. The 2D plot of Re
(
u±2 (x, t)

)
.

FIGURE 4. The 3D plot ofRe
(
u±13 (x, t)

)
.

FIGURE 5. The contour plot ofRe
(
u±13 (x, t)

)
.

FIGURE 6. The 2D plot ofRe
(
u±13 (x, t)

)
.
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FIGURE 7. The 3D plot ofRe
(
u±6 (x, t)

)
.

FIGURE 8. The contour plot ofRe
(
u±6 (x, t)

)
.

FIGURE 9. The 2D plot ofRe
(
u±6 (x, t)

)
.

FIGURE 10. The 3D plot of
∣∣u±15 (x, t)

∣∣.

FIGURE 11. The contour plot of
∣∣u±15 (x, t)

∣∣.

FIGURE 12. The 2D plot of
∣∣u±15 (x, t)

∣∣.
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FIGURE 13. The 3D plot of
∣∣u±16 (x, t)

∣∣.

FIGURE 14. The contour plot of
∣∣u±16 (x, t)

∣∣.

FIGURE 15. The 2D plot of
∣∣u±16 (x, t)

∣∣.

FIGURE 16. The 3D plot ofRe
(
u±12 (x, t)

)
.

FIGURE 17. The contour plot ofRe
(
u±12 (x, t)

)
.

FIGURE 18. The 2D plot ofRe
(
u±12 (x, t)

)
.
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FIGURE 19. The 3D plot of
∣∣u±17 (x, t)

∣∣.

FIGURE 20. The contour plot of
∣∣u±17 (x, t)

∣∣.

FIGURE 21. The 2D plot of
∣∣u±17 (x, t)

∣∣.

FIGURE 22. The 3D plot ofIm
(
u±24 (x, t)

)
.

FIGURE 23. The contour plot ofIm
(
u±24 (x, t)

)
.

FIGURE 24. The 2D plot ofIm
(
u±24 (x, t)

)
.
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solutions, u7 (x, t) and u19 (x, t) correspond Bright-dark
soliton solutions,u9 (x, t) and u21 (x, t) correspond dark-
singular soliton solutions, andu10 (x, t) corresponds to pe-
riodic soliton solutions. The structures in Figs. 1-8 are ex-
tremely useful in mathematical physics. Similarly, the same
structures and beyond can be obtained using the appropriate
values on the solutions derived via the two improved meth-
ods.

5. Conclusion

In this paper, we categorically emphasized the effectiveness
and generality of the two well-known, well-established, and
classified techniques. Therefore, we employed the improved
and modified Sardar sub-equation approach and improved
generalized Riccati equation mapping method to investigate
and analyze the new formats of exact solutions to the non-
linear improved mKdV equation. The techniques have been
incorporated gently and applied to this well-known equation.
However, the set of solutions, obtained by these techniques,
has multiple and popular types of the form,i.e. rational,
exponential, trigonometric, and trigonometric hyperbolic so-
lutions of the improved mKdV equation. The methods are
quick and highly effective in nature, whereas, in the first
phase, we used the wave variable to transform the NPDEs
into nonlinear ordinary differential equations (ODEs) with

integer order after adapting the most general and simple tech-
niques the IMSSEM and IGREMM are used to construct the
novel solutions of the improved mKdV equation. Our find-
ings imply that the approach is a strong, well-defined algo-
rithm that is exceedingly efficient. It is confirmed from the
profiles (soliton structures for both approaches) that the novel
solutions preserved the qualities of singular, dark, bright,
kink, anti-kink, and mixed solitons. Therefore, these meth-
ods applicable to solve various nonlinear PDEs arise in differ-
ent areas of research and soliton. Additionally, these results
may be helpful in the KdV equations family and application
in engineering and mathematical science. We also presented
a direct-viewing analysis by providing both two-dimensional
and three-dimensional solution figures. Future studies will
also concentrate on several fascinating findings connected to
the suggested model, such as the physical feasibility, modu-
lational stability, and the analysis of the lie symmetry of the
solutions.

Acknowledgments

The authors would like to extend their sincere appre-
ciation to the Researchers Supporting Project number
(RSPD2024R802), King Saud University, Riyadh, Saudi
Arabia.

1. A. M. Wazwaz, The tanh-coth method for solitons and kink so-
lutions for nonlinear parabolic equations,Appl. Math. Comput.
188(2007) 1467,https://doi.org/10.1016/j.amc.
2006.11.013 .

2. A. M. Wazwaz, The tanh-coth method for new compactons
and solitons solutions for the K(n, n) and the K (n+1, n+1)
equations, Appl Math. Comput. 188 (2007) 1930,https:
//doi.org/10.1016/j.amc.2006.11.076 .

3. A. M. Wazwaz, The sine-cosine method for obtaining solutions
with compact and noncompact structures,Appl. Math. Comput.
159 (2004) 559,https://doi.org/10.1016/j.amc.
2003.08.136 .

4. A, M. Wazwaz, A sine-cosine method for handling nonlin-
ear wave equations,Math. Comput. Model.40 (2004) 499,
https://doi.org/10.1016/j.mcm.2003.12.010 .

5. N. Raza, M. R. Aslam, H. Rezazadeh, Analytical study of reso-
nant optical solitons with variable coefficients in Kerr and non-
Kerr law media,Optic Quant Electron.51 (2019) 59,https:
//doi.org/10.1007/s11082-019-1773-4 .

6. N. Raza, A. Javid, Optical dark and dark-singular soliton solu-
tions of (1+2) dimensional chiral nonlinear Schrodinger’s equa-
tion, Waves Random Comp Media. 29 (2019) 496,https:
//doi.org/10.1080/17455030.2018.1451009 .

7. M. M. Khater, A. R. Seadawy, D. Lu, Dispersive optical soliton
solutions for higher order nonlinear Sasa-Satsuma equation in
mono mode fibers via new auxiliary equation method,Serlat-

tices Microstruct. 113(2018) 346,https://doi.org/10.
1016/j.spmi.2017.11.011 .

8. H. Rezazadeh, A. Korkmaz, M. Eslami, S. M. Mirhosseini-
Alizamini, A large family of optical solutions to Kundu-
Eckhaus model by a new auxiliary equation method,Optic
Quant Electron. 51 (2019) 84, https://doi.org/10.
1007/s11082-019-1801-4 .

9. E. C. Aslan, M. Inc, Optical soliton solutions of the NLSE
with quadratic-cubic Hamiltonian perturbations and modula-
tion instability analysis,Optik. 196 (2019) 162661,https:
//doi.org/10.1016/j.ijleo.2019.04.008 .

10. Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical
solitons for Biswas– Arshed equation with higher order disper-
sions and full nonlinearity.Optik. 206(2019) 163332,https:
//doi.org/10.1016/j.ijleo.2019.163332 .

11. I. K. Muhammad, A. Saleem, S. Jamilu, Jacobi Ellip-
tic Function Expansion Method for the Improved Modified
kortwedge-de Vries equation,Optical and Quantum Elec-
tronics 54 (2022) 734, https://doi.org/10.1007/
s11082-022-04109-5 .

12. J. Sabi’u, A. Jibril, A. M. Gadu, New exact solution for the
(3+ 1) conformable space-time fractional modified Korteweg-
de-Vries equations via Sine-Cosine Method.Journal of Taibah
University for Science,13 (2019) 91,https://doi.org/
10.1080/16583655.2018.1537642 .

13. G. Tao, J. Sabi’u, S. Nestor, R. M. El-Shiekh, L. Akinyemi, E.
Az-Zo’bi, G. Betchewe, Dynamics of a new class of solitary

Rev. Mex. Fis.70051301

https://doi.org/10.1016/j.amc.2006.11.013�
https://doi.org/10.1016/j.amc.2006.11.013�
https://doi.org/10.1016/j.amc.2006.11.076�
https://doi.org/10.1016/j.amc.2006.11.076�
https://doi.org/10.1016/j.amc.2003.08.136�
https://doi.org/10.1016/j.amc.2003.08.136�
https://doi.org/10.1016/j.mcm.2003.12.010�
https://doi.org/10.1007/s11082-019-1773-4�
https://doi.org/10.1007/s11082-019-1773-4�
https://doi.org/10.1080/17455030.2018.1451009�
https://doi.org/10.1080/17455030.2018.1451009�
https://doi.org/10.1016/j.spmi.2017.11.011�
https://doi.org/10.1016/j.spmi.2017.11.011�
https://doi.org/10.1007/s11082-019-1801-4�
https://doi.org/10.1007/s11082-019-1801-4�
https://doi.org/10.1016/j.ijleo.2019.04.008�
https://doi.org/10.1016/j.ijleo.2019.04.008�
https://doi.org/10.1016/j.ijleo.2019.163332�
https://doi.org/10.1016/j.ijleo.2019.163332�
https://doi.org/10.1007/s11082-022-04109-5�
https://doi.org/10.1007/s11082-022-04109-5�
https://doi.org/10.1080/16583655.2018.1537642�
https://doi.org/10.1080/16583655.2018.1537642�


SOLITARY WAVE TYPE SOLUTIONS OF NONLINEAR IMPROVED MKDV EQUATION BY MODIFIED TECHNIQUES 13

wave structures in telecommunications systems via a (2+ 1)-
dimensional nonlinear transmission line.Modern Physics Let-
ters B, 36(2022) 2150596,https://doi.org/10.1142/
S0217984921505965 .

14. A. M. Wazwaz, The Hirota’s direct method and the tanh-coth
method for multiple-soliton solutions of the Sawada-Kotera-Ito
seventh-order equation,Appl Math Comput.199 (2008) 133,
https://doi.org/10.1016/j.amc.2007.09.034 .

15. A. M. Wazwaz, The Hirota’s direct method for multiple-soliton
solutions for three model equations of shallow water waves,
Appl Math Comput. 201 (2008) 489,https://doi.org/
10.1016/j.amc.2007.12.037 .

16. W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, G.
Yel, Novel explicit solutions for the nonlinear Zoomeron equa-
tion by using newly extended direct algebraic technique,Op-
tic Quant Electron.52 (2020) 1,https://doi.org/10.
1007/s11082-019-2162-8 .

17. H. Rezazadeh, New solitons solutions of the complex Ginzburg
Landau equation with Kerr law nonlinearity,Optik. 167
(2018) 218, https://doi.org/10.1016/j.ijleo.
2018.04.026 .

18. A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons pos-
sessing beta derivative of the Chen-Lee-Liu equation in opti-
cal fiber,Front Phys.7 (2019) 34,https://doi.org/10.
3389/fphy.2019.00034 .

19. A. Yusuf, M. Inc, D. Baleanu, Optical solitons with M-
truncated and beta derivatives in nonlinear optics.Front
Phys. 7 (2019) 126, https://doi.org/10.3389/
fphy.2019.00126 .
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