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Solitary wave type solutions of nonlinear
improved mKdV equation by modified techniques
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In this paper, the improved and modified version of the Sardar sub-equation method (IMSSEM) and the improved generalized Riccati
equation mapping method (IGREMM) are manipulated effectively and generously to determine the exact solitary wave soliton solutions
of the improved modified KdV (mKdV) equation. The purpose of this study is to provide novel exact solutions to the improved mKdV
equation. Specifically, we utilized IMSSEM and IGREMM to study different solutions of the nonlinear improved mKdV equation, focusing

on exponential, trigonometric, and trigonometric hyperbolic type solutions. Furthermore, the plotting of various solutions for direct viewing
analysis is provided in two and three-dimensional graphs. The new strategies are straightforward, quick, and efficient and have many othel
advantages, whereas, they provide the most accurate and unique solution to many other types of nonlinear partial differential equations
(NPDEs), which usually arise in engineering and applied sciences. It should be noted that these methodologies are novel mathematica
instruments that have shown to be the most effective mathematical tools for solving higher-order nonlinear partial differential equations in
mathematical physics. Symbolic computation was used to validate all of the solutions that were established. Thus, it is also hoped that thes
technigues will ultimately reduce the cumbersome workload involved during the process of solutions to complicated NLPDESs.
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1. Introduction [18,19], function variable [20, 21], sub-function [22,23], and
others [24-37]. Strictly speaking, we categorically empha-

. . . . sized the effectiveness of the two important and modified
The nonlinear partial differential equations (NLPDES) havetechniquesj e. IMSSEM and IGREMM and they are uti-
been used extensively for the simulation of many problemﬁ; ed here wisely to produce the solitary wave solutions of

. . i
of physical nature, whereas, they have exactly described a ﬁe nonlinear improved mKdV equation. These solitary wave
controlled the behavior of such phenomena. However, suc

: . olutions of the improved mKdV equation are important in
NLPDES are used frequently for the. S|mglat|on .Of pr.Ob'the application of KdV equations in science, engineering, and
lems in fluid mechanics, structural engineering, optical fiber

plasma physics, biology, solid state, and physical scienceghysms' The improved mKdV equation is:

Besides that the techniques for finding the exact solutions to W+ a2 4Dl + B = 0, (1)
NLPDEs are rare. On the other hand, few handsome strate-

gies have been devised for the solutions of NLPDESs in recentvhere the unknown function(x, t) is the dependent vari-
years, however, it is a big miracle in the world of mathemat-able and it has varied witk andt. The improved mKdV

ics. Note that the details of such techniques can be found irquation has an extra dispersive term, the part of Eq.1)

the literature,e.g Tan-cot [1, 2], sine-cosine [3, 4, 12], ex- which containg This modification creates many significant
tended trail method [5, 6], new auxiliary equation [7-9], Ja-changes in the solution structure. The improved mKdV equa-
cobi elliptic ansatz [10, 11], Hirota’s direct [14, 15], extendedtion is one of the perfect models useful in electromagnetic
direct algebraic [13, 16, 17], generalizes Bernoulli sub-ODEand elastic media, whereas, it explains the nonlinear wave
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propagation in polarity and symmetric systems. Thereforewhered,;,i = 0,1,2 are constants to be determined. The
we focused its solutions on improved and modified algofollowing set of solutions satisfies Eg8)(whereC' is the
rithms which are very effective and efficient, whereas, theyintegration constant:

may solve other nonlinear problems of a complex nature in a

very easy way and preserve the physical characteristics of the 1. Ford, = §; = 0 andd, > 0, we obtained the rational

problem. solutions:

Furthermore, the article is briefly managed: In Sec. 2, 1
we explained the description of the proposed methodology PE(E) = +——, 9)
IMSSEM and IGREMM. In Sec. 3, we applied the IMSSEM Vo (§+C)

and IGREMM to construct the novel exact, most accurate
solitary wave solutions of the improved mKdV equation. In 2. Fordo= 0 andd; > 0, the exponential solutions will be
Sec. 4, theD and3D graphs are plotted for direct viewing of the form:
study and in Sec. 5, we outlined the conclusion.

46, eTV1(E+0C)
+ o 1
. ¢2 (g) - ei2m(6+c)745162, (10)
2. Methodology of the proposed improved

techniques (€)= +£46,etVH(EFO) a1

S 45, 6ye2VEEHO)
Analyze the nonlinear PDEs
F(u,ug, Uy, Uy, - - - ), ) 3. The trigonometric hyperbolic solutions are as follows:

where the functioni = u(x, t) is an unknown function. At 4. Fordy= 0, §;> 0 andd,#£0, we have

the moment, we introduced the following wave transforma-

tion 01
$5(€) = £y —=sech (V61 (6+C)),  (12)
u=u(), &= x—ct, ® ' e )

wherec # 0, by using the transformation iiB) into (2) to ¢5 &) = ,/6—1csch (\/6>1(5+C)) . (13)
reduce the nonlinear PDE and to convert it into a nonlinear 02

ODE with an integral order.
5. Fordp=0,2/4d2, 6;< 0andd,> 0, we have

N (u/7u”7um7...) . (4)
We have solved the above non-linear ODE by using IMSSEM ¢6 &) = —%tanh (\ / _a (§+C)> , (14)
and IGREMM these techniques have the following standard 202 2

DO

5) an 7507 (5)

forms:
N 97 () = —‘%coth (\/— <£+C>) (15)
u (&) =aop+ Z a;j¢’(

where,a; (j =0,1,2,3,....N). )=+/"3 ta“h —201 (5+C))
The value ofN can be determined by balancing the high- .
est order derivative term and the highest order nonlinear term + isech (\/ —204 (§+C)) ) (16)
in Eq. B). Therefore, the highest degreedf:/d¢" is classi-
fied as: =&yt coth V=201 (6+0))
d™u
O =n+4r, r=1223,.... 6
<d£r> nrnr © + csch (\/—251 (£+0) ) (17)
0 (uq(jigrl):(qu Dn+r, q=0,1,2,..., (7)
andr=1,2,3,.... $10(&) = \/—i(tanh \/—5—1(5—1—0)
8d2 8
2.1. The enhanced Sardar sub-equation approach 3
1
The (&) in Eq. B) is considered the solution to the following + coth < V 8 (£+C)> ' (18)
equation:
2% 6. The solutions which have the form of trigonometric
_ 4 2
(¢ ) (£) =020" (£) #0167 (€) +0o, (®) functions are presented below:

Rev. Mex. Fis70051301



SOLITARY WAVE TYPE SOLUTIONS OF NONLINEAR IMPROVED MKDV EQUATION BY MODIFIED TECHNIQUES 3

7. Fordp= 0, ;< 0 andd#0, we have
GR(E) = 2/~ Tsec (V01 €4C)) . 19)
56 =y Fose (VI (€40)) . (@0)

8. F0r50:512/452,

915(6) = £/ %tan <\/5271 (€+C)> . ()

61> 0 anddy> 0, we have

012(6) = £/ Q‘%t (\/f («s+0>> . @
51(6) = 4 g-tan (V251 (64+0)
+sec (\/ﬁ (§+0)) : (23)
() = 4/ 5 (cot (V2 (6+0))
+cse (\/ﬁ(ﬁ—i—C)) , (24)

$17(6) = £ 86712 (tan <\/§(§+0)>
!
— cot (\/;(EJrC)) ) : (25)

Remember that we have substituted Eq®)-(8) into
Eg. 4) and equated all the coefficients of each powep(@f)

to zero and solved the resultant system of algebraic equations
with the help of Maple. Eventually, we incorporated these
constants (coefficients) into Ed)(and obtained the solution

of distinct types as shown in Egs. (9)-(25). As a result, we
obtained different exact solutions for NPDEs.

2.2. The enhanced generalized Riccati equation map-
ping method

The ¢(¢) in Eq. ) is the solution of

¢ (€) =62d” (€) +519 (€) +Bo, (26)

whereg;,i = 0,1, 2 are constants and they need to be deter-
mined later. The following set of solutions is obtained with
the integration constarat:

1. ForBy=p31= 0 andB27£0, the rational solutions will be
of the form:

1

=540 @)

oF () =

2. For By= 0, the solution of the exponential type is sim-
ply obtained as:

Bio
Bi(e™ 1D 4 o)
ﬂl eﬁl (£4+C)

By (eﬁl(f+c)+(p)

P2 (&)= — (28)

¢3(§)=— ; (29)

3. Forp=£2—4830531> 0, 813270 or 3,270, andp and
q be nonzero real constants, the solutions presented
in the form of trigonometric hyperbolic functions are

| given below:
61(6)= -t (Y (€40) ) - (30)
66~ com (YL (640)) -2 @)
07 (€)= =33 (tanh (5 (6+C) isech (V3 (¢+C)) ~ - (32)
0% (€)= =31 (coth (7 (€4+C) eseh (VB (4C)) )5 (33)
o8 (&)= —\g;(tanh (f (§+C)> +coth ( % (§+O)> 2%12 (34)
SE(E) = £/ p(P?+q?)—py/peosh(y/p (+C)) B (35)
? 20, (p sinh (/p (§4+C)) +q) 28,
23pcosh ( g (§+C’))
b10(E) = (36)

/p sinh (@ (§+C’)) —B1cosh g (§+C)) 7

Rev. Mex. Fis70051301
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2Bosinh ( Yz (§+C))

P11 (§)= 7 (37)
' /pcosh (@ (f—i—C)) —f1sinh (@ (f—i-C))

Lo 2fgcosh (/p (£+C))

O12 (E)i\/ﬁsinh (v (+C)) —Picosh (/p (§4+C)) +iy/p’ (38)
s (6 2fosinh (/p (£+C)) (39)
13 Jpcosh (y/p(§+C)) —Bisinh (/p (§+C)) +£/p’

2Bosinh (% (§+0)) cosh (% (§+0))
P14 (€)= (40)

2,/pcosh” (@ (f—l—C’)) —2(1sinh (%ﬁ(f#—C)) cosh (% (§+C)) —/P .

4. For p=£7—48yB2< 0, 413270 or 3y 3270, the solutions of the trigonometric form are demonstrated as follows:

_V=r v—=p b1
#15 (§)= 5 tan <2 (5‘*‘0)) 95, (41)
1o (= 3 Leot (Y32 (€40)) - 2)
6% (©=Y2 (san (V=5 (640)) sec (V=5 (€+C))) —L | @3)
2032 2032
1 (9= 5L (cot (VTR (£40)) ese (VIR (E40)) ) — (a4
&) =L (tan (Y32 (640 ) —eot (Y2 (640 ) ) -1 (5)
5 (6 B PP —pyTeos (VIR (E4C) 1 )
20 232 (psin(y/—p (§+C) +q) 2B,
b (6)= 283pcos (\/777 (§+C)) )
“ J/—psin (@(&C)) +B1cos (@(&C)) ’
. 2Bpsin (@ (£+C)> o
. _\/Tpcos (@ (f—i—C)) —f1sin (@ (f—i—C)) 7
¢i (f): _ 250(305 (\/jp(§+c)) (49)
» Breos (v/=p(E+C)) ++/=psin (v=p (+C)) £/=p’
24 ) G i (Vo€ C)) —v—pcos (V—p (6+C)) Ev—p’
4psin (@ (§+C’)) cos (@ (£+C))
@25 (f): (51)

2y/—pcos? (@(64—0)) —203;sin (@ ({—i—C)) cos (@ (f—l—C)) —\/Tp.

Note that we have substituted Egs. (5) and (26) into Bgagd equated all the coefficients of each powep'¢f) to zero
and solved the resultant system of algebraic equations with the help of Maple. Eventually, we incorporated these constants
(coefficients) into Eqg.8) and obtained the solution of distinct types as shown in Egs. (27)-(51). As a result, we obtained
different exact solutions for NPDEs.
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3. Improved Modified KdV Equation and its By collecting various power af (¢)', we get the system
solutions below:

In this section, IMSSEM and IGREMM are used to find the (6" —Cao+1aagz 0, (58)

new exact solitary solution of the improved mKdV equa- 3

tion. The KdV equation describes the development of lengthy o (5)1; —caj+aatay+ay 361 —abed; =0,  (59)

waves on the surface of the fluid. The nonlinear and dis- ) )

persive term in the KdV equation is quantifying the distribu- ¢ ()" aaga;=0,  (60)

tion of long waves, which are of small but finite amplitude in 5 1 4

dispersive media. The KdV equation comes from a generic ¢(8)": gaaj+2a1002—2a1bcdp=0.  (61)

model to study weakly non-linear long waves, to incorporate

the leading order, non-linearity, and diffusion. The non-linear  The above system has been solved with the help of Maple

KdV equation has a vital role to study the dispersion of waterand finally, we get the coefficients involved in the serfsk) (

waves having a low amplitude in shallow water bodies ands:

the arrangement of long internal ocean waves in separate lay-

ers. ao= 0, (62)
Consider the improved modified KdV Edl)(and it has

been usually expressed as: ar=an (63)
C
ut+au2ux+buxxt +ﬁuxxx: 0. (52) 61:m7 (64)
The modified KdV equation explains nonlinear wave a2
ot

propagation in a polarity symmetric system. The Improved 62:6 (65)

mKdV equation is useful in electromagnetic, wave propaga- (B-bc)

tion in size quantized films and elastic media. One of thqusing Eq.(61— 64) in combination with Eq(9— 25) & (55),

best models for examining the characteristics and behavigy,, get the following solutions.

of shallow water waves is the Improved Modified Kortewege

de Vries (mKdV) equation. The equation also depicts phe-

nomena that are frequently observed in plasma physics.
Consider the wave variable

u=u(),{=x—ct. (53)

1. Fordg= 0 andd;> 0,

B—bc

4a1( c )ei\/ﬁ(@rc)

We use the wave variable= x—ct, wherec£0, the vari-

+ _
able¢ transforms the equation under consideration into the u ()= o2V e (E1C) | _dcact ’ (66)
ordinary differential equation (ODE): (B—be)
d d a3 _Aarc_ /G550 (E40)
—e a4 (B—be) S =0 (54) N .o M 67)
d§ d¢ d¢ 2\ Ly deaa? 2 [ 5s (E+0)
Integrating once and taking the constant as zero, the T G—ve?
above equation becomes
" 2 2. Fordp= 0, 41> 0 andd,#0 we have
fcu+§u3+ (B—bc) @ 0 (55)
By balancing procedure, we obtained that 1, thus the
value of "n " is substituted in Eq.9) and finally we get o (6 6)= & /@sech ( c (§+C)> 7 (68)
u(§) =ap+a16 (€) (56) a (6=be)

3.1. New exact solutions using enhanced Sardar sub- uf (x,t)= i,/_GCCSCh( _c (§+C)> . (69)
equation method a (B—be)

Now, the Egs.(8 & 55) are substituted into EG56) and we 3. Fordp=6,"/46>, 6;< 0 and 5> 0 we have
get

—cag—ca ¢ (§) +%aa8+aa%a1¢ (&) +aagale (£)* 3 9%
uf (x,t) = 41/ —tanh ——(&+C) |, (70)
1 3 3 3 a ( (5—bc) )
+§aa1¢(§) +2a1¢ (§)" Bd2+a1¢ (§) 5oy
3 2
—2a16 (€)*beda—a1é (€) bedy = 0. (57) ud (x,t) = + accoth< —ﬁ (§+C’)> . (70)

Rev. Mex. Fis70051301
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W (x, 6)= i\/%(tanh ( - 62 i (5+0)> tsech ( - 52 i <g+0)> (72)
w (x, )= iﬁ (coth (W (g+0)) Lesch ( -~ ﬁQCb ) (g+0)> (73)
ug (x,t)= :l:\/i(tanh < 7(68 ) (§+C)> +coth ( (ﬁ8 o) (§+C)> (74)
ud (x,t)= i\/Zsec( -1 5fbc) (g+c>>, (75)
ud (x,t)= iﬁcsc( —(ﬂcbc)(gw)), (76)
wt (5, 6)= + _jctan< (ﬁic)@w)) , (77)
uE (x, )=+ _T?)Ccot ( ( [fbc) (€+C)> , (78)
iy (5, 0)= (m( : ﬁicbc) (§+0)> :i:sec( : ﬂQ_de (g+0)> ) , (79)
i (x, )= % f% (Cot < % (gw)) :l:csc( : ﬁQ o (€+C )) ) , (80)
wk (x5, 6)= + % (m( : 68 o (f+0)> —cot < ([ﬁicbc) (g+0)> ) . (81)

3.2. New exact solutions using enhanced generalized Riccati equation mapping method

Now, the Eqs(26 & 55) are substituted into Ec58) and we obtained the following equations with the help of Maple:

~car—card (€) +waad taadard (€) +aapadd? (€) + raald® () +ar BB otar 526 (€) +3a1 565267 (€)

3 3
+2a1 3020 (€) Bo+2a18656” (€) —arbef fo—arbefii ¢ (€) —3arbep f2” (€)
—2a1bcB26p (€) fo—2a1bcB3¢° (€) = 0. (82)
By collecting the various coefficients of(¢), we obtain

?° (&): _CQO‘F%aag‘i‘alﬁﬁlﬂO—albcﬂlﬁoz 0, (83)
@' (€): —car+aagar+a1 857 +2a1 3032 B0—a1bcF; —2a1beBa fo= 0, (84)
¢” (€): aagai+3a1BB1P2—3a1bcpfa= 0, (85)
®° (&): %aa?—!—Qalﬁﬂ%—Qalbcﬁg: 0. (86)

Solving the above system of Eq. (83)-(86) with the help of Maple, we get the following coefficients involved in'SByies (
n 361 (—=B+bc)

o= | 68—6bc
a ,%

Rev. Mex. Fis70051301

(87)



SOLITARY WAVE TYPE SOLUTIONS OF NONLINEAR IMPROVED MKDV EQUATION BY MODIFIED TECHNIQUES 7

m= 41/~ (88)

pr1=p1, (89)

Pa=[2, (90)
1 bef3?—2c— 3332

P R o

Using Eq.(86 — 90) in combination with Eq. (27), (51) and (55) we get the following solutions

1. For p=/2—4031> 0, 313270 or 3y 3270, the trigonometric hyperbolic form solutions of Ed) ére

= Een S (e (Y @0) ) -5 92

38 (—B+be) 65 6be (/P JP b
w (x, t)= j:\/mi (2 ((£+C)> 5 > (93)

. 361 (—f+be) | [ 65— 6bc<
1119( 7t) :t\/mi

£ (x,t)= i%i 766;61)0 <\2[ <coth p (£+C)) £esch (/p (E+C)) — ﬂl)) , (95)

ug (x,t) = ij%i —66;6170 (\f (tanh (\f (§+C)> +coth ( % (§+C)>)> —%. (96)

2. Forp=03%—48yp2< 0, 313270 or 3y3270, the trigonometric form solutions of EdL)(are as follows:

( (€+C>) ﬁ;), 97)
cor (Y2 (er0)) -2 ). (98)

) , (99)

<cot V=0 (E+0)) xesc (V=p (E+C)) —= >) : (100)

8IS

(tanh 5 (64C)) isech ( /7 (€4C)) —%)) , (94)

)

s (%, 351 (—B+be
> \/—6a (B+be
u ( -+ 351 ( [3+bc
» /—6a(B+be

351( B+bc)
\/—6a (B+bc)
4 361 (—=p+bc)
v/ —6a(8+bc)

uge (x,t)= =+ f’/ﬁ%i 65 Gbe (\/47 (tan (‘/2_7 (£+C)> —cot (‘/4_7 (£+C)> ) —%) . (101)

4. Figures and discussion of the solutions

~

65 6bc

+

~

6ﬂ 6bc

~

+

~

H_

ug, (x,t)=

65 6bc

uy (x,t)= +

(7
(7

_86- 6‘”( (tan VB (64C)) sec (V=p (€+C)) _)
(7

In this section, we have plotted the graphs of the solitary wave solutions. At the moment, we assigned a set of appropriate
values to obtain different soliton structures. Moreover, for the Sardar sub-equation solutions, and also for justification, we
usedf=1,a=0.1, b=2, c=4,by = 4,51=05=1, B2 = —0.5, andC = 1 uniformly to plot Figs. 1-5. Similarly, for the
solutions derived via Ricatti, w8=1, a = 0.1, b =2, c =4,b; = 4,31=03 = 1, B2 = —0.5, p = 1, andC = 1. We finally
derived the following soliton structures.

The recovered soliton structures in Figs. 1-24 for both approaches included singular, dark, bright, kink, anti-kink, and
mixed solitons. For example; (x,t) andus (x,t) correspond to kink soliton solutions; (x, t) corresponds to bright soliton
solution,us (x, t) anduy7 (x,t) correspond to dark soliton solutionsg (x,t) and uis (x,t) correspond to singular soliton

Rev. Mex. Fis70051301
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FIGURE 4. The 3D plot ofRe (uf; (x,t)).

“0" -0

FIGURE 5. The contour plot oRe (uf (x, t)).

FIGURE 3. The 2D plot of Re (uj (x,t)).
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N FIGURE 10. The 3D plot of|uf; (x,t)|.
FIGURE 7. The 3D plot ofRe (ug (x,t)).

1071
FIGURE 8. The contour plot oRe (ug (x,t)). FIGURE 11. The contour plot ofui; (x, t)].
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FIGURE 9. The 2D plot ofRe (ug (x,t)). FIGURE 12. The 2D plot of|uf; (x,t)|.

Rev. Mex. Fis70051301



10 R. K. ALHEFTHI, M. ISHFAQ KHAN, J. SABI'U, D. NAWAZ KHAN MARWAT, AND M. INC

FIGURE 13. The 3D plot of|uf; (x, t)|. FIGURE 16. The 3D plot ofRe (ui (x, t)).

FIGURE 17. The contour plot oRe (uf; (x,t)).

FIGURE 14. The contour plot ofuij (x, t)|.
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o0 00
o 4

o -'z—? R

ok I
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__N_ |

. a7 ; 1 1 }

FIGURE 15. The 2D plot of|uf (x, t)]. FIGURE 18. The 2D plot ofRe (uf; (x,t)).
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FIGURE 19. The 3D plot of|u3 (x,t)].

FIGURE 22. The 3D plot oflm (u3; (x,t)).

=107 <13

FIGURE 23. The contour plot ofm (u3; (x,t)).
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FIGURE 21. The 2D plot of|u (x,t)|.

FIGURE 24. The 2D plot offm (ug; (x,t)).
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solutions, u7 (x,t) and uyg (x,t) correspond Bright-dark integer order after adapting the most general and simple tech-
soliton solutions,ug (x,t) and ug; (x,t) correspond dark- niques the IMSSEM and IGREMM are used to construct the
singular soliton solutions, and, (x,t) corresponds to pe- novel solutions of the improved mKdV equation. Our find-
riodic soliton solutions. The structures in Figs. 1-8 are ex4ngs imply that the approach is a strong, well-defined algo-
tremely useful in mathematical physics. Similarly, the samaithm that is exceedingly efficient. It is confirmed from the
structures and beyond can be obtained using the appropriagpeofiles (soliton structures for both approaches) that the novel
values on the solutions derived via the two improved methsolutions preserved the qualities of singular, dark, bright,

ods. kink, anti-kink, and mixed solitons. Therefore, these meth-
ods applicable to solve various nonlinear PDEs arise in differ-
5. Conclusion ent areas of research and soliton. Additionally, these results

may be helpful in the KdV equations family and application
In this paper, we categorically emphasized the effectivened§ engineering and mathematical science. We also presented
and generality of the two well-known, well-established, anda direct-viewing analysis by providing both two-dimensional
classified techniques. Therefore, we employed the improveand three-dimensional solution figures. Future studies will
and modified Sardar sub-equation approach and improve@lso concentrate on several fascinating findings connected to
generalized Riccati equation mapping method to investigatéhe suggested model, such as the physical feasibility, modu-
and analyze the new formats of exact solutions to the nonlational stability, and the analysis of the lie symmetry of the
linear improved mKdV equation. The techniques have beegolutions.
incorporated gently and applied to this well-known equation.
However, the set of solutions, obtained by these techniques,
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