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This research dissects solitary wave solutions of the generalized resonant nonlinéaiir§eirequation, whose primary uses include the
transmission of light across nonlinear optical fibers. To generate bright, dark, kink-type, and singular kink-type solitary waves that rely on
the intensity of the propagating pulse, an extended direct algebraic technique with symbolic computation is used. For different values of
the parameters, the propagation of some specific solutions in a graphically detailed report has also been demonstrated. Then the bifurcatio
structures of the heeded model have been determined using a planar dynamical system and phase portraits.
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1. Introduction that these equations represent the modeling of numerous fun-
damental phenomena, including DNA structure modeling,
wave dynamics in optical fibers, and wave pattern produc-
fields of investigation in nonlinear optics, particularly in me- tion in semiconductor materials, demonstrates their relevance

dia transmission design and hypothetical material science” sc;ennr?cl andhtechpolog;calt aéd\:ﬁncementts. Many adﬁ;'
Hypothetical material science is the study of theoretical and'ona scho ars r?ve '?r\]/ estigate de;se systems US'?E 3 er
unproven materials not yet discovered or synthesized, usin pproaches such as the nel—model expansion metho

advanced computational methods to predict their propertie§) the egp{—q&(X))—expansion, the first integral method
v putat prec! " propert and theG' /G%—expansion [10,11], the extended trial ap-

and potential applications. It aims to explore new possibil- h 1121 th lized i . hni
ities for materials that could revolutionize various technolo-Proac [12], the generalized auxiliary equation technique

gies [1,2]. In fiber optics and nonlinear waveguides, analszlls]’ thet_anh me:\h(()jd {154]’_":1?0' the(:jextfended fc;_rmdo:\liirsné
ing optical solitons is truly unavoidable. They are crucial in ple equation method [15]. The study of generalize NESES
optical continuum synthesis and can be used to convey int_hat account for resonant phenomena has sparked significant

formation across enormously long distances [3-6]. Besidegttemion' In Fhis a”“?'e: we have TeSO'V.ed the ge nera_lized
that, a detailed analysis of the majority of optical fibers and©sonant nonlinear Sdswlinger equation with an arbitrary in-

their networks usually demands a number of complex mech®®%

The study of optical solitons is one of the most significant

anisms that influence the dynamics of the system. Optical iy + agee + (a]¢>"

fibers transmit data as light pulses for high-speed communi-

cation. These fibers have a core and cladding with different + Blo[*)b + 6 <¢|:m:> b—ch=0 @
refractive indices, enabling efficient data transmission over 9| ’

Iong distances wi'th minimal loss. The fundamental Opticalvvhereqf) — ¢(x,t) represents the complex-valued function,
s_olltons re_po_rted in thes_e processes is generic from the non- is the adimensional length along the fiberrepresents
linear Schédinger equations (NLSEs). time, € is a parameterp and 3 are the coefficients of the
NLSEs are nonlinear partial differential equations in dis-Kerr law nonlinearitya the group velocity dispersion (GVD),
persive form that have been generated and examined in @is the resonant nonlinearity, andis an arbitrary index
variety of nonlinear domains, such as discrete spatial optifn # 0, —1).
cal solitons in waveguide arrays and quasi-stationary opti- However, as far as we know, not all solutions for this spe-
cal solitons with parabolic law nonlinearity [7,8]. The fact cific form of the equation have been discovered. Multiple
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authors have tried to find the solution of other forms of reso-

nant nonlinear Sclidinger equation with specific indicators Step 1: Consider the nonlinear partial differential equation
of the reflection coefficient [16-21]. Regarding this spacial(NLPDE) of the form:

form of the equation, we are interested in examining whether

these solutions remain stable when parameters vary. To gain D(¢, bt by ity Paas ) = 0, (2

a deeper understanding of the soliton dynamics within this

model, we aim to study its solutions for arbitrary index andwhere¢ = ¢(z,t) is a function to be determined. Consider
their stability with respect to parameter changes. Only few arthe following traveling wave transformation [28,29]:

ticles have dealt with this special equation form. In Ref. [22]

the author used the Jacobi elliptic sine method to find general o(z,t) = exp (IE)W(n), E=dix — it
solutions. On the other hand, in Ref. [23] the Bernoulli sub-
ODE method and th&G' /G')—expansion method have been n=dyT — Cat, ©)

used to study the behavior of the model. It is self-evident that

this model is a non-integrable partial differential equation,VNere:di, dﬁ ar(; the afrbrl]trary CCI’PStantS ang c, are Ithe
and the inverse scattering transform cannot generate a solgP€ed and the phase of the travelling wave respectively. Now,

tion for this problem. Hence, the extended direct algebraid!Sing this transformation in Eq2)( we had the following

technique plus bifurcation analysis have been used to explorgandard ordinary differential equation:

new structures of the governing model. These methods are

effectively applied to study various nonlinear problems and

can also be used for qualitative analysis and to discuss the i o , .

stability of solutions with respect to parameter changes. ~ Vhered is the polynomial ini¥’() and its derivatives.
The framework of this research is as follows: In Sec. 25t€p 2: Suppose Eqi4) has solution of the form:

extended direct algebraic method is elaborated. In Sec. 3 N

application of the technique on the considered equation and _ _ i

graphical representation can be seen. In Sec. 4, bifurcation Wn) = Z {bZB(n) } ©)

analysis and phase portrait of the heeded model are described.

The conclusion of the work is summarized in Sec. 5. with B(n) satisfies following ODE,

AW, W' W', .) =0, (4)

=0

2. Recapitulation of the presented technique B'(n) =n(p) (u +vB(n) +CB*(), p#0,1. (6)

These are the core steps to demonstrate the primary aspettere, p is a positive integer. FoB = (v — 44¢) the solu-
of the extended direct algebraic method [24-27]. tions of Eq. 6) expressed in terms of parametgrss and¢
|  are as follows:

1:If ® < 0and¢ # 0,

1(n) = —% + \?tanp (*?70 , )

By(n) = —% - @ cot (*/;i@n) , ®)

Bala) = e+ Y2 (tan, (V=8 £ Vs, (V6m) ) ©

Buln) = — e+ Y22 (ot (V=Bn) £ s, (V) ). (10

Batn) = — e+ Y22 (tan, () - ot (50 ay

2:1f © > 0 and(¢ # 0,

Bs(n) —i - \f tanh,, (?n) (12)

Bq(n) = —% - \f coth,, (?n) (13)
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3:1If u¢ > 0andv =0,

4:If u¢ < 0andv =0,

5:1f v =0andu = ¢,

Bs(n) = . + Ve ( — tanhp(\/@n) +i pqsechp(\/@n)),

22
By(n) = —% + ? (— coth, (\@n) +./pgcsch, (\@n) ),
Bio(n) = —% - f (tanhp (?n) + coth,, (?n) )
Bii(n) = %tanp \/777

oty (Vitn)
Bia(n) = ﬁ (t (2v/icn) £ viasee, (2/4n) ).
Bua(n) = [ (= oty (2Cn) & Vesc, (2 )

=y B (55) o ().

®

[\v]

3
| |
%

Big(n) = — —% tanh, ( —u(n)
Biz(n) = — —% coth, ( —uén)

Bis(n) = H( — tanh, (2 —uCn) +iy/pgsech, (2 —uCn) )
(

— coth, (2 *HCH) + \/pq csch, (2 *HCU) )»

Bao(y) = — % |- (tanhp (VFO + coth, (‘/Fn) >

Bau(n) = — cot,, (2un) + \/pq esc, (2um)

Bt = § ns () o (3)
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6: If v =0and{ = —p,

Bag(n) = — tanh, (un), (32)
Baz(n) = —cothy, (un), (33)
Bas(n) = — tanh, (2un) + v/—pgsech, (2un) (34)
Bag(n) = —coth, (2un) £ \/pgcschy, (2un) , (35)
1 % 1%
Bso(n) = —3 (tanhp (577) + coth, (577) ) (36)
7. 1f© =0,
—2u(vnlnp + 2
B (n) = %. 37)
v’nlnp
8:Ifv=Au=AB,(B #0)and¢ =0,
Bsy(n) = p™" — B. (38)
9 1fv=(=0,
Bss(n) = pnlnp. (39)
10:If v = p =0,
-1
Bsa(n) = cnlnp’ (40)
11 If p = 0andv # 0,
14
Bss(n) = — b ) (41)
C(coshp (vn) — sinh, (vn) + p>
v < cosh, (vn) + sinhp(un))
Bsg(n) = — : (42)
C<Coshp (vn) + sinh, (vn) + q)
12:1f (= AB, v=A (un=0andB # 0),
An
___ b
337(77) - p— quATI . (43)
Note
The generalized hyperbolic and triangular functions [30,31] are defined as follows:
. pn_q—n p77+q—7]
sinh,(n) = %, cosh,(n) = %,
pp" —qp”" pp" +aqp"
tanh =) coth =)
o) = o o) = o — g
sech()—# csch()—#
P o g P o =g
: PP —qp " PP +qp "
sing () = A0 cos, () = LA
P —gp™ _ P+ gp "
tanp(n) = —|W7 COtp(’r]) = IW’
2 2i
sec =— sc =—
o) = oo T ap o) = oo —ap
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wheren is an independent variable apdy are non-zero arbitrary constants, called deformation parameters.

Step 3: After substituting the wave transformation in the considered NLPDE we will get the ordinary differential equation
(ODE). By equalizing the highest order derivative with the nonlinear component of that ODE, we can obtain the balancing
integerN > 0. Then, by replacing Eq5} in Eq. 4) we get the algebraic equations having power&ofy) (j = 0,1,2,...)

and equating the coefficients of powersi®ffn) to zero gives an algebraic system of equations.

Step 4: Solve the algebraic system of equations and use the results iB)Eq.determine the exact solutions of E).(

3. Execution of the proposed methodology

In this section, we have applied the extended direct algebraic method of&)E&y(substituting the transformation from Eqg.
(3) into Eq. 1) we get the real part of the equation:

d3(a+E)W" (n) + aW*"H () + W () — (adf — c1 + )W (n) =0, (44)
and imaginary part:
2adydy — o)W () =0, = ¢y = 2adyds. (45)
To find the balancing coefficient of the equation we will use the following transformation [23]:
W(n) = (w(n))>". (46)
Eq. (44) converts to:
2nd3(a + d)w(n)w’ (n) + d3(a+6)(1 —2n)(w (1))* +dan*w® () +46n*w* (1) — 4n*(ad} — 1 + Juw? () = 0. (47)

So, by equating the nonlinear componerit,) with the highest order derivative temv(n)w”(n) balancing coefficienty = 1
can be found. Then from EcB)solution of Eq.47) can be supposed as:

w(n) = bo + b1 B(n). (48)

By putting Eq. 48) into Eq. 47) along with Eq. [6) and setting the coefficients of powersBf () for j = 0,1,2,3,4 to
0, we acquire the system of algebraic equations. Resolving the system of equations, we have obtained the following sets o
solutions for the specific parametric values:

Set 1:
—2n(n+1)(ad? —c; +¢)
o= )
bo
—n?(2nadi — ¢1 + € + ad? — 2ncy + 2ne)
ﬁ = b2 3
0
1
§=—-a+ ﬁ(élnzlcl +4n3c; — dn*e — dnde — dnad; — AnPad?),
Cuds In (p)
142 1
V::I:M, bo = bo, by = +b M
na /St nu
om
Set 2:

2¢(£n £ 1)(ad? — c1 +¢)

o = )
biv/v2 — 4ul
5= ¢? (2and12 +ad12+2ne—2ncl Jrefcl)

bi® (4 (¢) p—1?)
Cul 4n2adi? + 4n%e — 4n2cy
do? (In (p))* (4 (¢) p—v2)’

v+/v2—4
by = by (“) by = by.
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3.1. Solutions of Eq. L) by using Set 1

By utilizing the values from Set 1 in Eq48) and doing backward substitution we have the following solutions for over wave
profile.

Case 2:If © > 0 and(¢ # 0,

e = expi(dix — c1t) :bo (1 + 2\77/7((1/ + \/@tanhp(\é@n))> } ﬁ’

L
2n

¢7 = expi(diz — c1t) :bo (1 == fﬁ(” + @coth,,(?n))) } ;

¢8:expi(d1x—clt)_ bom (V VB (— tanh, (V8n) + i/F sech,(vOn) )rl
)

o :expi(dlx—clt)_ bom ( ~ VB(~ coth, (V) = yagesch, (VO )}
$10 = expi(dixr — clt) (21/ +V©(tanh (?n) + coth (\?n))ﬂ ﬁ.

Case 9:lf v = (=0,
¢33 = bo.

Here,m = /n + 1/n. We can see that only the above cases are valid for the parameters involved in Set 1 because conditions
of other cases fail to satisfy the value:af

3.2. Solutions of Eq. L) by using Set 2

In this subsection, we have used Set 2 in E48) then the formed solution has been substituted in Bd@). (Afterward, with
the help of Eq. [46), Eq. 44), and transformation in Eq.3] we get the following solutions of considered complex-valued
function.

Case 2:If © > 0 and¢ # 0,

¢ = expi(diz — c1t) |by (:ﬁ:\f — ftamhp(‘?n)> } ﬁ’
¢7 = expi(dix — c1t) | by (if - \gcéCOthP(\/QéT])> } ﬁ7
¢s = expi(dix — c1t) _:i: blf + by 5 @( tanh,(vVOn) + iy/pgsech, (\Fn))} ﬁ,

¢o = expi(diz — c1t) I - leC\@ + blf( coth, (\@77) £ \/pTICSChp (\@77) )} ﬁa

bV  bVe
20 4«

L
2n

(tanh,( @n) + coth,( \?77))}

$10 = expi(diz — c1t) | £

Rev. Mex. Fis71031301
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Case 4:If u¢ < 0andv =0,

L

PV [, () |
\/7coth n)} :

W(‘tanhp@J—Tcn)inqueChP@\/_iM")ﬂ ’

3

16 = expi(dix — clt)

sk

¢17 = expi(dlx — Clt)

¢p18 = expi(diz — c1t) | =

¢19 = expi(diz —c1t) | £ by _'uc—bli\/?(cothp(%/—u(n)i\/]chschp(2\/—u§n))] ,

i ¢
P20 = expi(diz — crt) _ + b \/? B I;H(tanhp(\/?n) + COthp(\/?n))] %.

Case 6:If v =0and( = —pu,

- 1
2n
p26 = expi(dir — c1t) by (£1 — tanhp(l”)))] ;

o7 = expi(dix — c1t) |by (£1 — coth,,(,m]))} ,

sk

1
o+
P = expi(dixz — e1t) | £ by — bitanh,(2un) £ biy/—pgsech,(2un }

_ a1
2n
$29 = expi(diz — c1t) | £ by — by coth,(2un) = bl\/qucschp(Q/m)] ,

L
2n

. [ b1
30 = expi(dix — clt) +b — 5 (tanh (2 n) + cothp(';n)ﬂ

Case 11:If ;= 0 andv # 0,

S

bipv

C(coshp (vn) — sinh, (vn) + p) ] 7

¢35 = expi(dlx — Clt) |: —

S

byv ( cosh, (vn) + sinhp(vn)>
¢36 = exp |(d1$ — Clt) |: — :|
C(Coshp (vn) + sinh, (vn) + q)

Case 12:f ( = AB, v = A(p = 0andB # 0),

by + by bliDPA77 e
2B~ 2B p— BqgpAn

It can be seen that the other cases presented in Sec. 2 do not give solutions for the values of parameters given in Set 2.

¢37 = expi(dixz — cit) [

3.3. Physical appraisal for solutions in set 2

Graphs have long been the primary way to visually represent data connections. This section contains several graphs of th
absolute solutions represented in set 2 that reflect the exact soliton structures of the model specifi¢l).itrEfhe(presence
of physical factors, figures featuring the behavior of solitons have been shown in the(ratfyd0). The results of our
solutions will be in the form of nonlinear pulses.

Figure 1 shows a dark kink-type solitary wave for certain values of parameters involjggd.ift can be observed that the
soliton communicates its pattern and intensity in a uniform manner.

Rev. Mex. Fis71031301
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a) 2D-Plot of |gg| b) 3D-Plot of |¢g| ¢) 2D-Contour of |¢g|

FIGURE 1. Graphical representations [ofs| for parametergy = ds =c1 =co =1, bo=25,v =4, p=e,n=2, pu=2, (=1and
e =28.

— 0
— 03
— 0.5
— 07

e =
x

a) 2D-Plot of |27 b) 3D-Plot of |$a7| ¢) 2D-Contour of 27|
FIGURE 2. Graphical representations [gf-| for parametergy =d> =c1 =co =1, bp =25,v =0, p=e,n =2, p =2, ( = —2.

5[ — L ————— =

g ‘/. T =~ g
o

: =t
5 10 10 x
a) 2D-Plot of |¢ar| b) 3D-Plot of |¢a7| ¢) 2D-Contour of |¢37|

FIGURE 3. Graphical representations pfs-| for parametergl; = do = c1 = ca =1, bp =25, v =4, p=e,n =2, ( =8and
p=2,q=3.

Figure 2 shows the propagation of a bright solitary wave for different values of the parameters involved. We can observe
from these graphs that the amplitude of the wave becomes constant after a certain point.

Figure 3 gives us a visual of a singular kink solution for 4.  Bifurcation behavior and phase portraits
different parametric values dfs7| having specific shapes

and intensity.
R4 In this section, the bifurcation of the underlying equation is

addressed [33-35]. In order to accomplish our objective, we
transformed the nonlinear partial differential equation under
consideration into an ordinary differential equation by using
the traveling wave transformation that was previously dis-

Rev. Mex. Fis71031301
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cussed in Eq/47). which are undoubtedly conserved quantities. Since both Eq.
The following planer dynamical system has been estab(55) and Eqg. [66) are autonomous, their global phase por-
lished using Eq.47): traits are merely their contour lines. The complete discrimi-
, nating system is introduced in the section that follows, where
w (n) = 2(n), we then undertake a qualitative analysis based on this issue.
et bert e ve?] (49) Since resolving Eq/53) as a whole is extremely challeng-
z = 1w ) ing, we simply concentrate on the scenario whesgéy; =
—1/2, and similar discussions could take place for other con-
where, ¢ = d3(a + 6), 42 = d3(a +0)(1 = 2n),4%s = Gitions such ashy /v = —3/4 andi, /iy = —5/6.

412, 1, = 4am? b5 = —4n?(ad? — c; + €). Clearly, this . o
system is not a Hamiltonian system because the tehfaw We take into account tWO. cases, whélgis either not
gual to zero or zero, respectively.

in the second equation complicates the expression, as Hamif:
tonian systems usually involve linear and straightforward recase LI C1 # 0, v2 /¢y = —1/2, then Eq.§5) becomes
lationships in their partial derivatives. Also, the structure of

the second differential equation does not align with the stan- H(w,z) =22 + Paw? 20w

dard form of Hamiltonian dynamics. From9), we have ’ 201 + e 31 + 21
dz?  —2[az? + Yaw? + pawd + Psw?] Psw?
- = + — — Ciw, 57
dw 1w ’ (50) 1 + 1o ! S

sincew = 0 is a singular point of the above equation, only
certain specific circumstances could leado zero. The so-
lution to Eq. 60) is presented by

with its potential energy given by

U(’lU) _ 1/J3w4 2¢4w3
o Yswt 2008 T 200+ s | 301+ 20
21 + P2 3P+ 21 bsw?
ws,wQ 249 1/)1 T ’(/}2 — Clw, (58)
- + CLlw™ 1, 51
U1 + Y 1 (1)
whenu, # 0, and and thus we have
4 3 2 3 2
2 wg’w 2’4/}4’11} 'LZJ5’LU ’ ’ o 4’¢3’U} 6’(/J4w 2’(/}511)
= — — — C 52 U = + -C
: 29 3y T 2) (w) 2p1 +ha | 31+ 2y | P
wheny, = 0. Then we have = g1w® + gow? + gsw — Cy, (59)
4 3
"2 Yaw 29p4w
+
(w) 2Py + P 3P+ 29 where
Ysw? 22 493 614
—-C =0, 0), (53 = —, = —,
Tt O ®:#0), (3) S
and ) 3 2 and
ne , Ysw 2pgw Ysw /
+ + + —-C) =0,
W) o T e T G

where(C; andCi are constants of integration. The following
conserved quantity could be obtained: i+

4 2 3 ol
H(w,z) = 2>+ 20 paw
201 + 12 31+ 24
1/J5w2 _2¥p
+ —Cw bo #0),  (55)
1+ e W2 #0)
and 1 1 1 L
o Yswt 2w s
H(w,z) =2+ 2, + 31 1 €1y FIGURE 4. The equilibrium points of Eql62), ats = 0.5 as cus-
pidal point presented in blue apd= —1 as center point in black
(2 =0), (56)  color.

Rev. Mex. Fis71031301
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g5 = 25 Case 1.2:A > 0,91 < 0, g2 > 0, g3 > 0ande; > 0, we
Y1 + P2 have
By denoting ,
U (w) = (w—s)(w—p)(w—q), (63)
0 1
J(w, )

= 2
31w + 292w + g5 0 where(s, 0) and(p, 0) are centers ang;, 0) represents a sad-
= —(3g1w” + 20w + g3), (60)  dle point representg_d i_n Fig. 5 For=—-3,g2=2,g3 =4
andc; = 1, the equilibrium points are = —1, ¢ = 0.23 and
for J(w, 2) < 0, (w,0) is a saddle point; for (w, z) > 0,it  p=1.43.
is a center; and fod (w, z) = 0, it is a cuspidal point. Case 1.3:A > 0,91 > 0,92 > 0,93 < 0andc; > 0, we
Inaugurating the third-order discriminant to the polyno- pave
mial given in Eq. 69),

Az = 395 — 49195 + 495C1 U (w) = (w=s)(w —p)(w—q), (64)

— 27¢7C — 1891929C;1. (61)  where the pointgs, 0), (p, 0) act as saddle points arid, 0)

The outcomes that we can get are as follows: represents a center shown in F!g._G. I§@r_: 3 92 = 2,
g3 = —4 andc; = 1, the equilibrium points are = 1,

Case 1.1:ForA = 0,91 < 0,92 = 0,93 > 0ande¢; > 0,

we have g = —0.23 andp = —1.43.

) Case 1.4:A < 0,¢1 > 0,92 > 0,93 > 0andec; < 0, we
U (w) = (w—s)*(w—p), (2s+p=0), (62) have

where(s, 0) is a cuspidal point antp, 0) is a center depicted / _ 9 9
in Fig. 4. Forg; = —12, g» = 0, g3 = 9 ande¢; = 3, the U (w) = (w=s){(w=-p)7+d] (65)

equilibrium points are = 0.5 andp = —1. i _ . .
Here, (s, 0) is the only real equilibrium point, and it is a sad-

3 dle pointas can be seeninFig. 7. ger=8, 9>, = 2,93 = 1
andc; = —1, the only real equilibrium pointis = —1/2.

Center Case 2:C; = 0, ¥9/11 = —1/2. In this case, we rewrite
Eq. B5) in the form

15 Saddle

L 1!)3104

’ Hw,z) =224+ ———

(1,2) 291 + 2

2 3 2
| n Yaw Ysw 7 (66)
31+ 22 1+ e
- with its potential energy given by
FIGURE 5. The equilibrium points of Eq.lG3), ats = —1, 4 3 2
p = 1.43 as center points presented in blue and green colors and P(w) = YW + 2Paw + Ysw , (67)
q = 0.23 as saddle point in black color. 21+ 31+ 2¢2 Y1+ e
Saddle

FIGURE 6. The equilibrium points of Eq.[4), ats = 1, p = FIGURE 7. The equilibrium point of Eq. §5), ats = —0.5 as

—1.43 as saddle points presented by multi colors and —0.23 saddle point.
as center point in purple color.
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FIGURE 8. The equilibrium points of Eq[70), ats = 1 as cuspidal
point presented in blue arid= 1 as center point in black color.

/Sadd\e
n O

L
15

FIGURE 9. The equilibrium points of Eq. [41), ats = 0.61,

where(s,0) and(l, 0) are cuspidal and center points respec-
tively, depicted in Fig. 8. Fog; = —2, go = 4 andgs = —2,

the equilibrium points are = 1 and/ = 1.

Case 2.2A > 0,¢9; > 0, g2 > 0 andgs < 0, we get

’

U (w) = (w - s)(w — 1) (w —m), (71)
where(s, 0) and(Z,0) act as saddle points withn, 0) rep-
resenting a center shown in Fig. 9. Fgr= 4, g» = 4 and
g3 = —4, the equilibrium points are = 0.61, m = 0 and
l=-1.61.

5. Conclusion

In this study, novel soliton solutions to the generalized res-
onant nonlinear Schdinger problem were constructed us-
ing the proposed extended direct algebraic approach. Since
this equation cannot be integrated, we searched for solutions
to this model by using the traveling wave reductions, after
which various structures such as dark, bright, and singular
kink-type solitary waves were revealed. These built solutions
aid in the understanding of complicated physical phenomena
and have applications in optical fibers and transmission lines.
These propagating waves were also shown by contour and
multidimensional graphs. Bifurcation analysis of the consid-
ered system have also been discussed. The system was first
turned into a planar dynamical system, and subsequently into

I = —1.61 as saddle points presented in green and other colorsa Hamiltonian system. Using the discriminant, the instances

andm = 0 as center point in black color.

and thus we have

’ 4¢3w3 6¢4w2 2¢5w
P (w) =
2991 + P2 31+ 22 Y1+ 1o
= g1w® + gow? + gsw. (68)
With discriminant:
Az = g593 — 49193, (69)

The preceding outcomes are possible.
Case 2.1:A =0, ¢1 <0, g2 > 0, andgs < 0, we have

P'(w) = (w — s)*(w — 1), (70)

were then predicted and effectively shown in the phase por-
trait. Additionally, the accuracy of the solutions has been
verified using a computer software package. These findings
serve as a pillar of encouragement for further research in this
area.
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