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1. Introduction

The study of optical solitons is one of the most significant
fields of investigation in nonlinear optics, particularly in me-
dia transmission design and hypothetical material science.
Hypothetical material science is the study of theoretical and
unproven materials not yet discovered or synthesized, using
advanced computational methods to predict their properties
and potential applications. It aims to explore new possibil-
ities for materials that could revolutionize various technolo-
gies [1,2]. In fiber optics and nonlinear waveguides, analyz-
ing optical solitons is truly unavoidable. They are crucial in
optical continuum synthesis and can be used to convey in-
formation across enormously long distances [3-6]. Besides
that, a detailed analysis of the majority of optical fibers and
their networks usually demands a number of complex mech-
anisms that influence the dynamics of the system. Optical
fibers transmit data as light pulses for high-speed communi-
cation. These fibers have a core and cladding with different
refractive indices, enabling efficient data transmission over
long distances with minimal loss. The fundamental optical
solitons reported in these processes is generic from the non-
linear Schr̈odinger equations (NLSEs).

NLSEs are nonlinear partial differential equations in dis-
persive form that have been generated and examined in a
variety of nonlinear domains, such as discrete spatial opti-
cal solitons in waveguide arrays and quasi-stationary opti-
cal solitons with parabolic law nonlinearity [7,8]. The fact

that these equations represent the modeling of numerous fun-
damental phenomena, including DNA structure modeling,
wave dynamics in optical fibers, and wave pattern produc-
tion in semiconductor materials, demonstrates their relevance
in scientific and technological advancements. Many addi-
tional scholars have investigated these systems using other
approaches such as the newφ6−model expansion method
[9], the exp(−φ(X))−expansion, the first integral method
and theG

′
/G2−expansion [10,11], the extended trial ap-

proach [12], the generalized auxiliary equation technique
[13], the tanh method [14], and the extended form of sim-
ple equation method [15]. The study of generalized NLSEs
that account for resonant phenomena has sparked significant
attention. In this article, we have resolved the generalized
resonant nonlinear Schrödinger equation with an arbitrary in-
dex,

iφt + aφxx + (α|φ|2n

+ β|φ|4n)φ + δ

( |φ|xx

|φ|
)

φ− εφ = 0, (1)

whereφ = φ(x, t) represents the complex-valued function,
x is the adimensional length along the fiber,t represents
time, ε is a parameter,α and β are the coefficients of the
Kerr law nonlinearity,a the group velocity dispersion (GVD),
δ is the resonant nonlinearity, andn is an arbitrary index
(n 6= 0,−1).

However, as far as we know, not all solutions for this spe-
cific form of the equation have been discovered. Multiple
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authors have tried to find the solution of other forms of reso-
nant nonlinear Schrödinger equation with specific indicators
of the reflection coefficient [16-21]. Regarding this spacial
form of the equation, we are interested in examining whether
these solutions remain stable when parameters vary. To gain
a deeper understanding of the soliton dynamics within this
model, we aim to study its solutions for arbitrary index and
their stability with respect to parameter changes. Only few ar-
ticles have dealt with this special equation form. In Ref. [22]
the author used the Jacobi elliptic sine method to find general
solutions. On the other hand, in Ref. [23] the Bernoulli sub-
ODE method and the(G

′
/G)−expansion method have been

used to study the behavior of the model. It is self-evident that
this model is a non-integrable partial differential equation,
and the inverse scattering transform cannot generate a solu-
tion for this problem. Hence, the extended direct algebraic
technique plus bifurcation analysis have been used to explore
new structures of the governing model. These methods are
effectively applied to study various nonlinear problems and
can also be used for qualitative analysis and to discuss the
stability of solutions with respect to parameter changes.

The framework of this research is as follows: In Sec. 2
extended direct algebraic method is elaborated. In Sec. 3
application of the technique on the considered equation and
graphical representation can be seen. In Sec. 4, bifurcation
analysis and phase portrait of the heeded model are described.
The conclusion of the work is summarized in Sec. 5.

2. Recapitulation of the presented technique

These are the core steps to demonstrate the primary aspects
of the extended direct algebraic method [24-27].

Step 1: Consider the nonlinear partial differential equation
(NLPDE) of the form:

D(φ, φt, φx, φtt, φxx, ...) = 0, (2)

whereφ = φ(x, t) is a function to be determined. Consider
the following traveling wave transformation [28,29]:

φ(x, t) = exp (iξ)W (η), ξ = d1x− c1t,

η = d2x− c2t, (3)

where,d1, d2 are the arbitrary constants andc1, c2 are the
speed and the phase of the travelling wave respectively. Now,
using this transformation in Eq. (2) we had the following
standard ordinary differential equation:

d(W,W
′
,W

′′
, ...) = 0, (4)

whered is the polynomial inW (η) and its derivatives.
Step 2: Suppose Eq. (4) has solution of the form:

W (η) =
N∑

i=0

[
biB(η)i

]
, (5)

with B(η) satisfies following ODE,

B′(η) = ln(ρ)
(
µ + νB(η) + ζB2(η)

)
, ρ 6= 0, 1. (6)

Here,ρ is a positive integer. ForΘ = (ν2 − 4µζ) the solu-
tions of Eq. (6) expressed in terms of parametersµ, ν andζ
are as follows:

1: If Θ < 0 andζ 6= 0,

B1(η) = − ν

2ζ
+
√−Θ

2ζ
tanρ

(√−Θ
2

η

)
, (7)

B2(η) = − ν

2ζ
−
√−Θ

2ζ
cotρ

(√−Θ
2

η

)
, (8)

B3(η) = − ν

2ζ
+
√−Θ

2ζ

(
tanρ(

√
−Θη)±√pq secρ(

√
−Θη)

)
, (9)

B4(η) = − ν

2ζ
+
√−Θ

2ζ

(
cotρ(

√
−Θη)±√pq cscρ(

√
−Θη)

)
, (10)

B5(η) = − ν

2ζ
+
√−Θ

4ζ

(
tanρ(

√−Θ
4

η)− cotρ(
√−Θ

4
η)

)
. (11)

2: If Θ > 0 andζ 6= 0,

B6(η) = − ν

2ζ
−
√

Θ
2ζ

tanhρ

(√
Θ
2

η

)
, (12)

B7(η) = − ν

2ζ
−
√

Θ
2ζ

cothρ

(√
Θ
2

η

)
, (13)
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B8(η) = − ν

2ζ
+
√

Θ
2ζ

(
− tanhρ(

√
Θη)± i

√
pq sechρ(

√
Θη)

)
, (14)

B9(η) = − ν

2ζ
+
√

Θ
2ζ

(
− cothρ

(√
Θη

)
±√pq cschρ

(√
Θη

) )
, (15)

B10(η) = − ν

2ζ
−
√

Θ
4ζ

(
tanhρ

(√
Θ
4

η

)
+ cothρ

(√
Θ
4

η

))
. (16)

3: If µζ > 0 andν = 0,

B11(η) =
√

µ

ζ
tanρ

(√
µζη

)
, (17)

B12(η) = −
√

µ

ζ
cotρ

(√
µζη

)
, (18)

B13(η) =
√

µ

ζ

(
tanρ

(
2
√

µζη
)
±√pq secρ

(
2
√

µζη
))

, (19)

B14(η) =
√

µ

ζ

(
− cotρ

(
2
√

µζη
)
±√pq cscρ

(
2
√

µζη
) )

, (20)

B15(η) =
1
2

√
µ

ζ

(
tanρ

(√
µζ

2
η

)
− cotρ

(√
µζ

2
η

))
. (21)

4: If µζ < 0 andν = 0,

B16(η) = −
√
−µ

ζ
tanhρ

(√
−µζη

)
, (22)

B17(η) = −
√
−µ

ζ
cothρ

(√
−µζη

)
, (23)

B18(η) =
√
−µ

ζ

(
− tanhρ

(
2
√
−µζη

)
± i
√

pq sechρ

(
2
√
−µζη

))
, (24)

B19(η) =
√
−µ

ζ

(
− cothρ

(
2
√
−µζη

)
±√pq cschρ

(
2
√
−µζη

) )
, (25)

B20(η) = −1
2

√
−µ

ζ

(
tanhρ

(√−µζ

2
η

)
+ cothρ

(√−µζ

2
η

) )
. (26)

5: If ν = 0 andµ = ζ,

B21(η) = tanρ (µη) , (27)

B22(η) = − cotρ (µη) , (28)

B23(η) = tanρ (2µη)±√pq secρ (2µη) , (29)

B24(η) = − cotρ (2µη)±√pq cscρ (2µη) , (30)

B25(η) =
1
2

(
tanρ

(µ

2
η
)
− cotρ

(µ

2
η
))

. (31)
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6: If ν = 0 andζ = −µ,

B26(η) = − tanhρ (µη) , (32)

B27(η) = − cothρ (µη) , (33)

B28(η) = − tanhρ (2µη)±√−pq sechρ (2µη) , (34)

B29(η) = − cothρ (2µη)±√pq cschρ (2µη) , (35)

B30(η) = −1
2

(
tanhρ

(µ

2
η
)

+ cothρ

(µ

2
η
) )

. (36)

7: If Θ = 0,

B31(η) =
−2µ(νη ln ρ + 2)

ν2η ln ρ
. (37)

8: If ν = A,µ = AB, (B 6= 0) andζ = 0,

B32(η) = ρAη −B. (38)

9: If ν = ζ = 0,

B33(η) = µη ln ρ. (39)

10: If ν = µ = 0,

B34(η) =
−1

ζη ln ρ
. (40)

11: If µ = 0 andν 6= 0,

B35(η) = − pν

ζ

(
coshρ (νη)− sinhρ (νη) + p

) , (41)

B36(η) = −
ν

(
coshρ (νη) + sinhρ(νη)

)

ζ

(
coshρ (νη) + sinhρ (νη) + q

) . (42)

12: If ζ = AB, ν = A (µ = 0 andB 6= 0),

B37(η) = − pρAη

p−BqρAη
. (43)

Note
The generalized hyperbolic and triangular functions [30,31] are defined as follows:

sinhρ(η) =
pρη − qρ−η

2
, coshρ(η) =

pρη + qρ−η

2
,

tanhρ(η) =
pρη − qρ−η

pρη + qρ−η
, cothρ(η) =

pρη + qρ−η

pρη − qρ−η
,

sechρ(η) =
2

pρη + qρ−η
, cschρ(η) =

2
pρη − qρ−η

,

sinρ(η) =
pρiη − qρ−iη

2i
, cosρ(η) =

pρiη + qρ−iη

2
,

tanρ(η) = −i
pρiη − qρ−iη

pρiη + qρ−iη
, cotρ(η) = i

pρiη + qρ−iη

pρiη − qρ−iη
,

secρ(η) =
2

pρη + qρ−η
, cscρ(η) =

2i
pρη − qρ−η

,
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whereη is an independent variable andp, q are non-zero arbitrary constants, called deformation parameters.
Step 3: After substituting the wave transformation in the considered NLPDE we will get the ordinary differential equation
(ODE). By equalizing the highest order derivative with the nonlinear component of that ODE, we can obtain the balancing
integerN > 0. Then, by replacing Eq. (5) in Eq. (4) we get the algebraic equations having powers ofBj(η) (j = 0, 1, 2, ...)
and equating the coefficients of powers ofB(η) to zero gives an algebraic system of equations.
Step 4: Solve the algebraic system of equations and use the results in Eq. (5) to determine the exact solutions of Eq. (2).

3. Execution of the proposed methodology

In this section, we have applied the extended direct algebraic method on Eq. (1). By substituting the transformation from Eq.
(3) into Eq. (1) we get the real part of the equation:

d2
2(a + δ)W

′′
(η) + αW 2n+1(η) + βW 4n+1(η)− (ad2

1 − c1 + ε)W (η) = 0, (44)

and imaginary part:

2(ad1d2 − c2)W
′
(η) = 0, =⇒ c2 = 2ad1d2. (45)

To find the balancing coefficient of the equation we will use the following transformation [23]:

W (η) = (w(η))
1
2n . (46)

Eq. (44) converts to:

2nd2
2(a + δ)w(η)w

′′
(η) + d2

2(a + δ)(1− 2n)(w
′
(η))2 + 4αn2w3(η) + 4βn2w4(η)− 4n2(ad2

1 − c1 + ε)w2(η) = 0. (47)

So, by equating the nonlinear componentw4(η) with the highest order derivative termw(η)w
′′
(η) balancing coefficient,N = 1

can be found. Then from Eq. (5) solution of Eq. (47) can be supposed as:

w(η) = b0 + b1B(η). (48)

By putting Eq. (48) into Eq. (47) along with Eq. (6) and setting the coefficients of powers ofBj(η) for j = 0, 1, 2, 3, 4 to
0, we acquire the system of algebraic equations. Resolving the system of equations, we have obtained the following sets of
solutions for the specific parametric values:
Set 1:

α =
−2n(n + 1)(ad2

1 − c1 + ε)
b0

,

β =
−n2(2nad2

1 − c1 + ε + ad2
1 − 2nc1 + 2nε)

b2
0

,

δ = −a +
1

ζµd2
2 ln (ρ)2

(4n4c1 + 4n3c1 − 4n4ε− 4n3ε− 4n4ad2
1 − 4n3ad2

1),

ν = ± (1 + 2n)ζ

n
√

ζ(n+1)
nµ

, b0 = b0, b1 = ±b0

√
ζ(n + 1)

nµ
.

Set 2:

α =
2ζ(±n± 1)(ad2

1 − c1 + ε)

b1

√
ν2 − 4µζ

,

β =
ζ2

(
2 and1

2 + ad1
2 + 2 nε− 2 nc1 + ε− c1

)

b1
2 (4 (ζ) µ− ν2)

,

δ = −a− 4 n2ad1
2 + 4 n2ε− 4 n2c1

d2
2 (ln (ρ))2 (4 (ζ) µ− ν2)

,

b0 = b1

(
ν ±

√
ν2 − 4µζ

2ζ

)
, b1 = b1.
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3.1. Solutions of Eq. (1) by using Set 1

By utilizing the values from Set 1 in Eq. (48) and doing backward substitution we have the following solutions for over wave
profile.

Case 2:If Θ > 0 andζ 6= 0,

φ6 = exp i(d1x− c1t)
[
b0

(
1± m

2
√

µζ
(ν +

√
Θtanhρ(

√
Θ
2

η))

)] 1
2n

,

φ7 = exp i(d1x− c1t)
[
b0

(
1± m

2
√

µζ
(ν +

√
Θcothρ(

√
Θ
2

η))

) ] 1
2n

,

φ8 = exp i(d1x− c1t)
[
b0 ± b0m

2
√

µζ

(
ν −

√
Θ(− tanhρ(

√
Θη)± i

√
pq sechρ(

√
Θη))

)] 1
2n

,

φ9 = exp i(d1x− c1t)
[
b0 ± b0m

2
√

µζ

(
ν −

√
Θ(− cothρ

(√
Θη

)
±√pq cschρ

(√
Θη

)
)
)] 1

2n

,

φ10 = exp i(d1x− c1t)
[
b0 ± b0m

4
√

µζ

(
2ν +

√
Θ(tanhρ(

√
Θ
4

η) + cothρ(
√

Θ
4

η))
)] 1

2n

.

Case 9:If ν = ζ = 0,

φ33 = b0.

Here,m =
√

n + 1/n. We can see that only the above cases are valid for the parameters involved in Set 1 because conditions
of other cases fail to satisfy the value ofν.

3.2. Solutions of Eq. (1) by using Set 2

In this subsection, we have used Set 2 in Eq. (48) then the formed solution has been substituted in Eq. (47). Afterward, with
the help of Eq. (46), Eq. (44), and transformation in Eq. (3) we get the following solutions of considered complex-valued
function.

Case 2:If Θ > 0 andζ 6= 0,

φ6 = exp i(d1x− c1t)
[
b1

(
±
√

Θ
2ζ

−
√

Θ
2ζ

tanhρ(
√

Θ
2

η)

)] 1
2n

,

φ7 = exp i(d1x− c1t)
[
b1

(
±
√

Θ
2ζ

−
√

Θ
2ζ

cothρ(
√

Θ
2

η)

) ] 1
2n

,

φ8 = exp i(d1x− c1t)
[
± b1

√
Θ

2ζ
+

b1

√
Θ

2ζ
(− tanhρ(

√
Θη)± i

√
pq sechρ(

√
Θη))

] 1
2n

,

φ9 = exp i(d1x− c1t)
[
± b1

√
Θ

2ζ
+

b1

√
Θ

2ζ
(− cothρ

(√
Θη

)
±√pq cschρ

(√
Θη

)
)
] 1

2n

,

φ10 = exp i(d1x− c1t)
[
± b1

√
Θ

2ζ
− b1

√
Θ

4ζ
(tanhρ(

√
Θ
4

η) + cothρ(

√
Θ
4

η))
] 1

2n

.
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Case 4:If µζ < 0 andν = 0,

φ16 = exp i(d1x− c1t)
[
± b1

√−µζ

ζ
− b1

√
−µ

ζ
tanhρ

(√
−µζη

)] 1
2n

,

φ17 = exp i(d1x− c1t)
[
± b1

√−µζ

ζ
− b1

√
−µ

ζ
cothρ

(√
−µζη

) ] 1
2n

,

φ18 = exp i(d1x− c1t)
[
± b1

√−µζ

ζ
− b1

√
µ

ζ

(
i tanhρ(2

√
−µζη)±√pq sechρ(2

√
−µζη)

)] 1
2n

,

φ19 = exp i(d1x− c1t)
[
± b1

√−µζ

ζ
− b1i

√
µ

ζ

(
cothρ(2

√
−µζη)±√pq cschρ(2

√
−µζη)

)] 1
2n

,

φ20 = exp i(d1x− c1t)
[
± b1

√−µζ

ζ
− b1

2

√
−µ

ζ

(
tanhρ(

√−µζ

2
η) + cothρ(

√−µζ

2
η)

)] 1
2n

.

Case 6:If ν = 0 andζ = −µ,

φ26 = exp i(d1x− c1t)
[
b1 (±1− tanhρ(µη))

] 1
2n

,

φ27 = exp i(d1x− c1t)
[
b1 (±1− cothρ(µη))

] 1
2n

,

φ28 = exp i(d1x− c1t)
[
± b1 − b1tanhρ(2µη)± b1

√−pq sechρ(2µη)
] 1

2n

,

φ29 = exp i(d1x− c1t)
[
± b1 − b1 cothρ(2µη)± b1

√
pq cschρ(2µη)

] 1
2n

,

φ30 = exp i(d1x− c1t)
[
± b1 − b1

2

(
tanhρ(

µ

2
η) + cothρ(

µ

2
η)

)] 1
2n

.

Case 11:If µ = 0 andν 6= 0,

φ35 = exp i(d1x− c1t)
[
− b1pν

ζ

(
coshρ (νη)− sinhρ (νη) + p

)
] 1

2n

,

φ36 = exp i(d1x− c1t)
[
−

b1ν

(
coshρ (νη) + sinhρ(νη)

)

ζ

(
coshρ (νη) + sinhρ (νη) + q

)
] 1

2n

.

Case 12:If ζ = AB, ν = A(µ = 0 andB 6= 0),

φ37 = exp i(d1x− c1t)
[

b1

2B
± b1

2B
− b1pρAη

p−BqρAη

] 1
2n

.

It can be seen that the other cases presented in Sec. 2 do not give solutions for the values of parameters given in Set 2.

3.3. Physical appraisal for solutions in set 2

Graphs have long been the primary way to visually represent data connections. This section contains several graphs of the
absolute solutions represented in set 2 that reflect the exact soliton structures of the model specified in Eq. (1). In the presence
of physical factors, figures featuring the behavior of solitons have been shown in the range(−10, 10). The results of our
solutions will be in the form of nonlinear pulses.

Figure 1 shows a dark kink-type solitary wave for certain values of parameters involved in|φ6|. It can be observed that the
soliton communicates its pattern and intensity in a uniform manner.

Rev. Mex. Fis.71031301



8 A. RASHID BUTT, F. BASHIR FAROOQ, N. AKRAM, AND N. RAZA

FIGURE 1. Graphical representations of|φ6| for parametersd1 = d2 = c1 = c2 = 1, b0 = 25, ν = 4, ρ = e, n = 2, µ = 2, ζ = 1 and
Θ = 8.

FIGURE 2. Graphical representations of|φ27| for parametersd1 = d2 = c1 = c2 = 1, b0 = 25, ν = 0, ρ = e, n = 2, µ = 2, ζ = −2.

FIGURE 3. Graphical representations of|φ37| for parametersd1 = d2 = c1 = c2 = 1, b0 = 25, ν = 4, ρ = e, n = 2, ζ = 8 and
p = 2, q = 3.

Figure 2 shows the propagation of a bright solitary wave for different values of the parameters involved. We can observe
from these graphs that the amplitude of the wave becomes constant after a certain point.

Figure 3 gives us a visual of a singular kink solution for
different parametric values of|φ37| having specific shapes
and intensity.

4. Bifurcation behavior and phase portraits

In this section, the bifurcation of the underlying equation is
addressed [33-35]. In order to accomplish our objective, we
transformed the nonlinear partial differential equation under
consideration into an ordinary differential equation by using
the traveling wave transformation that was previously dis-
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cussed in Eq. (47).
The following planer dynamical system has been estab-

lished using Eq. (47):




w
′
(η) = z(η),

z
′
= −[ψ2z2+ψ3w4+ψ4w3+ψ5w2]

ψ1w ,

(49)

where,ψ1 = d2
2(a + δ), ψ2 = d2

2(a + δ)(1 − 2n), ψ3 =
4βn2, ψ4 = 4αn2, ψ5 = −4n2(ad2

1 − c1 + ε). Clearly, this
system is not a Hamiltonian system because the term1/ψ1w
in the second equation complicates the expression, as Hamil-
tonian systems usually involve linear and straightforward re-
lationships in their partial derivatives. Also, the structure of
the second differential equation does not align with the stan-
dard form of Hamiltonian dynamics. From (49), we have

dz2

dw
=
−2[ψ2z

2 + ψ3w
4 + ψ4w

3 + ψ5w
2]

ψ1w
, (50)

sincew = 0 is a singular point of the above equation, only
certain specific circumstances could leadw to zero. The so-
lution to Eq. (50) is presented by

z2 = − ψ3w
4

2ψ1 + ψ2
− 2ψ4w

3

3ψ1 + 2ψ2

− ψ5w
2

ψ1 + ψ2
+ C1w

− 2ψ2
ψ1 , (51)

whenψ2 6= 0, and

z2 = −ψ3w
4

2ψ1
− 2ψ4w

3

3ψ1
− ψ5w

2

ψ1
+ C′1, (52)

whenψ2 = 0. Then we have

(w
′
)2 +

ψ3w
4

2ψ1 + ψ2
+

2ψ4w
3

3ψ1 + 2ψ2

+
ψ5w

2

ψ1 + ψ2
− C1w

− 2ψ2
ψ1 = 0, (ψ2 6= 0), (53)

and

(w
′
)2 +

ψ3w
4

2ψ1
+

2ψ4w
3

3ψ1
+

ψ5w
2

ψ1
− C′1 = 0,

(ψ2 = 0), (54)

whereC1 andC′1 are constants of integration. The following
conserved quantity could be obtained:

H(w, z) = z2 +
ψ3w

4

2ψ1 + ψ2
+

2ψ4w
3

3ψ1 + 2ψ2

+
ψ5w

2

ψ1 + ψ2
− C1w

− 2ψ2
ψ1 , (ψ2 6= 0), (55)

and

H(w, z) = z2 +
ψ3w

4

2ψ1
+

2ψ4w
3

3ψ1
+

ψ5w
2

ψ1
− C′1,

(ψ2 = 0), (56)

which are undoubtedly conserved quantities. Since both Eq.
(55) and Eq. (56) are autonomous, their global phase por-
traits are merely their contour lines. The complete discrimi-
nating system is introduced in the section that follows, where
we then undertake a qualitative analysis based on this issue.
Since resolving Eq. (53) as a whole is extremely challeng-
ing, we simply concentrate on the scenario whereψ2/ψ1 =
−1/2, and similar discussions could take place for other con-
ditions such asψ2/ψ1 = −3/4 andψ2/ψ1 = −5/6.

We take into account two cases, whereC1 is either not
equal to zero or zero, respectively.

Case 1:If C1 6= 0, ψ2/ψ1 = −1/2, then Eq. (55) becomes

H(w, z) = z2 +
ψ3w

4

2ψ1 + ψ2
+

2ψ4w
3

3ψ1 + 2ψ2

+
ψ5w

2

ψ1 + ψ2
− C1w, (57)

with its potential energy given by

U(w) =
ψ3w

4

2ψ1 + ψ2
+

2ψ4w
3

3ψ1 + 2ψ2

+
ψ5w

2

ψ1 + ψ2
− C1w, (58)

and thus we have

U
′
(w) =

4ψ3w
3

2ψ1 + ψ2
+

6ψ4w
2

3ψ1 + 2ψ2
+

2ψ5w

ψ1 + ψ2
− C1

= g1w
3 + g2w

2 + g3w − C1, (59)

where

g1 =
4ψ3

2ψ1 + ψ2
, g2 =

6ψ4

3ψ1 + 2ψ2
,

and

FIGURE 4. The equilibrium points of Eq. (62), ats = 0.5 as cus-
pidal point presented in blue andp = −1 as center point in black
color.
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g3 =
2ψ5

ψ1 + ψ2
.

By denoting

J(w, z) =
∣∣∣∣

0 1
3g1w

2 + 2g2w + g3 0

∣∣∣∣

= −(3g1w
2 + 2g2w + g3), (60)

for J(w, z) < 0, (w, 0) is a saddle point; forJ(w, z) > 0, it
is a center; and forJ(w, z) = 0, it is a cuspidal point.

Inaugurating the third-order discriminant to the polyno-
mial given in Eq. (59),

∆3 = g2
2g2

3 − 4g1g
3
3 + 4g3

2C1

− 27g2
1C2

1 − 18g1g2g3C1. (61)

The outcomes that we can get are as follows:
Case 1.1:For ∆ = 0, g1 < 0, g2 = 0, g3 > 0 andc1 > 0,
we have

U
′
(w) = (w − s)2(w − p), (2s + p = 0), (62)

where(s, 0) is a cuspidal point and(p, 0) is a center depicted
in Fig. 4. Forg1 = −12, g2 = 0, g3 = 9 andc1 = 3, the
equilibrium points ares = 0.5 andp = −1.

FIGURE 5. The equilibrium points of Eq. (63), at s = −1,
p = 1.43 as center points presented in blue and green colors and
q = 0.23 as saddle point in black color.

FIGURE 6. The equilibrium points of Eq. (64), at s = 1, p =
−1.43 as saddle points presented by multi colors andq = −0.23
as center point in purple color.

Case 1.2:∆ > 0, g1 < 0, g2 > 0, g3 > 0 andc1 > 0, we
have

U
′
(w) = (w − s)(w − p)(w − q), (63)

where(s, 0) and(p, 0) are centers and(q, 0) represents a sad-
dle point represented in Fig. 5. Forg1 = −3, g2 = 2, g3 = 4
andc1 = 1, the equilibrium points ares = −1, q = 0.23 and
p = 1.43.
Case 1.3:∆ > 0, g1 > 0, g2 > 0, g3 < 0 andc1 > 0, we
have

U
′
(w) = (w − s)(w − p)(w − q), (64)

where the points(s, 0), (p, 0) act as saddle points and(q, 0)
represents a center shown in Fig. 6. Forg1 = 3, g2 = 2,
g3 = −4 and c1 = 1, the equilibrium points ares = 1,
q = −0.23 andp = −1.43.
Case 1.4:∆ < 0, g1 > 0, g2 > 0, g3 > 0 andc1 < 0, we
have

U
′
(w) = (w − s)[(w − p)2 + q2]. (65)

Here,(s, 0) is the only real equilibrium point, and it is a sad-
dle point as can be seen in Fig. 7. Forg1 = 8, g2 = 2, g3 = 1
andc1 = −1, the only real equilibrium point iss = −1/2.
Case 2: C1 = 0, ψ2/ψ1 = −1/2. In this case, we rewrite
Eq. (55) in the form

H(w, z) = z2 +
ψ3w

4

2ψ1 + ψ2

+
2ψ4w

3

3ψ1 + 2ψ2
+

ψ5w
2

ψ1 + ψ2
, (66)

with its potential energy given by

P (w) =
ψ3w

4

2ψ1 + ψ2
+

2ψ4w
3

3ψ1 + 2ψ2
+

ψ5w
2

ψ1 + ψ2
, (67)

FIGURE 7. The equilibrium point of Eq. (65), at s = −0.5 as
saddle point.
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FIGURE 8. The equilibrium points of Eq. (70), ats = 1 as cuspidal
point presented in blue andl = 1 as center point in black color.

FIGURE 9. The equilibrium points of Eq. (71), at s = 0.61,
l = −1.61 as saddle points presented in green and other colors
andm = 0 as center point in black color.

and thus we have

P
′
(w) =

4ψ3w
3

2ψ1 + ψ2
+

6ψ4w
2

3ψ1 + 2ψ2
+

2ψ5w

ψ1 + ψ2

= g1w
3 + g2w

2 + g3w. (68)

With discriminant:

∆3 = g2
2g2

3 − 4g1g
3
3 , (69)

The preceding outcomes are possible.
Case 2.1:∆ = 0, g1 < 0, g2 > 0, andg3 < 0, we have

P
′
(w) = (w − s)2(w − l), (70)

where(s, 0) and(l, 0) are cuspidal and center points respec-
tively, depicted in Fig. 8. Forg1 = −2, g2 = 4 andg3 = −2,
the equilibrium points ares = 1 andl = 1.
Case 2.2∆ > 0, g1 > 0, g2 > 0 andg3 < 0, we get

U
′
(w) = (w − s)(w − l)(w −m), (71)

where(s, 0) and(l, 0) act as saddle points with(m, 0) rep-
resenting a center shown in Fig. 9. Forg1 = 4, g2 = 4 and
g3 = −4, the equilibrium points ares = 0.61, m = 0 and
l = −1.61.

5. Conclusion

In this study, novel soliton solutions to the generalized res-
onant nonlinear Schrödinger problem were constructed us-
ing the proposed extended direct algebraic approach. Since
this equation cannot be integrated, we searched for solutions
to this model by using the traveling wave reductions, after
which various structures such as dark, bright, and singular
kink-type solitary waves were revealed. These built solutions
aid in the understanding of complicated physical phenomena
and have applications in optical fibers and transmission lines.
These propagating waves were also shown by contour and
multidimensional graphs. Bifurcation analysis of the consid-
ered system have also been discussed. The system was first
turned into a planar dynamical system, and subsequently into
a Hamiltonian system. Using the discriminant, the instances
were then predicted and effectively shown in the phase por-
trait. Additionally, the accuracy of the solutions has been
verified using a computer software package. These findings
serve as a pillar of encouragement for further research in this
area.
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