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traverse plane. The energy eigenvalues and associated functions are calculated by extending the interaction potential to an anisotropic hot-
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quarkonium are obtained atα = β = 1. The effect of the fraction parameter is investigated within the context of the quark-gluon plasma
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1. Introduction

It has been concluded from the ultra-relativistic heavy-ion
collision experiments at RHIC and LHC that the quark-
gluon plasma (QGP), which was created, behaves more like
a perfect fluid than a non-interacting ultra-relativistic gas of
quarks (anti-quarks) and gluons. The reason for this is be-
cause the QGP have a strong collective characteristic that
may be measured in terms of the flow harmonics. In addi-
tion, the other significant signals based on experimental data,
quarkonia suppression has also been proposed as a direct in-
dicator of QGP creation in the collider studies. The tests
show that it highlights the plasma properties of the medium,
such as Landau damping, colour screening, and energy loss,
see Ref. [1] and references therein.

At finite temperature, the evolution of the Schrodinger
equation (SE) is vital. In order to study the creation of a
hot quark-gluon plasma, Matsui and Satz [2] calculated the
charmonium’sJ/Ψ radius. The properties of quarkonia in a
thermal QCD medium in the background of strong magnetic
field is studied using SE. Using a temperature-dependent po-
tential deduced from lattice gauge computations. Wong [4]
has investigated the binding energies and wave functions of
heavy quarkonia in quark-gluon plasma. As a result, the
study shows that the model with the modified Q-Q potential
produces dissociation temperatures that are consistent with
spectral function analyses. Also, the N-radial Schrodinger
equation is analytically solved. The Cornell potential is ex-
tended to finite temperature and/or chemical potential as in
Refs. [5-9] in which the energy eigenvalues and the wave
functions are calculated.

A heavy quark potential at finite temperature was cre-
ated by correctly introducing a dielectric function that en-

codes the effects of a deconfined medium to the full Cor-
nell potential, not just its Coulomb part. This means that the
heavy quark potential calculation has been expanded to in-
clude plasma with limited momentum-space anisotropy. For
this case, specifically, the exact component has been cal-
culated. As long as the quark-gluon plasma exhibits local
momentum-space anisotropies for any finite shear viscosity,
study of anisotropic plasma in the momentum space is neces-
sary. These momentum-space anisotropies can continue for
a very long period and can be rather significant depending on
the strength of the shear viscosity, especially early on or close
to the plasma’s edges. This holds true for both strong and
weak coupling shear viscosity levels, and increasing viscos-
ity causes maximum momentum-space anisotropies to grow
[10-14].

Recently, the fractional calculus has attracted attention in
the different fields of physics. In high energy physics, the de-
scription of heavy-quarkonium energy spectra and complex
phenomena of the standard model as in Ref. [15], in which,
the author used the conformable fractional derivative to ex-
press the fractional radial SE in the N-dimensional space for
the extended Cornell potential by using extended Nikiforov-
Uvarov (ENU) method to the fractional domain. In Ref. [16]
the fractional form of the NU method is applicable in order
to solve fractional radial SE with its applications on variety
of potentials such as the oscillator potential, Woods-Saxon
potential, and Hulthen potential. The generalized fractional
derivative [17,18] is suggested which is successfully applied
in calculating quarkonium properties and molecular chemical
properties as in Refs. [19-22].

The aim of the present work is to study the dissociation
of quankonium in a hot-dense medium, in which the baryonic
chemical potential is included in the framework of the gen-
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eralized fractional derivative which are not considered in the
recent works. The generalized fractional of the Nikiforov-
Uvarov (CF-NU) method is applied to obtain the analytic so-
lutions of theN -dimensional radial SE, then the results are
applied on the investigation of binding energy and dissocia-
tion temperature.

The paper is organized as follows: In Sec. 2, the GF-NU
method is briefly explained. In Sec. 3, The energy eigenvalue
and wave function are calculated in theN -dimensional space
using GF-NU method. In Sec. 4, the results are discussed. In
Sec. 5, the summary and conclusion are presented.

2. The generalized fractional NU method

In this section, the GF-NU method is briefly given to solve
the generalized fractional of differential equation which takes
the following form (see Refs. [16,17,23], for details)

Dα [DαΨ(s)] +
τ̄(s)
σ(s)

DαΨ(s) +
σ̃(s)
σ2(s)

Ψ(s) = 0, (1)

whereσ(s) and σ̃(s) are polynomials of maximum second
degree ofα and2α, respectively and̄τ(s) is a polynomial of
maximum degree ofα where

DαΨ(s) = Is1−αΨ′(s), (2)

Dα [DαΨ(s)] = I2

[
(1− α) s1−2αΨ′(s)

+ s2−2αΨ
′′
(s)

]
. (3)

where

I =
Γ (β)

Γ (β − α + 1)
where0 < α ≤ 1and0 < β ≤ 1. Substituting by Eqs. 2) and
(3) into (1), we obtain

Ψ′′(s) +
τ̄f (s)
σf (s)

Ψ′(s) +
σ̃f (s)
σ2

f (s)
Ψ(s) = 0, (4)

where, τ̄f (s) = (1− α) s−ασ(s) + I−2τ̄(s), σf (s) =
s1−ασ(s), σ̃f (s) = I−2σ̃(s).To find the particular solution
of Eq. (4) by separation of variables, if one deals with the
transformation

Ψ(s) = Φ(s)χ(s), (5)

it reduces to an equation of hypergeometric type as follows

σf (s)χ′′(s) + τf (s)χ′(s) + λχ(s) = 0, (6)

where

σf (s) = πf (s)
Φ(s)
Φ′(s)

, (7)

τf (s) = τ̄f (s) + 2πf (s); τ ′f (s) < 0, (8)

and

λ = λn = −nτ ′f (s)− n(n− 1)
2

σ′′f (s),

n = 0, 1, 2, ... (9)

χ(s) = χn(s) which is a polynomial ofn degree which sat-
isfies the hypergeometric equation, taking the following form

χn(s) =
Bn

ρn

dn

dsn
(σ′′f (s)ρ(s)), (10)

whereBn is a normalization constant andρ(s) is a weight
function which satisfies the following equation

d

ds
ω(s) =

τ(s)
σf (s)

ω(s); ω(s) = σf (s)ρ(s), (11)

πf (s) =
σ′f (s)− τ̄f (s)

2

±
√(

σ′f (s)−τ̄f (s)
2

)2

−σ̃f (s)+Kσf (s), (12)

and

λ = K + π′f (s), (13)

the πf (s) is a polynomial of first degree. The values ofK
in the square-root of Eq. (12) is possible to calculate if the
expressions under the square root are square of expressions.
This is possible if its discriminate is zero.

2.1. Real part of the potential in a anisotropic medium
in the longitudinal–traverse plane

Here, we aim to find the potential due to the presence of a dis-
sipative anisotropic hot QCD medium. The in-medium mod-
ification can be obtained in the Fourier space by dividing the
heavy-quark potential by the medium dielectric permittivity,
ε (K) as follows

Ṽ (k) =
V (k)
ε (K)

, (14)

by taking the inverse Fourier transform, the the modified po-
tential is obtained as follows

V (r) =
∫

d3k

(2π)
3
2

(
eik·r − 1

)
Ṽ (k) , (15)

where V (k) is the Fourier transform of Cornell potential
V (r) = (−α1/r) + σr that gives as follows

V (k) = −
√

2
π

(
α1

k2
+

2σ

k4

)
, (16)

whereε (K) may be calculated which found from the self-
energy using finite temperature QCD. By applying hard ther-
mal loop resummation technique as in Refs. [25,26], the
static gluon propagator which represents the inelastic scat-
tering of an off-shell gluon to a thermal gluon is defined as
follows
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∆µν(w, k) = k2gµν − kµkν + Πµν(w, k), (17)

the dielectric tensor can then be obtained in the static limit in Fourier space, from the temporal component of the propagator as

ε−1 (K) = − lim
w→0

k2∆00(w, k). (18)

To calculate the real part of the inter-quark potential in the static limit, one can obtain first the temporal component of real part
of the retarded propagator in Fourier space at finite temperature and chemical potential as follows

Re
[
∆00

R

]
(w = 0, k) = − 1

k2 + m2
D(T, µ)

− ξ

(
1

3 (k2 + m2
D(T, µ))

)
− m2

D(T, µ) (3 cos 2θ − 1)

6 (k2 + m2
D(T, µ))2

, (19)

where the medium dielectric permittivityε (K) is then given by

ε−1 (K) =
k2

k2 + m2
D

+ k2ξ

(
1

3 (k2 + m2
D)

)
− m2

D (3 cos 2θ − 1)

6 (k2 + m2
D)2

(20)

Substituting Eqs.(22) and(18) into Eq. (16) and then taking its inverse Fourier transform, we can write the real part of the
potential forrmD ¿ 1 as

V (r, ξ, T, µb) = σr

(
1 +

ξ

3

)
− α1

r

(
1 +

(rmD)2

2
+ ξ

(
1
3

+
(rmD)2

16

(
1
3

+
(rmD)2

16

(
1
3

+ cos(2θ)
))))

, (21)

where ξ is the anisotropic parameter, andT and µb are
the temperature and the baryonic chemical potential, respec-
tively. In Eq. (21), we note that the potential reduces to the
Cornell potential forξ = 0 andmD = 0 (For details, see
Ref. [25]). In the present work, the Debye massD(T, µb) is
given as in Refs. [27,28] by

D(T, µb) = gT

√
Nc

3
+

Nf

6
+

Nf

2π2

(µq

T

)2

, (22)

where,g is the coupling constant as defined in Ref. [29],µq

is the quark chemical potential(µq = µb/3), Nf is number of
flavours, andNc is number of colours. The potential depends
on θ which is the angle between the particle momentum and
the direction of anisotropy.

2.2. The particle momentum is longitudinal the direc-
tion of anisotropy

For r parallel to the direction ofn of anisotropy atθ = 0,
The potential is given by

V (r) = a1r − b1

r
, (23)

where

a1 = σ +
1
3
σξ − 1

2
α1m

2
D − 1

48
α1ξm

2
D, (24)

b1 = α +
αξ

3
. (25)

It is important to mention in Eq. (23) that we have not
observed any anisotropy in the present potential. This can be

understood physically: The tensorial (nonsphericity) na-
ture of the potential in the coordinate space arises due to
anisotropy in the momentum space. However, we are re-
stricted to a plasma which is very much close to equilib-
rium because thatξ ≤ 1, by the time quarkonium states are
formed in the plasma around(1− 2)Tc, the plasma becomes
almost isotropized atθ parallel ton. In addition, recently a
novel magnetic field-induced anisotropic behavior was first
observed in the heavy quark potential in the longitudinal–
traverse plane with respect to the direction ofB, in which
the radial Shr̈odinger equation with anisotropic potential is
solved on the two cases as in Refs. [3,13].

2.3. The particle momentum is perpendicular to the di-
rection of anisotropy

For r perpendicular to the direction ofn of anisotropy at
θ = π/2, the potential in Eq. (23) is simplified into

V (r) = a2r − b1

r
, (26)

where

a2 = σ +
1
3
σξ − 1

2
α1m

2
D +

1
24

α1ξm
2
D.

3. The Generalized Fractional of Schr̈odinger
Equation

In this section, the SE is solved in the longitudinal–traverse
plane as in Refs. [3,13] and references therein so, the SE for
two particles interacting via the potentialV (r, ξ) in theN -
dimensional space, wherer is inter-particle distance, is given
by [24]
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[
d2

dr2
+

(N − 1)
r

d

dr
− L(L + N − 2)

r2
+ 2µ(E − V (r, ξ)

]
Ψ(r) = 0, (27)

whereL,N, andµ are the angular momentum quantum number, the dimensionality number and the reduced mass for the
quarkonium particle (for charmoniumµ = mc/2 and for bottomoniumµ = mb/2), respectively. Setting the wave function
Ψ(r) = R(r)r(1−N/2), the following radial SE is obtained

[
d2

dr2
+ 2µ

(
E − V (r, ξ)− (L + (N−2)

2 )2 − 1
4

2µr2

)]
R(r) = 0, (28)

whereV (r, ξ) is the interaction potential given in Eq. (23). By substituting by Eq. (23) into Eq. (28), we obtain
[

d2

dr2
+ 2µ

(
E +

b1

r
− a1r −

(L + (N−2)
2 )2 − 1

4

2µr2

)]
R(r) = 0. (29)

By takingr = 1/x, Eq. (29) takes the following form
[

d2

dx2
+

2x

x2

d

dx
+

2µ

x4

(
E + b1x− a1

x
− (L + (N−2)

2 )2 − 1
4

2µ
x2

)]
R(x) = 0. (30)

The expansion ofa1/x in a power series around the characteristic radiusr0 of meson up to the second order is used as in
Ref. [13]. The following equation is obtained

[
d2

dx2
+

2x

x2

d

dx
+

2
x4

(−D1 + D2x−D3x
2)

]
R(x) = 0, (31)

where,

D1 = −µ

(
E − 3a1

δ

)
, D2 = µ

(
3a1

δ2
+ b1

)
, and D3 = µ

(
a1

δ3
+

(L + (N−2)
2 )2 − 1

4

2µ

)
. (32)

To transform Eq. (31) into a fractional form, one uses dimensionless form by takingy = Ax whereA equals 1 GeV.
[

d2

dy2
+

2y

y2

d

dy
+

2
y4

(−D11 + D22y −D3y
2)

]
R(y) = 0, (33)

where

D11 =
D1

A2
, D22 =

D2

A
. (34)

By using Refs. [16,17] one can put Eq. (33) in the following form:
[
Dα [DαR(y)] +

2yα

y2α
DαR(y) +

2
y4α

(−D11 + D22y
α −D3y

2α)
]

R(y) = 0, (35)

and substituting Eqs. (2) and (3) into (35), we obtain

R′′(y) +
τ̄f (y)
σf (y)

R′(x) +
σ̃f (y)
σ2

f (y)
R(y) = 0, (36)

where

τ̄f (s) = (1− α) yα + 2I−2yα, σf (s) = yα+1, andσ̃f (y) = 2I−2(−D1 + D2y
α −D3y

2α). (37)

Hence, the Eq. (36) satisfies Eq. (4). Therefore, Eq. (12) takes the following form after substituting by Eq. (37),

πf = −yα + αI−2yα ±
√

(−yα + αI−2yα)2 − 2I−2(−D11 + D22yα −D3y2α) + Ky1+α. (38)
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The constantK is chosen such as the function under the square root has a double zero,i.e., its discriminant equals zero. Hence,

K =
(

I−2D2
22

2D11
− (1− 2αI−2 + α2I−4 + 2I−2D3)

)
yα−1. (39)

Substituting by Eq. (39) into Eq. (38), we obtain

πf (y) = −yα + αI−2yα +
D22√
2D11

yα −
√

2D11 (40)

The positive sign in Eq. (38) is determined as in Ref. [15]. By using Eq. (8), we obtain

τf (y) = (1− α) yα + 2yα − 2
(

D22√
2D11

yα −
√

2D11

)
, (41)

and using Eq. (14), we obtain

λn =
(
−n

(
3α− α2

)− 2nD22α√
2D11

− n (n− 1) α (α + 1)
2

)
yα−1. (42)

From Eq. (9),λ = λn. The energy eigenvalues of Eq. (36) in theN -dimensional space are

EN
nL =

3a1

δ
− 2µI−4( 3a1

δ2 + b1)2

[(2n + 1) α +
√

(2n + 1)2 α2 − 4I−2W ]2
. (43)

with

W = n
(
3α− α2

)
+

1
2
n (n− 1) α (α + 1)− (1− 2αI−2 + α2I−4 + 2I−2D3)− α + α2I−2. (44)

The radial of wave function takes the following form

RnL (rα) = CnL r

(
− D2√

2D1
−1

)
α
e
√

2D1rα

(−r2αDα)n

(
r

(
−2n+

D2√
2D1

)
α
e−2

√
2D1rα

)
, (45)

whereCnL is the normalization constant that is determined by
∫ |RnL (rα)|2 dr = 1. We note that the radial wave function in

Eq. (45) does not explicitly depend on the number of dimensions. Hence,
∫ |RnL (r)|2 dr = 1 remains unchanged.

4. Discussion of results

In this section, the above results are applied to the quarkonium masses. The quarkonium mass considering fraction-order and
dimensionality in the hot-dense medium is [29]

M = 2m + EN
nL, (46)

M = 2m +
3a1

δ
− 2µI−4(3a1

δ2 + b1)2

[(2n + 1) α +
√

(2n + 1)2 α2 − 4I−2W ]2
, (47)

wherem is quarkonium bare mass for the charmonium or bottomonium mesons. By using Eq. (42), we write Eq. (45) as in
Eq. (46). One can obtain the quarkonium masses at zero temperature by takingT = µb = ξ = 0 ⇒ D(T, µb) at α = β = 1
andN = 3. Therefore, Eq. (46) takes the following form

MQ = 2m +
3σ

δ
− 2µ( 3σ

δ2 + α)2

[(2n + 1) +
√

1 + 8µσ
δ3 + 4L(L + 1)]2

. (48)

Eq. (47) coincides with Ref. [30], in which the authors obtained the quarkonium mass at zero temperature andα = β = 1 at
N = 3.
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FIGURE 1. The binding energy of 1S state for C̄C is plotted as a
function of ratio tempearture for different values ofζ at ub = 0.3
GeV in the fractional modelα = β = 1/2.

In the present analysis, various quantities have been ob-
tained, and the results are plotted while considering the weak
anisotropy in the hot QCD plasma with the fixed critical tem-
peratureTc = 0.17 GeV. We consideredζ = −0.3 for pro-
late andζ = 0.3 for oblate, whereas for the isotropic case,
we haveζ = 0. As discussed earlier, the dissociation tem-
perature has been obtained by employing the following cri-
terion: The temperature at which the binding energy equals
and causes dissociation of quarkonia is the dissociation tem-
perature [25]. In Fig. 1, we note that the binding

FIGURE 2. The binding energy of 1S state for C̄C is plotted as a
function of ratio tempearture for the classical model atα = β = 1
and the fractional modelα = β = 1/2 at ub = 0.3 GeV and
ζ = 0.3.

FIGURE 3. The binding energy of 1S state for bb̄ state is plot-
ted as a function of ratio tempearture for different values ofζ at
ub = 0.3 GeV in the fractional model atα = β = 1/2.

FIGURE 4. The binding energy of 1S state for bb̄ is plotted as a
function of ratio tempearture for the classical model atα = β = 1
and the fractional modelα = β = 1/2 at ub = 0.3 GeV and
ζ = 0.3.

energy (Eb = V (r →∞)− Enl) decreases with increas-
ing temperature at finite baryonic chemical potential
(ub = 0.3 GeV) andα = β = 0.5. In addition, the curves
shift to upper values by increasing anisotropic parameterζ
that is agreement with Ref. [1], in which authors investigated
the behavior of binding energy in the hot medium without in-
cluding baryonic potential. In Fig. 2, a comparison between
the classical model atα = β = 1 and the fractional model at
α = β = 0.5, we note that the binding energy takes a similar

Rev. Mex. Fis.69040801
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FIGURE 5. The binding energy of 1S state for C̄C is plotted as a
function of T andub atα = β = 1 andζ = 0.3.

FIGURE 6. The binding energy of 1S state for C̄C is plotted as a
function of T andub atα = β = 0.5 andζ = 0.3.

behavior in which the binding energy decreases with increas-
ing temperature. Also in the fractional model, we note that
the binding energy shifts to lower values and thus, the frac-
tional parameter will be affected on the dissociation tempera-
ture in hot-dense medium. A similar situation takes place for
bottominum energy in the fractional model atα = β = 0.5
and in the classical model atα = β = 1 as in Figs. 3 and
4.. In Fig. 5, the binding energy for charmonium is plotted in
3D as a function of temperature and baryonic chemical po-
tential in the classical model atα = β = 1. We note that
the effect of temperature on the binding temperature is more
affected in comparison with the effect of baryonic chemical
potential. We note that the binding energy decreases slightly
by increasing baryonic chemical potential. A similar situa-
tion is obtained in the fractional model atα = β = 0.5 but
we note that the binding has a smaller values. In Figs. 7 and
8 the

FIGURE 7. The binding energy of 1S state for bb̄ is plotted as a
function of T andub atα = β = 1 andζ = 0.3.

FIGURE 8. The binding energy of 1S state for bb̄ is plotted as a
function of T andub atα = β = 0.5 andζ = 0.3.

binding energy of bottomonium is plotted in 3D. We note that
the temperature is more effect on the binding energy than the
baryonic chemical potential in the classical fractional model.

The dissociation temperature for both the classical model
and the fractional model is shown in Tables I and II.

For the 1S and 2S of charmonium and bottominum, we
observe that the dissociation temperature increases as the
anisotropic parameter increases. Additionally, we observe
that 2S state has smaller values than those in the 1S state. The
fractional model is used for obtaining the results in Table II
to compute the dissociation temperature atα = β = 0.5. We
see in Figs. 2 and 4 that the fractional parameter decreases the
binding energy cause the dissociation temperature is lower
than the classical model atα = β = 1. This result is quali-
tatively consistent with Ref. [1], where the authors used an-
other technique to determine the dissociation temperature by
the temperature at which twice the binding energy (real part)
equals the thermal width. Additionally, the results of the frac-
tional model qualitatively agree with those of Ref. [25], in
which the authors determined the dissociation temperature by
the temperature at which it equals the real part of the binding
energy, leading quarkonia to dissociate.

TABLE I. The dissociation temperature for charmonium and bottominum states in units ofTc atα = β = 1.

cc̄ 1S 2S bb̄ 1S 2S

ζ = 0.3 1.465 1.424 ζ = 0.3 1.629 1.547

ζ = 0.0 1.435 1.400 ζ = 0.0 1.576 1.524

ζ = −0.3 1.376 1.376 ζ = −0.3 1.518 1.488

Rev. Mex. Fis.69040801
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TABLE II. The dissociation temperature for charmonium and bottominum states in units ofTc atα = β = 0.5.

cc̄ 1S 2S bb̄ 1S 2S

ζ = 0.3 1.418 1.411 ζ = 0.3 1.529 1.511

ζ = 0.0 1.394 1.388 ζ = 0.0 1.494 1.482

ζ = −0.3 1.371 1.364 ζ = −0.3 1.459 1.447

5. Summary and Conclusion

In this study, we examined the binding energy and disso-
ciation temperature in the fractional nonrelativistic model
(FNM). The NU technique is analytically used to solve
the FNM. The fractional model of the eigenvalues of the en-
ergy and wave functions is obtained. As a result, we deter-
mined the special cases that were consistent with the classi-
cal model. Additionally, we soon realize that the fractional
form’s binding energy is lower than it was in the classical
model; as a result, the dissociation temperature in a hot-dense

medium decreases in comparison to the classical model. We
found the dissociation temperature was agreement with other
studies, such as Ref. [25]. Also, we note that the effect of
baryonic chemical potential is slightly less pronounced on
binding energy. This finding is not considered in other works
in the framework of the fractional model. In addition, the
excited states are obtained for charmonium and bottominum.

Finally, we found that the fate of heavy-quarkonia states
in the hot-dense QCD medium is significantly influenced by
both the anisotropy and the hot-dense QCD medium effects
present in EoS when fractional calculus is taken into account.
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