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By applying the generalized fractional-Nikiforov-Uvarov approach, the radial Schrodinger equation is analytically solved in the longitudinal—
traverse plane. The energy eigenvalues and associated functions are calculated by extending the interaction potential to an anisotropic ho
dense quark-gluon plasma medium. For heavy quarkonium masses like charmonium and bottomonium, the special cases of the mass ¢
quarkonium are obtained at = 3 = 1. The effect of the fraction parameter is investigated within the context of the quark-gluon plasma
medium on the binding energy and dissociation temperature when baryonic chemical potential is included. A comparison are studoed
with recent works Therefore, the fractional quark model correctly represents heavy mesons in an anisotropic hot-dense quark-gluon plasme
medium, according to the current findings.
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1. Introduction codes the effects of a deconfined medium to the full Cor-

nell potential, not just its Coulomb part. This means that the
It has been concluded from the ultra-relativistic heavy-ionheavy quark potential calculation has been expanded to in-
collision experiments at RHIC and LHC that the quark-clude plasma with limited momentum-space anisotropy. For
gluon plasma (QGP), which was created, behaves more likihis case, specifically, the exact component has been cal-
a perfect fluid than a non-interacting ultra-relativistic gas ofculated. As long as the quark-gluon plasma exhibits local
quarks (anti-quarks) and gluons. The reason for this is bemomentum-space anisotropies for any finite shear viscosity,
cause the QGP have a strong collective characteristic thgtudy of anisotropic plasma in the momentum space is neces-
may be measured in terms of the flow harmonics. In addisary. These momentum-space anisotropies can continue for
tion, the other significant signals based on experimental dat& very long period and can be rather significant depending on
quarkonia suppression has also been proposed as a direct the strength of the shear viscosity, especially early on or close
dicator of QGP creation in the collider studies. The testdo the plasma’s edges. This holds true for both strong and
show that it highlights the plasma properties of the mediumWweak coupling shear viscosity levels, and increasing viscos-
such as Landau damping, colour screening, and energy logéy causes maximum momentum-space anisotropies to grow
see Ref. [1] and references therein. [10-14].

At finite temperature, the evolution of the Schrodinger  Recently, the fractional calculus has attracted attention in
equation (SE) is vital. In order to study the creation of athe different fields of physics. In high energy physics, the de-
hot quark-gluon plasma, Matsui and Satz [2] calculated thecription of heavy-quarkonium energy spectra and complex
charmonium’s//¥ radius. The properties of quarkonia in a phenomena of the standard model as in Ref. [15], in which,
thermal QCD medium in the background of strong magnetidhe author used the conformable fractional derivative to ex-
field is studied using SE. Using a temperature-dependent pgress the fractional radial SE in the N-dimensional space for
tential deduced from lattice gauge computations. Wong [4}he extended Cornell potential by using extended Nikiforov-
has investigated the binding energies and wave functions dfivarov (ENU) method to the fractional domain. In Ref. [16]
heavy quarkonia in quark-gluon plasma. As a result, théhe fractional form of the NU method is applicable in order
study shows that the model with the modified Q-Q potentialto solve fractional radial SE with its applications on variety
produces dissociation temperatures that are consistent withf potentials such as the oscillator potential, Woods-Saxon
spectral function analyses. Also, the N-radial Schrodingepotential, and Hulthen potential. The generalized fractional
equation is analytically solved. The Cornell potential is ex-derivative [17,18] is suggested which is successfully applied
tended to finite temperature and/or chemical potential as ifn calculating quarkonium properties and molecular chemical
Refs. [5-9] in which the energy eigenvalues and the waveproperties as in Refs. [19-22].

functions are calculated. The aim of the present work is to study the dissociation
A heavy quark potential at finite temperature was cre-of quankonium in a hot-dense medium, in which the baryonic
ated by correctly introducing a dielectric function that en-chemical potential is included in the framework of the gen-
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eralized fractional derivative which are not considered in thex(s) = x,(s) which is a polynomial of. degree which sat-

recent works. The generalized fractional of the Nikiforov- isfies the hypergeometric equation, taking the following form

Uvarov (CF-NU) method is applied to obtain the analytic so-

lutions of the N-dimensional radial SE, then the results are Xn(5) = B, d"

applied on the investigation of binding energy and dissocia- Pn ds™

tion temperature. ) o . )
The paper is organized as follows: In Sec. 2, the GF-NUVhere By, is a normalization constant ands) is a weight

method is briefly explained. In Sec. 3, The energy eigenvalufinction which satisfies the following equation

and wave function are calculated in thedimensional space

(07 (s)p(s)), (10)

using GF-NU method. In Sec. 4, the results are discussed. In —(s) = 7(s) w(s); w(s) =az(s)p(s), (11)
Sec. 5, the summary and conclusion are presented. ds o5(s)
) = T =)
2. The generalized fractional NU method ! 2
- 2
In this section, the GF-NU method is briefly given to solve ap()=Tr(s)\"
the generalized fractional of differential equation which takes + \/( 2 or(s)HKoy(s), (12)
the following form (see Refs. [16,17,23], for details)
- ~ and
D [D*W(s)] + ;ES%D“\IJ(S) + ;(2)\1/(3) —0, (1
s A=K +mh(s), (13)

whereo(s) andé(s) are polynomials of maximum second
degree ofx and2a, respectively and (s) is a polynomial of  the 7/ (s) is a polynomial of first degree. The values &t
maximum degree af where in the square-root of Eq. (12) is possible to calculate if the
DYU(s) = Is' W (s), (2)  expressions under the square root are square of expressions.
This is possible if its discriminate is zero.
D% [D*V(s)] = I? {(1 —a) s' 720 (s)
2.1. Real part of the potential in a anisotropic medium

n 32‘2‘*\11”(5)] . 3) in the longitudinal-traverse plane

where Here, we aim to find the potential due to the presence of a dis-

I IN(C)) sipative anisotropic hot QCD medium. The in-medium mod-

CT(B-a+1) ification can be obtained in the Fourier space by dividing the
where0 < o < 1land0 < § < 1. Substituting by Egs. 2) and heavy-quark potential by the medium dielectric permittivity,
(3) into (1), we obtain € (K) as follows
v (s) + 2 gr() + &§(8>qz(s) —0, 4) V(R
os(s) o3(s) V) = (14)

where, 7¢(s) = (1—a)s o(s) + I727(s),0¢(s) =

51 (s),6¢(s) = I=25(s).To find the particular solution DYy taking the inverse Fourier transform, the the modified po-
of Eq. (4) by separation of variables, if one deals with thetential is obtained as follows

transformation
Bk e -
W(s) = B)x(), © Vo= [ oSy rm. )

it reduces to an equation of hypergeometric type as follows
where V (k) is the Fourier transform of Cornell potential

o7 ($)X"(s) + 75 ()X (5) + Ax(s) = 0, ® v (r) = (—ay/r) + or that gives as follows

where
D(s) \/5 a2
= - — - - 1

71(5) = 71 (5) gy (@) VR =\~ (%) (16)

Ty(s) = 7s(s) +2mp(s); 74(s) <O, (8)  wheree (K) may be calculated which found from the self-
and energy using finite temperature QCD. By applying hard ther-

n(n—1) mal loop resummation technique as in Refs. [25,26], the
A=A, = —n7i(s) — TU}/(S), static gluon propagator which represents the inelastic scat-
tering of an off-shell gluon to a thermal gluon is defined as
n=20,1,2,... (9) follows
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AP (w, k) = k2g" — EPEY + TTM (w, k), (17)
the dielectric tensor can then be obtained in the static limit in Fourier space, from the temporal component of the propagator as
e K)=— lirn0 E2A% (w, k). (18)

To calculate the real part of the inter-quark potential in the static limit, one can obtain first the temporal component of real part
of the retarded propagator in Fourier space at finite temperature and chemical potential as follows

1 1 m2 (T, ) (3cos 20 — 1)
Re [AY w:O,k:——£< )— P , (19)
] o =00 = T ST @) ) T 6 o (T, )
where the medium dielectric permittiviey /) is then given by
k2 1 m2 (3cos20 — 1)
K= ———— + k2 - D 20

Substituting Eqs(22) and(18) into Eq. (16) and then taking its inverse Fourier transform, we can write the real part of the
potential forrmp <« 1 as

V(r & T, m) = or <1 + g) - (1 + (””QD)Q +¢ (; + (T”fé’)z (; + (Tﬂfé))Q (; +cos(26)>>)> . (21)

where £ is the anisotropic parameter, arid and y;, are
the temperature and the baryonic chemical potential, respel:understood physically: The tensorial (nonsphericity) na-
tively. In Eq. (21), we note that the potential reduces to theture of the potential in the coordinate space arises due to
Cornell potential fort = 0 andmp = 0 (For details, see anisotropy in the momentum space. However, we are re-
Ref. [25]). In the present work, the Debye md3€T’, 115) is  stricted to a plasma which is very much close to equilib-

given as in Refs. [27,28] by rium because thag < 1, by the time quarkonium states are
formed in the plasma arourid — 2) T, the plasma becomes
B N. Ny Ny /ug\2 almost isotropized & parallel ton. In addition, recently a
DT o) = gT\/ 3 + 6 + 212 (T) ’ (22) novel magnetic field-induced anisotropic behavior was first

observed in the hea uark potential in the longitudinal—
where,g is the coupling constant as defined in Ref. [29], vy 4 P g

is th K chemical ) . : traverse plane with respect to the direction®f in which
is the quark chemical potentigl, = 1i/3), Nyisnumberof o o 4ia| Shigdinger equation with anisotropic potential is
flavours_, an_d’VC is number of colours. The_ potential dependséolved on the two cases as in Refs. [3,13].

on ¢ which is the angle between the particle momentum an

the direction of anisotropy. 2.3. The particle momentum is perpendicular to the di-
rection of anisotropy
2.2. The particle momentum is longitudinal the direc-

tion of anisotropy For » perpendicular to the direction of of anisotropy at
0 = /2, the potential in Eq. (23) is simplified into
For r parallel to the direction of. of anisotropy a#¥# = 0, by
The potential is given by V(r) =asr——>, (26)
by where
V(r)=ar——, (23) 1 1 1
r as = o0 + gag — ialm% + ﬂalfm%.
where
1 1 1 3. The Generalized Fractional of Schbdinger
a1 =0+ g0l —samp — cafmp,  (24) Equation
by = o+ ag (25) In this section, the SE is solved in the longitudinal-traverse
3 plane as in Refs. [3,13] and references therein so, the SE for

two particles interacting via the potentigl(r, §) in the N-

Itis |mportan_t to menpon in Eg. (23) that.we hqve not dimensional space, wherds inter-particle distance, is given
observed any anisotropy in the present potential. This can bg-

y [24]
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@ (N—-1)d L(L+N-2)
|:d7,2 g 3 +2u(E =V (r, )| ¥(r) =0, (27)
where L, N, and i are the angular momentum quantum number, the dimensionality number and the reduced mass for the
quarkonium particle (for charmonium = m./2 and for bottomonium: = my,/2), respectively. Setting the wave function

U(r) = R(r)r(1=N/2), the following radial SE is obtained

2

i+2/¢ (E—V(T,S)—

dr?

R(r) =0, (28)

(L—l— (N2—2))2 N i
2ur?

whereV (r, £) is the interaction potential given in Eq. (23). By substituting by Eq. (23) into Eq. (28), we obtain

272

d? b
+2u(E+;—a1r—

a2 R(r) = 0. (29)

By takingr = 1/z, Eq. (29) takes the following form

2 2wd 2 L+ 8221
[ +x+u<E+bll‘—al—( 2 ) 4552
X T x

> R(z) = 0. (30)

The expansion ofi; /x in a power series around the characteristic radiusf meson up to the second order is used as in
Ref. [13]. The following equation is obtained

> 2z d 2 9
LLTQ Pl g(—Dl + Doz — D3z )} R(z) =0, (31)
where,
o 3@1 - 3a1 o aq (L + 7(N2_2) )2 - i
D, = o <E 5) , Dy= 7 <52 + bl) , and D3 = M ((53 + 2% . (32)
To transform Eq. (31) into a fractional form, one uses dimensionless form by takinglz whereA equals 1 GeV.
> 2yd 2 9
|:dy2 + E@ + E(fDll + Daoy — D3y ):| R(y) =0, (33)
where
Dy Do
Dll = ﬁa D22 = I (34)
By using Refs. [16,17] one can put Eg. (33) in the following form:
2y“ 2
DY [D*R(y)] + 35 D*Rly) + (= Dy + Daay® = Dy™)| R(y) =0, (35)
and substituting Eqgs. (2) and (3) into (35), we obtain
or(y) ot (y)
where
7r(s) = (1 — o) y™ + 21 2y, op(s) = y**',andé s (y) = 21 *(=D1 + Day®™ — Dsy*). (37)
Hence, the Eq. (36) satisfies Eq. (4). Therefore, Eq. (12) takes the following form after substituting by Eq. (37),
7= —y* +al 2y* + \/(—y“ + al ~2y®)? — 2I-2(=D1q + Dogy® — D3y2®) 4+ Kyl +e, (38)
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The constanis is chosen such as the function under the square root has a doubleezgits discriminant equals zero. Hence,

I_2D2
K= 2 _(1-2al 24’4 +2172D3) |y~ L. (39)
2Dy

Substituting by Eq. (39) into Eq. (38), we obtain

D
™y (v) =~y +al 7" + —opey® — /2D (40)
1
The positive sign in Eq. (38) is determined as in Ref. [15]. By using Eq. (8), we obtain
D
Tr(y) =1 —a)y* +2y* -2 (\/%y“ - \/2D11) : (41)

and using Eg. (14), we obtain

2nDypa n(n—1)a(a+ 1)) 1
A= —n(3a —a?) — - ol 42
(-n(sa - a?) - 20 : ’ @
From Eq. (9)\ = \,,. The energy eigenvalues of Eq. (36) in tNedimensional space are
2l 4 (34 + by)?
E;VL:?%_ (3 +5) . (43)
[(2n+1) a+/(2n+1)? a2 — 4T 2W]?
with
W=n(3a—-a%) + %n(n— Da(a+1)— (1 —2al 2+ a®T* 4+ 2I72D3) — a+ o*T72. (44)
The radial of wave function takes the following form
D2 _1)a o —2nt+-—22_ ) o a
R.p (,r,a) :CnLT<7\/TT1 1) oV2Dir (77,2aDa)n (T< 2 +\/ﬁ> e—2V2D1r ) ’ (45)

whereC,,, is the normalization constant that is determined [Hy?,, (r°“)|2 dr = 1. We note that the radial wave function in
Eq. (45) does not explicitly depend on the number of dimensions. Hgrég, . (r))? dr = 1 remains unchanged.
4. Discussion of results

In this section, the above results are applied to the quarkonium masses. The quarkonium mass considering fraction-order an
dimensionality in the hot-dense medium is [29]

M =2m+ EN,, (46)
20l 4 (34 + by)?
M:Zm—&—%— w4 b (47)

(2n+1)a+ \/(2n +1)%a2 - 41—2W}2’

wherem is quarkonium bare mass for the charmonium or bottomonium mesons. By using Eq. (42), we write Eq. (45) as in
Eqg. (46). One can obtain the quarkonium masses at zero temperature byfaking = £ =0 = D(T, ) ata =0 =1
andN = 3. Therefore, Eq. (46) takes the following form

30 2u(3 +a)?
) 8uo 2
[(2n + 1) + /1 + 342 + AL(L + 1)]

Mg = 2m + (48)

Eg. (47) coincides with Ref. [30], in which the authors obtained the quarkonium mass at zero temperature gnd 1 at
N =3.
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FIGURE 1. The binding energy of 1S state fods plotted as a
function of ratio tempearture for different values@at u, = 0.3

GeV in the fractional modek = 5 = 1/2.
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FIGURE 3. The binding energy of 1S state fobstate is plot-
ted as a function of ratio tempearture for different valueg it

up = 0.3 GeV in the fractional model at = 5 = 1/2.

In the present analysis, various quantities have been ob-

tained, and the results are plotted while considering the weak  0.80 —
anisotropy in the hot QCD plasma with the fixed critical tem-
peraturel, = 0.17 GeV. We considered = —0.3 for pro- . ——  Classical Model
late and¢ = 0.3 for oblate, whereas for the isotropic case, _
. . . .. Fractional Model
we have( = 0. As discussed earlier, the dissociation tem- 060 —
perature has been obtained by employing the following cri-
terion: The temperature at which the binding energy equals .
and causes dissociation of quarkonia is the dissociation tem-§
perature [25]. In Fig. 1, we note that the binding o 040
E
0.60 — ]
——  Classical Model 020 —
o _— Fractional Model
> 040 —
3 000 e LA L
=
= 0.80 120 1.60 200 240
g TTe
S T p—
uéa FIGURE 4. The binding energy of 1S state foblis plotted as a
E function of ratio tempearture for the classical modekat 8 = 1
@ 020 and the fractional modek = 3 = 1/2 atu, = 0.3 GeV and
¢=0.3.
i energy (B, =V (r — o0) — E,;) decreases with increas-
ing temperature at finite baryonic chemical potential
0.00 | : | : | : ! (up = 0.3 GeV) anda = 8 = 0.5. In addition, the curves
080 120 160 200 240 shift to upper values by increasing anisotropic paramgter

TTe that is agreement with Ref. [1], in which authors investigated
the behavior of binding energy in the hot medium without in-
cluding baryonic potential. In Fig. 2, a comparison between
the classical model at = 3 = 1 and the fractional model at

«a = = 0.5, we note that the binding energy takes a similar

FIGURE 2. The binding energy of 1S state fods plotted as a
function of ratio tempearture for the classical modekat g = 1
and the fractional modek = g = 1/2 atuy = 0.3 GeV and
¢=0.3.
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FIGURE 7. The binding energy of 1S state fob tis plotted as a

FIGURE 5. The binding energy of 1S state fods plotted as a  function of 7"andu; ata = 3 = 1 and¢ = 0.3.

function of T"andu, ata = 8 = 1 and¢ = 0.3.

FIGURE 8. The binding energy of 1S state fob tis plotted as a
function of T"andu;, ata = 8 = 0.5 and¢ = 0.3.

binding energy of bottomonium is plotted in 3D. We note that
FIGURE 6. The binding energy of 1S state forQds plotted as a  the temperature is more effect on the binding energy than the
function of T'andu; ata = 3 = 0.5 and¢ = 0.3. baryonic chemical potential in the classical fractional model.

The dissociation temperature for both the classical model

and the fractional model is shown in Tables | and 1.
behavior in which the binding energy decreases with increas- For the 1S and 2S of charmonium and bottominum, we
ing temperature. Also in the fractional model, we note thatobserve that the dissociation temperature increases as the
the binding energy shifts to lower values and thus, the fracanisotropic parameter increases. Additionally, we observe
tional parameter will be affected on the dissociation temperathat 2S state has smaller values than those in the 1S state. The
ture in hot-dense medium. A similar situation takes place foifractional model is used for obtaining the results in Table I
bottominum energy in the fractional modelat= 5 = 0.5  to compute the dissociation temperaturecat 3 = 0.5. We
and in the classical model at = g = 1 as in Figs. 3 and see in Figs. 2 and 4 that the fractional parameter decreases the
4.. In Fig. 5, the binding energy for charmonium is plotted inbinding energy cause the dissociation temperature is lower
3D as a function of temperature and baryonic chemical pothan the classical model at= = 1. This result is quali-
tential in the classical model at = 8 = 1. We note that tatively consistent with Ref. [1], where the authors used an-
the effect of temperature on the binding temperature is morether technique to determine the dissociation temperature by
affected in comparison with the effect of baryonic chemicalthe temperature at which twice the binding energy (real part)
potential. We note that the binding energy decreases slightlgquals the thermal width. Additionally, the results of the frac-
by increasing baryonic chemical potential. A similar situa-tional model qualitatively agree with those of Ref. [25], in
tion is obtained in the fractional model at= g = 0.5 but  which the authors determined the dissociation temperature by
we note that the binding has a smaller values. In Figs. 7 anthe temperature at which it equals the real part of the binding
8 the energy, leading quarkonia to dissociate.

TABLE |. The dissociation temperature for charmonium and bottominum states in uffitsabfc = 5 = 1.

cc 1S 2S bb 1S 2S
=03 1.465 1.424 (=03 1.629 1.547
=00 1.435 1.400 =00 1.576 1.524
¢=-03 1.376 1.376 ¢=-03 1.518 1.488
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TaBLE Il. The dissociation temperature for charmonium and bottominum states in uffifsabfr = 5 = 0.5.

cc 1S 2S bb 1S 2S
¢=0.3 1.418 1411 ¢=0.3 1.529 1.511
¢=0.0 1.394 1.388 ¢=0.0 1.494 1.482
¢=-0.3 1.371 1.364 ¢=-03 1.459 1.447

5. Summary and Conclusion medium decreases in comparison to the classical model. We
found the dissociation temperature was agreement with other
In this study, we examined the binding energy and dissostudies, such as Ref. [25]. Also, we note that the effect of
ciation temperature in the fractional nonrelativistic modelbaryonic chemical potential is slightly less pronounced on
(FNM). The NU technique is analytically used to solve binding energy. This finding is not considered in other works
the FNM. The fractional model of the eigenvalues of the endin the framework of the fractional model. In addition, the
ergy and wave functions is obtained. As a result, we deterexcited states are obtained for charmonium and bottominum.
mined the special cases that were consistent with the classi- Finally, we found that the fate of heavy-quarkonia states
cal model. Additionally, we soon realize that the fractionalin the hot-dense QCD medium is significantly influenced by
form’s binding energy is lower than it was in the classicalboth the anisotropy and the hot-dense QCD medium effects
model; as a result, the dissociation temperature in a hot-dengeesent in EoS when fractional calculus is taken into account.
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