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Flat bands, quantum Hall effect and superconductivity
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Flat band electronic modes are responsible for superconductivity in twisted bilayer graphene rotated at magic angles. From there other magic
angles can be found for any multilayered twisted graphene systems. Eventually this lead to the discovery of the highest ever known electron-
electron correlated material. Moreover, the quantum phase diagram of twisted bilayer graphene is akin to those observed among high-Tc

superconductors and thus there is a huge research effort to understand twisted bilayer graphene in the hope of clarifying the physics behind
such strong correlations. A particularity of the twisted bilayer graphene is the coexistence of superconductivity and the fractional Quantum
Hall effect, yet this relationship is not understood. In this work, a simple2 × 2 matrix model for twisted bilayer graphene is obtained by
taking the square of the original4× 4 chiral twisted bilayer graphene hamiltonian. Such squared Hamiltonian contains the magic angles and
due to the intrinsic chiral symmetry in twisted bilayer graphene, a lowest energy level related to the quantum Hall effect. The non-Abelian
properties of this squared Hamiltonian play a central role in the electronic localization to produce the flat bands and here it is proved that
the squared Hamiltonian of the chiral TBG model is equivalent to a single electron Hamiltonian inside of a non-Abelian pseudo-magnetic
field produced by electrons in other layers. Therefore, the basic and fundamental elements in the physics of magic angles are determined. In
particular, an study is made on these fundamental energy contributions at theΓ-point due to its relation to the recurrence of magic angles and
its relationship with the Quantum Hall effect.
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1. Introduction

Recently it has been showed that twisted bilayer graphene
systems support superconducting phases at certain special
twist angles [1, 2], where electronic correlations are maxi-
mized due to the existence of flat-bands [3]. Moreover, Cao
et al. [1] found that such TBG systems have a Mott insulat-
ing phase that appears in the middle of unconventional su-
perconducting phases, similar to the phase diagram found
in cuprates and other high temperature superconductors [4].
The appearance of a Mott correlated insulator and unconven-
tional superconducting phases in the flat band of magic-angle
TBG at a small carrier density cannot be explained by weak-
coupling BCS theory [5-14]. In fact, althoughTc is very
small, of the order of1.7K, the electron-electron coupling
turns out to be very high. In Fig. 1 we show the variation of
ln (Tc/TF ), whereTF is the Fermi temperature andTc is the
critical temperature of the superconducting phase as a func-
tion of the charge dopingn′. This plot intends to compare the
electron-electron coupling once the density of carriers and
TF are taken into account. The magic-angle TBGTc/TF ra-
tio is above the trend lines on which most heavy fermions,
cuprates and organic superconductors lie [1]. Thereafter,
it has been experimentally found that trilayer graphene ro-
tated by magic angles turns out to be the highest ever found
electron-electron correlated material [15]. Up to now, the ori-
gin of superconductivity in TBG remains under debate.

An interesting strong coupling theory of superconductiv-
ity based on skyrmions could explain the mechanism of su-
perconductivity in TBG [11]. For this purpose is important
to understand the quantum geometry of flat bands in magic-
angle TBG which is purely the mathematical structure nec-
essary to measure distances at the quantum regime. Also is
important to analyze the interplay between interaction range

FIGURE 1. Variation ofln (Tc/TF ) (logarithmic scale) as function
of n′ (charge doping) in scaled units of1011 cm−2 for magic-angle
TBG (blue points). HereTc is the critical temperature for a super-
conductor state andTF is the Fermi temperature. The horizontal
lines indicate the approximateTc/TF values of the corresponding
family of materials. Adapted from Ref. [1].
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and Berry curvature inhomogeneity. A deeper theoretical
study by Ledwithet al. [16] based in vortexability and the
importance of chiral symmetry to induce vortexable bands
as a generalization of the LLL (Lowest Landau Level) for
hosting a short-range interacting ground state (SRI-GS) is
of great relevance. Vortexable bands are a class of bands
to which one can attach vortices while remaining within the
subspace defined by the bands. This treatment of vortexable
bands allows the construction of exact many-body FQHE
(Fractional Quantum Hall Effect) ground states in the limit
of short-range interactions, and possibly vortexable bands of
equal and opposite Chern numbers related to superconduc-
tors based on skyrmions. On the other hand, magic-angle
TBG has flat Chern bands at zero magnetic field. Therefore,
TBG promises a route towards stabilizing zero-fields Frac-
tional Chern Insulators (FCIs) [17].

In fact, the study of the electronic properties of twisted
bilayer graphene started before the discovery of supercon-
ductivity at magic angles. In works of 2007 by J. Santos [18]
and 2011 by A. Macdonald [19], an effective low energy con-
tinuous Hamiltonian model was derived.

In such studies the idea was to generate moiré patterns
as a function of the twist angle between graphene layers. In
Fig. 2 we show the unit cell for the moiré pattern of TBG.
The new unit cell vectors in the moiré lattice are scaled as
the inverse of the twist angle between layers, therefore, for
small twist angles, it is expected to have a bigger moiré unit
cell. Form there is possible to define a moiré Brillouin zone
(mBZ). For small twist angles, the mBZ is also small due to
the moiŕe modulation vector. Flat-band were found at certain
angles and from there superconductivity was predicted [19].

The reason for the appearance of flat bands and its quan-
tized nature is not understood. Therefore, lots of research
have been conducted in this direction. Notice that flat bands

FIGURE 2. Picture of twisted bilayer graphene (TBG) system. The
graphene monolayer 1 (green) and monolayer 2 (purple) have a rel-
ative twist angle that produce a moiré pattern (cyan) with a unit cell
much bigger than the original unit cell of each monolayer graphene.
The unit cell of the moiŕe pattern is indicated (red).

can also occur in graphene over substrates even without
twists yet TBG systems are paradigmatic. To make the TBG
model more realistic, G. Tarnopolskyet al. [20] took into ac-
count the structural relaxation due to carbon-carbon repulsion
between layers and a chiral continuum model was produced.
Perhaps, so far, it is the simplest and more realistic model
that best captures the nature of magic angles; at these special
angles the dispersion energy at the lowest bands becomes flat
and has a recurrence behavior. Also at these magic angles
the Fermi velocity goes to zero. Due to its chiral symmetry,
the Hamiltonian of this model produces an intra-valley in-
version symmetry [21] so the energy dispersion is inversion
symmetric at all twist angles and thus symmetry protected at
any twist angle. The zero-mode have some resemblance to
the ground state of a quantum Hall effect wave function on a
torus [20, 22], and, therefore, the solution is of the quantum
harmonic oscillator type, where Landau levels arise [23–25].
Another interesting mathematical characteristic is that flat-
band modes are constructed from a complex analytic func-
tions that are ratios of the theta Jacobi functions [20,22].

Furthermore, due to the quantized nature of the magic
angles it appears that there is an adiabatic change in inte-
gers of this topological invariant. However, there are many
open question concerning the possible relationship between
the quantum hall effect (QHE) and the TBG, the quantized
nature of flat-bands and the nature of wave functions.

In a series of previous papers, the authors showed that
by making a supersymmetric transformation akin to take the
square of the original chiral TBG hamiltonian, the physics
behind the magic angles becomes clear [26–28]. The aim of
this work is to review the topic and clarify the physical be-
havior of this model as well as to develop an effective equa-
tion for such squared Hamiltonian in order to study all other
non flat band states. Although one of the authors presented
before in this journal some details of the squared Hamilto-
nian model [29], here we go further by showing that the ef-
fective system is related to pseudo-magnetic fields, bringing
the possibility of writing the squared chiral TBG Hamiltonian
in a non-Abelian fashion where effective magnetic fields ap-
pear, making the connection with the QHE transparent. Then
we discuss the physical picture that arises from this minimal
model including an analytical calculation of the first magic
angle to show how this arises as a balance between kinetic,
confinement energies and interlayer currents.

Let us finally add that the original4×4 Hamiltonian is an
effective model that contains hundreds of atoms in its unitary
cell which is of the size of nanometers (see Fig. 2). How-
ever, it is made from a basis with bi-spinors and thus can be
thought as representing the dynamics of two coupled quasi-
particles. Therefore, one can still interpret the original4× 4
as two quasiparticles in a non Abelian field. However, this
is much more difficult to visualize than in the approach pre-
sented here, where one of the quasiparticles is renormalized
by squaring the Hamiltonian.
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2. Chiral TBG system

The Bistritzer-MacDonald Hamiltonian (BMH) model arises
by a simple stacking of two rotated graphene layers with an
interaction between them [19]. One of the authors gave a sim-
ple derivation of this model in this journal before and thus
we refer the reader to it [29]. Although the BMH contains
the magic angle physics, in real TBG stacking points where
carbon atoms are on top of another carbon (known as AA
stacking) are pulled apart out of the intralayer plane due to
Coulomb repulsion. As a consequence, interlayer electron
tunnelling in AA sectors is greatly reduced and can be safely
neglected. This result in a chiral Hamiltonian (CH) [13, 20].
Let us write this model. Consider as basis the wave vectors
Φ(r) =

(
ψ1(r), ψ2(r), χ1(r), χ2(r)

)T
where the index1, 2

represents each graphene layer andψj(r) andχj(r) are the
Wannier orbitals on each site of the graphene’s unit cell,i.e.,
in sites A and B of the graphene’s bipartite lattice. Using this
base, the CH is [20,30,31],

H =
(

0 D∗(−r)
D(r) 0

)
, (1)

where we defined the zero mode operator as,

D(r) =
( −i∂̄ αU(r)

αU(−r) −i∂̄

)
, (2)

and its rotated and conjugated version,

D∗(−r) =
( −i∂ αU∗(−r)

αU∗(r) −i∂

)
. (3)

We also defined the antiholonomic operator,

∂̄ = ∂x + i∂y, (4)

and the holonomic operator,

∂ = ∂x − i∂y. (5)

Both operators eventually play an important role in the
theory, as the flat-band wavefunctions are in part determined
by the fact that the antiholonomic derivative of any ana-
lytic function is zero [28]. Although these operators appear
in graphene, the lack of a position dependent potential in
graphene allows to solve the problem in a very simple way
without the need to look for the analytical properties of solu-
tions. The interlayer potential is [20],

U(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r. (6)

Hereφ = 2π/3 andq1 = kθ(0,−1), q2 = kθ(
√

3/2, 1/2),
q3 = kθ(−

√
3/2, 1/2).

The distance between each layer graphene Dirac cone is
kθ = 2kD sin θ/2 with kD = 4π/3a0 the Dirac wave vector
anda0 the lattice constant of graphene. The physics of this
model is captured via the parameterα, defined as,

α =
w1

v0kθ
, (7)

wherew1 is the interlayer coupling of stacking AB/BA with
valuew1 = 110 meV andv0 is the Fermi velocity with value
v0 = 19.81 eV/2kD.

Here we will use units wherev0 = 1 and re-scaled vectors
such thatq′µ = qµ/kθ andr′ = kθr, therefore,r·qµ = r′·q′µ
is independent ofkθ thus the antiholonomic and holonomic
operators are dimensionless. In other words, we can con-
sider the system as if it were with a fixed geometry,i.e.,
settingq′1 := q1 = (0,−1), q′2 := q2 = (

√
3/2, 1/2),

q′3 := q3 = (−√3/2, 1/2) while the twist angle enters only
in the coupling parameterα. The vectorsb1,2 = q2,3 − q1

turn out to be the moiré reciprocal vectors and for its utility,
we define a third vectorb3 = q3 − q2.

To finish the model, we found useful to define a set of
unitary vectorsq̂⊥µ given by q̂⊥1 = (1, 0), q̂⊥2 =

( − 1/2,√
3/2

)
, q̂⊥3 =

(− 1/2,−√3/2
)
.

3. Squared TBG Hamiltonian and Pseudo-
magnetic fields

In a previous work [26] we showed how, by taking the square
of H, which is akin to consider a supersymmetric model, it
is possible to write the Hamiltonian as a2 × 2 matrix. This
transformation takes into account the particle-hole symmetry
and folds the band aroundE = 0. Physically, it removes one
of the bipartite lattices on each layer, leaving two triangu-
lar lattices on each layer. In a series of previous works we
investigated several properties of this Hamiltonian, among
the most important is the mapping of the flat-band into a
ground state separated by a gap form the rest of the states.
This state has an antibonding nature in a triangular lattice
and then has frustration, associated with a massive degener-
ation [32]. The connection with supersymmetry is important
as there are many recent articles exploring several proper-
ties such as topology and supersymmetry on lattice systems
and which are of great relevance, thus we refer the reader
to them [33–36]. In this context is specially intriguing the
relationship found before between the squared TBG Hamil-
tonian and a boson Hamiltonian describing phonons in a flex-
ible system [26].

For the present work we decided to change the notation
used in such works and writeH2 in terms of a more physi-
cally suggestive picture by using pseudo-magnetic fields,

H2=
( −∇2 + α2U− −i2αA− · ∇+ αB−
−i2αA+ · ∇+ αB+ −∇2 + α2U+

)
(8)

whereU± denotes the intralayer confinement potentials [26],

U∓ = |U(∓r)|2, (9)

and,

A±(r) =
∑

µ

e±iqµ·rq̂⊥µ , (10)
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FIGURE 3. In panels a) and b), we show the real and imaginary parts of the pseudo-magnetic vector potentialA∓(r), respectively. In panels
c) and d), we show the real and imaginary parts of the pseudo-magnetic scalar potentialB∓(r), respectively. The arrows denote the direction
of the vectors while the color is used for the magnitude. In all panels we indicate the stacking points AA (red), BA (yellow) and AB (green)
over the real-space unit cell (black hexagon) and the cyan hexagon represents the magnetic unit cell. The magenta dots are related to the
centers of charge forα →∞ in the electronic density, and are also related to the QHE [28].

which turns out to be a two-dimensional pseudo-magnetic
vector potential in the Coulomb gauge as is easy to prove
that∇ · A± = 0. We also define a pseudo-magnetic scalar
potential,

B±(r) ≡ ∓i
∑

µ

e±iqµ·r, (11)

which has the property,

B∓(r) = ∇×A∓(r), (12)

where the cross product between two-dimensional vectors
given byA = (Ax, Ay) andB = (Bx, By) is A × B =
AxBy − AyBx. Observe that the related pseudo-magnetic
flux over the real-space unit cell vanishes,

Φ± =
∫

B±(r) · d2r = 0. (13)

Such cancelling can be graphically understood in Figs. 3a)-
b) where we plot the pseudo-magnetic vector potential in real
space. Notice thatB has an imaginary part which at first
sight seems to be an odd fact. However, after the first ex-
perimental observation for such effective fields in the evo-
lution of quantum coherence of a spin coupled to an Ising-
type spin bath [37], there are lots of works dealing with the

subject [38, 39]. Here it can be interpreted as in Ref. [37],
i.e., the quantum space evolution introduces a complex phase
factor inside the field. On the other hand, in Figs. 3c)-d) is
shown the pseudo-magnetic scalar field. In both cases, we
have a Kagome geometry for the pseudo-magnetic fields of
the squared hamiltonian.

4. Non-Abelian model for TBG

Let us now explore the nature of Eq. (8). In analogy to an
electron in a pseudo-magnetic vector potential, we define the
canonical momentum,

Π̃ = p +
eα

c
Â, (14)

whereΠ̃ is the canonicalSU(2) momentum,e the electron
charge andÂ is a non-AbelianSU(2) (see below) pseudo-
magnetic vector potential,

Â = (Âx, Ây), (15)

with Âx = A1,xτ̂1 + A2,xτ̂2 andÂy = A1,y τ̂1 + A2,y τ̂2,
where we used the set of Pauli matricesτ̂j (with j = 1, 2, 3)

Rev. Mex. Fis.69041602



FLAT BANDS, QUANTUM HALL EFFECT AND SUPERCONDUCTIVITY IN TWISTED BILAYER GRAPHENE AT MAGIC ANGLES 5

FIGURE 4. Representation in real space of a)A2(r) and b)h3(r). Where is indicated the stacking points AA (red), BA (yellow) and AB
(green) over the real-space unit cell (black hexagon) and the cyan hexagon represents the magnetic unit cell. The magenta dots are related to
the centers of charge forα →∞ in the electronic density, and are also related to the QHE [28].

in the pseudo-spin of the layer degree, and the2× 2 identity
matrix τ̂0. Explicitly, the components of̂A are,

A1,x = cos (qµ · r)q⊥,x
µ ,

A1,y = cos (qµ · r)q⊥,y
µ ,

A2,x = sin (qµ · r)q⊥,x
µ ,

A2,y = sin (qµ · r)q⊥,y
µ .

(16)

Note thatÂ is non-Abelian as follows from the fact that
[Âµ(r), Âν(r′)] 6= 0, i.e., µ 6= ν.

Using the canonical momentum with natural units
~, e, m, c = 1, the squared Hamiltonian can be written as,

H2 = (Π̃ · Π̃)− i(Π̃× Π̃) = (−i∇ + αÂ)2

− iεijk[−i∇i + αÂi,−i∇j + αÂj ], (17)

Eq. (17) can be further simplified to,

H2 = −∇2 + α2Â2 − 2iα(Â · ∇) + αF̂µν , (18)

whereF̂µν = ∂µÂν − ∂νÂµ − iα[Âµ, Âν ] is the Zeeman
coupling. Therefore, Eq. (18) proves that indeed the squared
chiral Hamiltonian describes an electron in a non-Abelian
SU(2) pseudo-magnetic field as was suggested before [40].

Now we investigate the Zeeman term. We start by ob-
serving that,

−i[Âx(r), Ây(r′)] = −i[A1xτ̂1 + A2xτ̂2, A1y τ̂1 + A2y τ̂2]

= −i[(A1xA2y −A1yA2x)τ̂1τ̂2

+ (A2xA1y −A2yA1x)τ̂2τ̂1], (19)

from where,

A1xA2y −A1yA2x =
∑
µ,ν

sin(qν · r′

− qµ · r)q̂⊥x
µ q̂⊥y

ν . (20)

Substituting Eq. (20) in the commutator Eq. (19), it follows
that forr = r′ ,

−i[Âx(r), Ây(r)] = 2τ̂3

∑
µ,ν

sin([qν

− qµ] · r)q̂⊥x
µ q̂⊥y

ν , (21)

where we specified that the commutator must be taken at the
same point. We also used that2iτ̂3 = [τ̂1, τ̂2]. From Eq.(21)
it follows that,

2
∑
µ,ν

sin ([qν − qµ] · r)q̂⊥x
µ q̂⊥y

ν = 2
[

sin (b1 · r)
√

3
2

− sin (b2 · r)
√

3
2

+ sin (b3 · r)
√

3
2

]

=
√

3
∑

µ

(−1)µ−1 sin (bµ · r), (22)

multiplying byα2 Eq. (22) and substituting in Eq. (21),

−iα2[Âx(r), Ây(r)] =
√

3α2τ̂3

∑
µ

(−1)µ−1

× sin (bµ · r) ≡ h3(r)τ̂3, (23)

where we defined the potential of the non-Abelian term
h3(r) =

√
3α2

∑
µ(−1)µ−1 sin (bµ · r) = α2/2(U−−U+).

In Fig. 4 we show the contour plot in real space for the
potentialh3(r). As in Fig. 3, it can be seen that the pseudo-
magnetic fields of the squared Hamiltonian behave like a
Kagome lattice. Moreover, note that these pseudo-magnetic
fields are described in a larger lattice due to the renormaliza-
tion process of the graphene lattice into a triangular lattice.
Therefore, the original real-space unit cell is now three times
larger where the pseudo-magnetic fields operate.

Rev. Mex. Fis.69041602
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The other term of the Zeeman coupling is related to the pseudo-magnetic scalar potentials as follows,

∂µÂν − ∂νÂµ =
∑

µ

[sin (qµ · r)(−q̂⊥y
µ qx

µ + q̂⊥x
µ qy

µ)τ̂1 + cos (qµ · r)(q̂⊥y
µ qx

µ − q̂⊥x
µ qy

µ)τ̂2], (24)

butqµ × q̂⊥µ = q̂⊥y
µ qx

µ − q̂⊥x
µ qy

µ = 1, therefore Eq. (24),

∂µÂν − ∂νÂµ =
∑

µ

[sin (qµ · r)τ̂1 − cos (qµ · r)τ̂2] =
(

0 i
∑

µ e−iqµ·r

−i
∑

µ eiqµ·r 0

)
=

(
0 B−

B+ 0

)
, (25)

whereB±(r) is the pseudo-magnetic interlayer potential and the non-Abelian pseudo-magnetic vector potential is written in
matrix form as,

Â =
∑

µ

[cos (qµ · r)τ̂1 + sin (qµ · r)τ̂2]q⊥µ =
(

0
∑

µ e−iqµ·rq⊥µ∑
µ eiqµ·rq⊥µ 0

)
=

(
0 A−

A+ 0

)
, (26)

In the same way, the square of the non-Abelian pseudo-magnetic vector potentialÂ is related to a new potentialV (r) =
α2A2 where,

Â2 = (A2
1x + A2

2x + A2
1y + A2

2y)τ̂0 =
∑
µ,ν

cos ([qµ − qν ] · r)q⊥µ · q⊥ν τ̂0 = (3−
∑

µ

cos (bµ · r))τ̂0. (27)

It follows that,

V (r) = α2(3−
∑

µ

cos (bµ · r)) =
α2

2
(U− + U+), (28)

and thereforeα2Â2 = V (r)τ̂0. Figure 4 presentsA2 which in fact is a confinement potential akin to a quantum dot.
Using all these results, it is possible to write the square Hamiltonian Eq. (8) in a way that manifest more clearly its

non-Abelian nature. We start by writingH2 purely in terms ofA,

H2 =
(−∇2 + α2(A2 − i[Ax, Ay]) α(−2iA− · ∇+∇×A−)

α(−2iA+ · ∇+∇×A+) −∇2 + α2(A2 + i[Ax, Ay])

)
, (29)

where[Ax, Ay] denotes the commutator of operatorsAx andAy. Also we can writeH2 as follows,

H2 = (−∇2 + V (r))τ̂0 + h3(r)τ̂3 + h1(r)τ̂1 + h2(r)τ̂2 (30)

where we definedh3(r) = −α2i[Ax(r),Ay(r)] andV (r) = α2A2. Also we define the off-diagonal components ash1(r) =
−∑

µ[sin (qµ · r) + 2i cos (q · r)q̂⊥µ ·∇] andh2(r) =
∑

µ[cos (qµ · r) − 2i sin (q · r)q̂⊥µ ·∇]. This last expression is very
important as it manifest in a clear fashion the topological nature of the hamiltonian as it includes all three Pauli matrices [26].

As proved in Ref. [29], in the limitα → ∞ we have that∂µÂν − ∂νÂµ À −iα[Âµ, Âν ]. Thus the Zeeman coupling is
F̂µν ≈ ∂µÂν − ∂νÂµ. Thereforeh3(r) is neglected and the system has a pure Abelian field for higher magic angles [28].
The pure Abelian field means that a constant effective magnetic can be found and eventually, it leads to the proof that in such
limit, the squared TBG hamiltonian at magic angles and the Quantum Hall effect hamiltonian are the same [28]. The other
limit α → 0 can be explored using perturbation theory, as done in the following section.

5. Strong non-Abelian limit: first magic angle perturbative solution at Γ-point

In this section we will explore the strong non-Abelian limit of the hamiltonian and its relationship with the first magic angle.
Before doing so, and as explained elsewhere [29], theΓ point can be used to reveal the magic angles asE2(Γ) is always the
highest energy for the central band. This is seen in Fig. 5, where we plotE2(Γ) as obtained from the numerical calculation
detailed in the appendix. For a flat band to exist, the energyE2(Γ) must be zero.

The expected values for a given layerj = 1, 2 are, the kinetic energy,

〈k|T̂j |k〉 ≡ −
∫

m

ψ†k,j(r)∇2ψk,j(r)d2r, (31)

Rev. Mex. Fis.69041602
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FIGURE 5. E2(Γ) obtained from the squared Hamiltonian Eq. (8)
at theΓ-point where the vertical lines indicate the first four magic
angles. The red curve represent the exponential squeezing of the
bands for higher magic angles as was proved in Ref. [41].

FIGURE 6. Expected values in theΓ point vsα. The numerical
results are indicated with dashed lines with markers. The kinetic
Energy〈Γ|T̂ |Γ〉 (purple), confinement energy〈Γ|Â2|Γ〉 (cyan),
〈Γ|Â · ∇|Γ〉 (magenta) and〈Γ|B̂|Γ〉 (brown). The solid lines are
the perturbative solutions. The vertical line indicates the first magic
angle valueα1 = 0.586. Notice how〈Γ|T̂ |Γ〉 = 〈Γ|Â2|Γ〉 atα1.

the confinement energy,

〈k|Â2
j |k〉 ≡ α2

∫

m

A2((±1)jr)ρk,j(r)d2r, (32)

and the energy contribution from the off-diagonal operators,

〈k|Âj · ∇|k〉 ≡ −2iα

∫

m

ψ†k,j+1(r)(A((±1)jr) · ∇)ψk,j(r)d2r, (33)

〈k|B̂j |k〉 ≡ α

∫

m

ψ†k,j+1(r)B((±1)jr)ψk,j(r)d2r, (34)

hereÂj andB̂j are the projections of the non-Abelian pseudo-magnetic vector potential and scalar potential, respectively, on
each layerj of the pseudo-spin degree. Therefore, the total energy for the squared Hamiltonian is,

∑

j

〈k|T̂j + Â2
j + Âj · ∇+ B̂j |k〉 = E2(k), (35)

where the indexj = 1, 2 for take into account the two layers.
For theΓ point it is very illustrative to use perturbation theory in the limitα → 0. The corresponding wave function is,

ψΓ,1(r) = U(−r) +
α

3
U(2r) +

α2

18

(
(2− eiφ)U(−

√
7Rγr) + (2− e−iφ)U(−

√
7R−γr)− 4U(2r)

)
+ ... (36)

andψΓ,2(r) = iµαψΓ,1(−r), whereRγr is a counterclockwise rotation on angleγ with tan(γ) =
√

3/5 andµα = ±1, the
minus sign is used for odd magic angles. In theΓ point at a given layer we obtain up to second order inα that,

〈Γ|T̂ |Γ〉 =
1 + 4α2

9

1 + α2

9

, 〈Γ|Â2|Γ〉 =
5α2

1 + α2

9

, (37)

〈Γ|Â · ∇|Γ〉 =
−3α− 2α2

9

1 + α2

9

, 〈Γ|B̂|Γ〉 =
−α− 11α2

9

1 + α2

9

. (38)

It follows that,

〈Γ|T̂ + Â2 + Â · ∇+ B̂|Γ〉 = 1− 4α + 4α2 ≈ E2(Γ). (39)

In Fig. 6 we compare these perturbative expected values with those obtained from the numerical results (see the appendix)
showing a very good agreement forα → 0. Our perturbative analysis allows to get a glimpse of the first magic angle position
as using Eq. (39) the condition for having a flat band turns out to be,

1− 4α + 4α2 = 0. (40)
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Therefore,α1 ≈ 1/2, a value which is close to the nu-
merically found first magic angle which is atα1 = 0.586.
Higher order terms in the expansion are needed to increase
the accuracy, but yet the main principle behind a magic angle
is already present in this simple approach.

Then we conclude that in going fromα = 0 to α1, the
confinement potential starts to contribute and reaches the ki-
netic energy at the magic angle. The off-diagonal operators
always diminish the energy. As expected, the first magic an-
gle is thus produced when the sum of the kinetic plus confine-
ment energies are equal in magnitude to the expected values
of the off-diagonal operators.

6. Weak Non-Abelian limit and higher order
magic angles: equivalence with the Quan-
tum Hall effect

As we discuss below, for higher-order magic angles the non-
Abelian effects are weak since the system can be treated
as if the magnetic field is constant due to a strong confine-
ment. In fact, we recently proved that theH2 hamiltonian
converges into the Quantum Hall effect hamiltonian,i.e., it
is equivalent to a two dimensional quantum oscillator [28].
We refer the reader to this reference for more details. Here
we only make some remarks concerning the strong confine-
ment. To show how it arises, consider the zero-mode equation
D(r)

(
ψ1(r), ψ2(r)

)T = 0. Although allk points are suit-
able to be studied, it is easier to obtain theΓ point solution
as due to symmetry,ψ2(r) = iµαψ1(−r) whereµα = ±1
depending on the magic angle parity [20]. The zero-mode
equation is thus translated into the following set of equations,

∂̄ψ1(r) = αµαU(r)ψ1(−r), (41)

∂̄ψ1(−r) = −αµαU(−r)ψ1(r). (42)

In the limit α → ∞, boundary layer theory of differential
equations [42] applied to Eqs. (41)-(42) indicates that if gra-
dients are small, the derivatives can be neglected and thus the
solution must satisfyψj(r) → 0. Only in the boundary layer,

i.e., when∂̄ψj(r) is of orderαU(±r)ψj(r) a solution dif-
ferent from zero is found. We conclude that zero-modes so-
lutions are strongly peaked around certain regions of space
indicating a strong confinement.

From there it is possible to prove that flat-band states con-
verge into coherent Landau levels [28]. These are the small-
est wave-packets that can be constructed from states within
the lowest Landau level [28]. The resultant electron density
is made from a linear combination of Gaussians [43] with
mean deviation given byσ ≈ 1/

√
3α. As σ → 0 when

α →∞, the non-Abelian nature of the field is effectively de-
creased as the electron will not probe all regions of space. As
the problem is thus similar to a constant magnetic field, from
there it is obtained that the squared Hamiltonian becomes the
Quantum Hall effect Hamiltonian [28].

7. Conclusion

The chiral TBG Hamiltonian is equivalent to an electron in-
side of a non-Abelian pseudo-magnetic field. Here we gave
its corresponding general expression. Then we explored the
first magic angle using perturbation theory to show how the
kinetic, confinement energy and interlayer currents produce
a magic angle. For the first magic angle results that the
non-Abelian properties are more important than other higher
magic angles because the commutator becomes less impor-
tant. Therefore, in the limitα → ∞, we recover an effective
Abelian behavior that explains in part the effective equiva-
lence between the Quantum Hall effect hamiltonian and the
TBG hamiltonian [28]. The emergent Kagome structure ob-
served in the pseudo-magnetic fields and for small angles
α → ∞ [28, 44], opens the question of whether there is any
mechanism related to the Kagome lattice of the chiral magic
angle TBG like spin-liquids or magnetic frustration, and what
role it plays in the mechanism of superconductivity, FQHE
and the physics of such strong correlations in TBG. This al-
lows us to take advantage of this ideal scenario to build highly
entangled ground states and opens many exciting technolog-
ical possibilities in moiŕe materials.

Appendix

A. Exact diagonalization method for the squared Hamiltonian and its boundary conditions

A general Bloch’s wave function with momentumk in the mBZ has the form [20],

Ψk(r) =
(

ψk,1(r)
ψk,2(r)

)
=

∑
m,n

(
amn

bmneiq1·r

)
ei(Kmn+k)·r, (A.1)

whereamn(bmn) are the Fourier coefficients of layer 1 (layer 2) andKmn = mb1 + nb2 with b1,2 are the two moiŕe Brillouin
zone vectors andm,n integers. If we plug Eq. (A.1) in H2Ψk(r) = E2Ψk(r) it follows that,

(|Kmn + k|2 + 3α0)amn + α−φam+1,n + αφam,n+1 + αφam−1,n + α−φam,n−1 + αφam+1,n−1 + α−φam−1,n+1

+ α[(2q̂⊥1 · (Kmn + k + q1)− i)bmn + (2q̂⊥2 · (Km+1,n + k + q1)− i)bm+1,n

+ (2q̂⊥3 · (Km,n+1 + k + q1)− i)bm,n+1] = E2amn, (A.2)
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and

(|Kmn + k + q1|2 + 3α0)bmn + α−φbm−1,n + αφbm,n−1 + αφbm+1,n + α−φbm,n+1 + αφbm−1,n+1

+ α−φbm+1,n−1 + α[(2q̂⊥1 · (Kmn + k) + i)amn + (2q̂⊥2 · (Km−1,n + k) + i)am−1,n

+ (2q̂⊥3 · (Km,n−1 + k) + i)am,n−1] = E2bmn, (A.3)

whereq̂⊥µ = (cos [(µ− 1)φ], sin [(µ− 1)φ]) andαφ = eiφα2. Here Eqs. (A.2) and (A.3) form a coupled linear system that
can be solved to find the corresponding eigenvalues. In general, there areL = (2N + 1) × (2N + 1) coefficientsamn(bmn)
with N the range of the matrix and2N + 1 the elements in the set, therefore, the Hamiltonian matrix has dimensionD = 2L.
The full space for the Fourier coefficients is spanned as,S → {{m,−N, N}, {n,−N,N}} whereS is the set of elements in
each layer with range2N + 1.

For simplicity, the geometry of the mBZ with(m,n) coordinates is spanned as a square lattice and the immediately effect
are the boundary conditions in each layer,

a±(N+1),n = 0, am,±(N+1) = 0, b±(N+1),n = 0, bm,±(N+1) = 0, (A.4)

therefore, for|M | > |N | all coefficients in both layers are zero. Also, symmetry considerations using the groupD3h allow to
simplify the system to optimize the numerical calculation. To find the expected values at theΓ point, we needΨΓ(r), obtained
by settingk = q1.
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