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Flat band electronic modes are responsible for superconductivity in twisted bilayer graphene rotated at magic angles. From there other magi
angles can be found for any multilayered twisted graphene systems. Eventually this lead to the discovery of the highest ever known electron:-
electron correlated material. Moreover, the quantum phase diagram of twisted bilayer graphene is akin to those observed among high-
superconductors and thus there is a huge research effort to understand twisted bilayer graphene in the hope of clarifying the physics behin
such strong correlations. A particularity of the twisted bilayer graphene is the coexistence of superconductivity and the fractional Quantum
Hall effect, yet this relationship is not understood. In this work, a sir2ple 2 matrix model for twisted bilayer graphene is obtained by

taking the square of the origindlx 4 chiral twisted bilayer graphene hamiltonian. Such squared Hamiltonian contains the magic angles and
due to the intrinsic chiral symmetry in twisted bilayer graphene, a lowest energy level related to the quantum Hall effect. The non-Abelian
properties of this squared Hamiltonian play a central role in the electronic localization to produce the flat bands and here it is proved that
the squared Hamiltonian of the chiral TBG model is equivalent to a single electron Hamiltonian inside of a non-Abelian pseudo-magnetic
field produced by electrons in other layers. Therefore, the basic and fundamental elements in the physics of magic angles are determined. |
particular, an study is made on these fundamental energy contributionsiaptiat due to its relation to the recurrence of magic angles and

its relationship with the Quantum Hall effect.
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1. Introduction An interesting strong coupling theory of superconductiv-
ity based on skyrmions could explain the mechanism of su-

. . . perconductivity in TBG [11]. For this purpose is important
Recently it has been showed that twisted bilayer graphenf‘O understand the quantum geometry of flat bands in magic-

sy_stems support superconducting_ phases a.t certain Spe.c}mgle TBG which is purely the mathematical structure nec-
twist angles [1, 2], where electronic correlations are m""X"essary to measure distances at the quantum regime. Also is

mized due to the existence of flat-bands [3]. Moreover Caq ; : ;
! mportant to analyze the interplay between interaction range
et al. [1] found that such TBG systems have a Mott insulat- P y s g

ing phase that appears in the middle of unconventional su-
perconducting phases, similar to the phase diagram founc  0.10}
in cuprates and other high temperature superconductors [4]

FeSe(1L)/STO |

The appearance of a Mott correlated insulator and unconven- 0.08+ Magic-angle TBG o ® |
tional superconducting phases in the flat band of magic-angle & e® O - -

i L . [ ] Iron pnictides
TBG at a small carrier density cannot be explained by weak- =, 0.06+ ‘ o °® ]

coupling BCS theory [5-14]. In fact, althoudh. is very !:"_, :
small, of the order ofl.7K, the electron-electron coupling £ 0.04! : ' §
turns out to be very high. In Fig. 1 we show the variation of

In (T./Tr), whereTr is the Fermi temperature affd is the 0.02} " Heavy-fermion superconductors 3
critical temperature of the superconducting phase as a func- P By By By Py i sn g py g Py
tion of the charge doping’. This plot intends to compare the 5 4 3 2 1

electron-electron coupling once the density of carriers and
Tr are taken into account. The magic-angle TBGTr ra-

tio is above the tren_d lines on which most heavy fermlonS’FlGURE 1. Variation ofln (7 /Tr) (logarithmic scale) as function
_cuprates and organic superconductors _Ile [1]. Thereaftery, . (charge doping) in scaled units t'* cm2 for magic-angle
it has been experimentally found that trilayer graphene rotgg (blue points). Herd. is the critical temperature for a super-
tated by magic angles turns out to be the highest ever foungonductor state and is the Fermi temperature. The horizontal
electron-electron correlated material [15]. Up to now, the ori-lines indicate the approximatg. /T values of the corresponding
gin of superconductivity in TBG remains under debate. family of materials. Adapted from Ref. [1].
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2 L. A. NAVARRO-LABASTIDA AND G. G. NAUMIS

and Berry curvature inhomogeneity. A deeper theoreticatan also occur in graphene over substrates even without
study by Ledwithet al [16] based in vortexability and the twists yet TBG systems are paradigmatic. To make the TBG
importance of chiral symmetry to induce vortexable bandsnodel more realistic, G. Tarnopolslky al. [20] took into ac-
as a generalization of the LLL (Lowest Landau Level) for count the structural relaxation due to carbon-carbon repulsion
hosting a short-range interacting ground state (SRI-GS) ibetween layers and a chiral continuum model was produced.
of great relevance. Vortexable bands are a class of band®erhaps, so far, it is the simplest and more realistic model
to which one can attach vortices while remaining within thethat best captures the nature of magic angles; at these special
subspace defined by the bands. This treatment of vortexablngles the dispersion energy at the lowest bands becomes flat
bands allows the construction of exact many-body FQHEand has a recurrence behavior. Also at these magic angles
(Fractional Quantum Hall Effect) ground states in the limitthe Fermi velocity goes to zero. Due to its chiral symmetry,
of short-range interactions, and possibly vortexable bands dhe Hamiltonian of this model produces an intra-valley in-
equal and opposite Chern numbers related to superconduegersion symmetry [21] so the energy dispersion is inversion
tors based on skyrmions. On the other hand, magic-angleymmetric at all twist angles and thus symmetry protected at
TBG has flat Chern bands at zero magnetic field. Thereforeany twist angle. The zero-mode have some resemblance to
TBG promises a route towards stabilizing zero-fields Fracthe ground state of a quantum Hall effect wave function on a
tional Chern Insulators (FCIs) [17]. torus [20, 22], and, therefore, the solution is of the quantum
In fact, the study of the electronic properties of twisted harmonic oscillator type, where Landau levels arise [23-25].
bilayer graphene started before the discovery of supercorAnother interesting mathematical characteristic is that flat-
ductivity at magic angles. In works of 2007 by J. Santos [18]band modes are constructed from a complex analytic func-
and 2011 by A. Macdonald [19], an effective low energy con-tions that are ratios of the theta Jacobi functions [20, 22].
tinuous Hamiltonian model was derived.

In such studies the idea was to generate ipitterns Furthermore, due to the quantized nature of the magic

as a function of the twist angle between graphene layers. Iﬁmgles I appears that t_here_ is an adiabatic change in inte-
Fig. 2 we show the unit cell for the méimattern of TBG gers of this topological invariant. However, there are many
: " open guestion concerning the possible relationship between

The new unit cell vectors in the maéirattice are scaled as .
the inverse of the twist angle between layers, therefore, fo‘he quantum hall effect (QHE) and the TBG, th? quantized
nature of flat-bands and the nature of wave functions.

small twist angles, it is expected to have a bigger mainit
cell. Form there is possible to define a r_réx)BriIIouin zone In a series of previous papers, the authors showed that
(mBZ). For small twist angles, the mBZ is also small due topy making a supersymmetric transformation akin to take the
the moi€ modulation vector. Flat-band were found at certainSquare of the original chiral TBG hamiltonian, the physics
angles and from there superconductivity was predicted [19].pehind the magic angles becomes clear [26-28]. The aim of
The reason for the appearance of flat bands and its quaihis work is to review the topic and clarify the physical be-
tized nature is not understood. Therefore, lots of researchavior of this model as well as to develop an effective equa-
have been conducted in this direction. Notice that flat bandﬁon for such Squared Hamiltonian in order to Study all other
non flat band states. Although one of the authors presented
before in this journal some details of the squared Hamilto-
nian model [29], here we go further by showing that the ef-
fective system is related to pseudo-magnetic fields, bringing
the possibility of writing the squared chiral TBG Hamiltonian
in a non-Abelian fashion where effective magnetic fields ap-
pear, making the connection with the QHE transparent. Then
we discuss the physical picture that arises from this minimal
model including an analytical calculation of the first magic
angle to show how this arises as a balance between kinetic,
confinement energies and interlayer currents.

Let us finally add that the origindlx 4 Hamiltonian is an
effective model that contains hundreds of atoms in its unitary
cell which is of the size of nanometers (see Fig. 2). How-
ever, it is made from a basis with bi-spinors and thus can be
thought as representing the dynamics of two coupled quasi-

FIGURE 2. Picture of twisted bilayer graphene (TBG) system. The Particles. Therefore, one can sill interpret the origiial 4
graphene monolayer 1 (green) and monolayer 2 (purple) have a rel@S WO quasiparticles in a non Abelian field. However, this
ative twist angle that produce a meipattern (cyan) with a unit cell IS much more difficult to visualize than in the approach pre-
much bigger than the original unit cell of each monolayer graphene sented here, where one of the quasiparticles is renormalized
The unit cell of the moie pattern is indicated (red). by squaring the Hamiltonian.
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FLAT BANDS, QUANTUM HALL EFFECT AND SUPERCONDUCTIVITY IN TWISTED BILAYER GRAPHENE AT MAGIC ANGLES 3

2. Chiral TBG system wherew, is the interlayer coupling of stacking AB/BA with
o o ~ valuew; = 110 meV andvy is the Fermi velocity with value
The Bistritzer-MacDonald Hamiltonian (BMH) model arises ,,, — 19 81 eV/2kp.

by a simple stacking of two rotated graphene layers with an  44re we will use units where, — 1 and re-scaled vectors
interaction between them [19]. One of the authors gave a simg ., thay, = q,./ke andr’ = ker, thereforer-q, = r'-q'
n — Yp - ’ n w

ple derivation of this m_odel in this journal before and thusis independent of;, thus the antiholonomic and holonomic
we refer the reader to it [29]. Although the BMH contains onerators are dimensionless. In other words, we can con-

the magic angle physics, in real TBG stacking points whergjjer the system as if it were with a fixed geomeirg,
carbon atoms are on top of another carbon (known as A’%etting d = aq = (0,-1), ¢ = g = (v3/2,1/2),
stacking) are pulled apart out of the intralayer plane due t ! = g3 = (—/3/2,1/2) while the twist angle enters only
Coulomb repulsion. As a consequence, interlayer electrof}, ihe coupling pare{meter. The vectorsh, » = qa5 — q

tunnelling in AA sectors is greatly reduced and can be safely,, , ot to be the mokr reciprocal vectors and for its utility,
neglected. This result in a chiral Hamiltonian (CH) [13, 20]. \e define a third vectdss = gs — go.

Let us write this model. Consider as basis the wave vectors To finish the model. we found useful to define a set of
®(r) = (¢1(r),¥2(r), xa(r), x2(r))" where the index, 2 i L iven hyal — sl

unitary vectorsg;- given by g; (1,0), g5 (—1/2,
represents each graphene layer gn@-) andy;(r) are the V3/2), 4t = (_“1/2 ~V3/2)
Wannier orbitals on each site of the graphene’s unit cell, 43 = ’ '
in sites A and B of the graphene’s bipartite lattice. Using this

base, the CH is [20,30, 31, 3. Squared TBG Hamiltonian and Pseudo-
_( 0  D*(-r) magnetic fields
H= (D(r) 0 ) ’ @ )
In a previous work [26] we showed how, by taking the square
of H, which is akin to consider a supersymmetric model, it
—id ol (r) is possible to write the Hamiltonian a2ax 2 matrix. This
D(r) = <aU(—r) —id > ) (@) transformation takes into account the particle-hole symmetry
) ) _ and folds the band arourfd = 0. Physically, it removes one
and its rotated and conjugated version, of the bipartite lattices on each layer, leaving two triangu-
0 aU*(~r) lar lattices on each layer. In a series of previous works we
D*(—r) = (aU*(r) i ) (3)  investigated several properties of this Hamiltonian, among
the most important is the mapping of the flat-band into a
We also defined the antiholonomic operator, ground state separated by a gap form the rest of the states.
This state has an antibonding nature in a triangular lattice

where we defined the zero mode operator as,

0 = 0 + 10y, 4) and then has frustration, associated with a massive degener-

and the holonomic operator, ation [32]. The connection with supersymmetry is important
as there are many recent articles exploring several proper-
0 = 0y — i0y. (5) ties such as topology and supersymmetry on lattice systems

) ] and which are of great relevance, thus we refer the reader
Both operators eventually play an important role in they, them [33-36]. In this context is specially intriguing the

theory, as the flat-band wavefunctions are in part determinehationship found before between the squared TBG Hamil-
by the fact that the antiholonomic derivative of any ana-yynjan and a boson Hamiltonian describing phonons in a flex-
lytic function is zero [28]. Although these operators appear|q system [26].

in graphene, the lack of a position dependent pptential in For the present work we decided to change the notation
graphene allows to solve the problem in a very simple WaY <o in such works and writd2 in terms of a more physi-

without the need to look for the analytical properties of solu- : : : o
) . - cally suggestive picture by using pseudo-magnetic fields,
tions. The interlayer potential is [20], y sugg P y gp g

2 2 .
U — i id_—igar —ig —igz-T 6 2_ -V +a°U_ —i2a0dA_ -V +aB_

(r)y=e +e'%e +e e (6) H (—i2aA+ -V +aB, —V2 + 02U, (8)
Here¢ = 2r/3 andq; = ky(0, —1), g2 = ko(v/3/2,1/2),
s :ie(_\/g/ﬂ,l/gl. ol ) a2 o(V3/2,1/2) whereU. denotes the intralayer confinement potentials [26],

The distance between each layer graphene Dirac cone is )
kg = 2kp sin0/2 with kp = 47 /3a, the Dirac wave vector Ur = |U(Fr)|%, 9)
anday the lattice constant of graphene. The physics of this
model is captured via the parameterdefined as, and,
w i, T A
= (7) Ai(r) =) gy, (10)
I
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4 L. A. NAVARRO-LABASTIDA AND G. G. NAUMIS

Re[A.(r)] Im[A.(N)]

20

Im[B.(r)]

ylnm]

C) X[nm] d) x[nm]

FIGURE 3. In panels a) and b), we show the real and imaginary parts of the pseudo-magnetic vector pdteftiglrespectively. In panels

c) and d), we show the real and imaginary parts of the pseudo-magnetic scalar p@eiti) respectively. The arrows denote the direction

of the vectors while the color is used for the magnitude. In all panels we indicate the stacking points AA (red), BA (yellow) and AB (green)
over the real-space unit cell (black hexagon) and the cyan hexagon represents the magnetic unit cell. The magenta dots are related to the
centers of charge far — oo in the electronic density, and are also related to the QHE [28].

which turns out to be a two-dimensional pseudo-magnetisubject [38, 39]. Here it can be interpreted as in Ref. [37],
vector potential in the Coulomb gauge as is easy to provée. the quantum space evolution introduces a complex phase
thatV - AL = 0. We also define a pseudo-magnetic scalarfactor inside the field. On the other hand, in Figs. 3c)-d) is
potential, shown the pseudo-magnetic scalar field. In both cases, we
_ +igur have a Kagome geometry for the pseudo-magnetic fields of
Bx(r) = ]FZ%:e o (11) the squared hamiltonian.

which has the property, )
4. Non-Abelian model for TBG

Bo(r) =V x Ax(r), 12)
where the cross product between two-dimensional vectorset Us now explore the nature of E@)( In analogy to an
given by A = (4,,4,) andB = (B,,B,)is A x B = electron in a pseudo-magnetic vector potential, we define the
A,B, — A,B,. Observe that the related pseudo-magneticcanonical momentum,
flux over the real-space unit cell vanishes, - .

P m=p+ 4 (14)
- / Bi(r)-d®r =0. (13) ¢

i ) o wherell is the canonicabU (2) momentumg the electron
Such cancelling can be graphically understood in Figs. 3a)éharge andd is a non-AbelianST(2) (see below) pseudo-
b) where we plot the pseudo-magnetic vector potential in rea\‘nagnetic vector potential

space. Notice thaB has an imaginary part which at first

sight seems to be an odd fact. However, after the first ex- A=(A, A), (15)
perimental observation for such effective fields in the evo-

lution of quantum coherence of a spin coupled to an Isingwith A, = Ay T+ AT andAy = Ay 71 + Aoy,
type spin bath [37], there are lots of works dealing with thewhere we used the set of Pauli matrigegwith j = 1,2, 3)

Rev. Mex. Fis69041602



FLAT BANDS, QUANTUM HALL EFFECT AND SUPERCONDUCTIVITY IN TWISTED BILAYER GRAPHENE AT MAGIC ANGLES 5
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FIGURE 4. Representation in real space of 4 (r) and b)hs(r). Where is indicated the stacking points AA (red), BA (yellow) and AB
(green) over the real-space unit cell (black hexagon) and the cyan hexagon represents the magnetic unit cell. The magenta dots are related
the centers of charge far — oo in the electronic density, and are also related to the QHE [28].

in the pseudo-spin of the layer degree, and2he2 identity ~ Substituting Eq.20) in the commutator Eq/10), it follows
matrix 7. Explicitly, the components ofl are, that forr = »’,

— . l7x ~ ~
Al,a: = COS (qlJ« T)qp, ) —Z[Aw('f’), Ay('l")] _ 2723 ZSin([qy
Ay, =cos(qy- r)qi"y, v
(16) ala sl
A2,x = sin (QH ’ "’)q/i_’z7 o q/‘] ’ T)qu ‘4,7, (21)

Ay, =sin(qy "‘)Q,f’y- where we specified that the commutator must be taken at the
same point. We also used that; = [7, 7). From Eq/21)

Note 'EhatA is non-Abelian as follows from the fact that it follows that,

[A,(r), A, (r)] #0,ie, u#v.

Using the canonical momentum with natural units V3
h,e,m,c = 1, the squared Hamiltonian can be written as, 2 Zsin (lgv — @] - 7)3, "4y Y =2 [sin (by - r)7
H? = (I T0) — (T x II) = (—iV + aA)? a
— i€k —iVi + @A, —iV; + aA,], (17) = sin (by - 7) =~ +sin (bs - 1) 5~
Eq. (17) can be further simplified to, _ \/52(71)“*1 sin (b, - 7), 22)
H? = -V? +a?A? - 2ia(A-V) +aF,,,  (18) A

whereF,, = 9,A, — 9,A, —ialA,, A,] is the Zeeman multiplying by o2 Eq. 22) and substituting in Eq2(l),
coupling. Therefore, Eq18) proves that indeed the squared
chiral Hamiltonian describes an electron in a non-Abelian —z’aQ[Am(r),Ay(r)] — \/§a2¢32(,1)u*1
SU(2) pseudo-magnetic field as was suggested before [40]. "

Now we investigate the Zeeman term. We start by ob-

serving that, x sin (b, - 7) = hs(r)7s3,  (23)

—i[AL(r), Ay ()] = —i[A1.71 + AoyTo, AryT1 + Agy7]  where we defined the potential of the non-Abelian term
- L. ha(r) = v3a2 3 (—1)*tsin (b, -7) = a?/2(U- - Uy}).

= —il(ArAzy = Ay Aze) 172 In Fig. 4 we show the contour plot in real space for the

+ (Agz Avy — Aoy Aig)ToTi], (19) potentialhs(r). As in Fig. 3, it can be seen that the pseudo-
magnetic fields of the squared Hamiltonian behave like a
Kagome lattice. Moreover, note that these pseudo-magnetic
A Ay, — Ay Ay, = Z sin(q,, - r/ fields are described in a larger lattice due to the renormaliza-
o tion process of the graphene lattice into a triangular lattice.

lzaly Therefore, the original real-space unit cell is now three times

— Q- 7T)3 G (20) larger where the pseudo-magnetic fields operate.

from where,

Rev. Mex. Fis69041602



6 L. A. NAVARRO-LABASTIDA AND G. G. NAUMIS

The other term of the Zeeman coupling is related to the pseudo-magnetic scalar potentials as follows,

0, A, — 0,A, = [sin(qu-7)(—4,"q) + 4, al)1 + cos (qu - 7)(d,Va), — 4 a7, (24)
o

butg, x 4;; = ¢.Vq% — G, “qY = 1, therefore Eq.24),

: : . . . 0 ] ~iqur 0 B_
LA, —0,A, = Z[sm (g -7T)T1 —cos (g, - 7)) = ( ‘ Z“% ) = <B+ 0 > , (25)

p %, e

where B (r) is the pseudo-magnetic interlayer potential and the non-Abelian pseudo-magnetic vector potential is written in
matrix form as,

. o X 0 S eTtauTgl 0 A_

= § ] . ] . 1_ _ Iz 20

A= [cos (g, - r)T1 +sin(g, r)Tg]qM (Zu e“lﬂ""qf; 0 ) <A+ 0 > , (26)
o

In the same way, the square of the non-Abelian pseudo-magnetic vector patbigiatlated to a new potenti®d (r) =
2 A2
a® A? where,

AQ = (A%x + A%m + A%y + A%y)ﬁ) = Z coS ([qP« - qV] : T)qﬁ : qu;’f-o = (3 - ZCOS (bld« : ’I”))’f'o. (27)
IR I
It follows that,

V(r)=a’(3= )" cos(b, 1) = 5-(U- +Us), (28)

and therefore2 A2 = V (r)7y. Figure 4 presentd? which in fact is a confinement potential akin to a quantum dot.
Using all these results, it is possible to write the square Hamiltonian Byin (a way that manifest more clearly its
non-Abelian nature. We start by writing? purely in terms ofA,

o2 —V2+a?(A? —i[A,;,A)]) a(-2iA_ - V+VxA) 29)
T\ a(-20A, - V+V xAL) —-ViZ+a?(A?+ilAA)))°
where[A,, A,] denotes the commutator of operatets and A,,. Also we can writeH? as follows,
H? = (=V2 + V(r)7o + ha(r)73 + ha(7) 71 + ha(r) 7o (30)

where we defineds(r) = —a?i[A,(r), A,(r)] andV (r) = a® A2. Also we define the off-diagonal componentshaér) =

—>_,[sin (g, - r) + 2icos(q- 7)q; - V] andhy(r) = > ulcos (g - m) — 2isin(q - 7)q;, - V]. This last expression is very

important as it manifest in a clear fashion the topological nature of the hamiltonian as it includes all three Pauli matrices [26].
As proved in Ref. [29], in the limitv — oo we have that, A, — 8, A, > —ia[A,, A,]. Thus the Zeeman coupling is

F,“, R 8#,41, — al,A#. Thereforehs(r) is neglected and the system has a pure Abelian field for higher magic angles [28].

The pure Abelian field means that a constant effective magnetic can be found and eventually, it leads to the proof that in such

limit, the squared TBG hamiltonian at magic angles and the Quantum Hall effect hamiltonian are the same [28]. The other

limit & — 0 can be explored using perturbation theory, as done in the following section.

5. Strong non-Abelian limit: first magic angle perturbative solution at I'-point

In this section we will explore the strong non-Abelian limit of the hamiltonian and its relationship with the first magic angle.
Before doing so, and as explained elsewhere [29]Itpeint can be used to reveal the magic angle&ad") is always the
highest energy for the central band. This is seen in Fig. 5, where weEB[d@t) as obtained from the numerical calculation
detailed in the appendix. For a flat band to exist, the en&ji’) must be zero.

The expected values for a given layet 1, 2 are, the kinetic energy,

(k|T; k) zf/ UL (1) V2 (r)d?r, (31)

Rev. Mex. Fis69041602



FLAT BANDS, QUANTUM HALL EFFECT AND SUPERCONDUCTIVITY IN TWISTED BILAYER GRAPHENE AT MAGIC ANGLES 7

Expected Values

0.1 05 1 5
In(a) i

FIGURE 6. Expected values in thE point vsa. The numerical
results are indicated with dashed lines with markers. The kinetic
FIGURE 5. E*(T") obtained from the squared Hamiltonian E8) ( Energy (T'|T'|T) (purple), confinement energ§l'| A%|T") (cyan),
at theI'-point where the vertical lines indicate the first four magic (r|A . v|T") (magenta) andT’| B|T") (brown). The solid lines are
angles. The red curve represent the exponential squeezing of thehe perturbative solutions. The vertical line indicates the first magic
bands for higher magic angles as was proved in Ref. [41]. angle valuey; = 0.586. Notice how(T'|T|T") = (T'|A%|T) ata.

the confinement energy,

<k|A?|k) = a2/ AZ((il)jT)pk’j(T)dQ’P, (32)

and the energy contribution from the off-diagonal operators,
(k|A; - V|Ek) = —2m/ ¢L’j+1(r)(A((:|:1)jr)-V)¢k7j(r)d2r7 (33)
(k|Bjlk) = a / U)o (M) B((EL) ) (r)d?r, (34)

hereAj andBj are the projections of the non-Abelian pseudo-magnetic vector potential and scalar potential, respectively, on
each layerj of the pseudo-spin degree. Therefore, the total energy for the squared Hamiltonian is,

> (K|T; + A2+ A; -V + Bjlk) = E*(k), (35)
J
where the indey = 1, 2 for take into account the two layers.
For theI” point it is very illustrative to use perturbation theory in the limit— 0. The corresponding wave function is,

2

Yra(r) = U(—r) + %U(2r) + % ((2 — NU(—VTR,) + (2 — e U(~VTR_,7) — 4U(2r)) Y. (36)

andiyr o(r) = ipatr,i(—r), whereR,r is a counterclockwise rotation on anglavith tan(vy) = V3/5 andp, = +1, the
minus sign is used for odd magic angles. Inthgoint at a given layer we obtain up to second order that,

R 1—|—£ A 5a

L7r) = —2-, L|A%T) = , 37
<\|>1+%2 <||>1+%2 (37)

. -3 _ 227 . oy 11a?
(DA VD)= 2“9 (TBID) = 2. (38)

1+ % 1+ 4%
It follows that,

(DT 4+ A2 + A -V + B|T') = 1 — 4o + 40? =~ E*(T). (39)

In Fig. 6 we compare these perturbative expected values with those obtained from the numerical results (see the appendix
showing a very good agreement fer— 0. Our perturbative analysis allows to get a glimpse of the first magic angle position
as using Eq.39) the condition for having a flat band turns out to be,

1 —4a+40? =0. (40)

Rev. Mex. Fis69041602



8 L. A. NAVARRO-LABASTIDA AND G. G. NAUMIS

Therefore,a; ~ 1/2, a value which is close to the nu- i.e, whendy;(r) is of orderal (£r)y;(r) a solution dif-
merically found first magic angle which is at = 0.586.  ferent from zero is found. We conclude that zero-modes so-
Higher order terms in the expansion are needed to increadetions are strongly peaked around certain regions of space
the accuracy, but yet the main principle behind a magic anglendicating a strong confinement.
is already present in this simple approach. From there it is possible to prove that flat-band states con-

Then we conclude that in going from = 0 to oy, the  verge into coherent Landau levels [28]. These are the small-
confinement potential starts to contribute and reaches the kist wave-packets that can be constructed from states within
netic energy at the magic angle. The off-diagonal operatorghe lowest Landau level [28]. The resultant electron density
always diminish the energy. As expected, the first magic anis made from a linear combination of Gaussians [43] with
gle is thus produced when the sum of the kinetic plus confinemean deviation given by ~ 1/v/3a. Aso — 0 when
ment energies are equal in magnitude to the expected values— oo, the non-Abelian nature of the field is effectively de-
of the off-diagonal operators. creased as the electron will not probe all regions of space. As

the problem is thus similar to a constant magnetic field, from

6. Weak Non-Abelian limit and higher order there it is obtained that the squared Hamiltonian becomes the
magic angles: equivalence with the Quan- Quantum Hall effect Hamiltonian [28].
tum Hall effect

As we discuss below, for higher-order magic angles the non-7' Conclusion

Abelian effects are weak since th tem can treat : o . .
be_z an efiects are weak since ne system ca be ea ePhe chiral TBG Hamiltonian is equivalent to an electron in-
as if the magnetic field is constant due to a strong confine-

Q2 side of a non-Abelian pseudo-magnetic field. Here we gave
ment. In fact, we recently proved that tiié” hamiltonian its corresponding general expression. Then we explored the
converges into the Quantum Hall effect hamiltoniaa,, it P 99 b i b

is equivalent to a two dimensional quantum oscillator [28].fIrSt magic angle using perturbation theory to show how the

. . kinetic, confinement energy and interlayer currents produce
We refer the reader to this reference for more details. Here ! gy eriay P
. . a magic angle. For the first magic angle results that the

we only make some remarks concerning the strong confine=- . : . :
e . . non-Abelian properties are more important than other higher

ment. To show how it arises, consider the zero-mode equation

T . ) magic angles because the commutator becomes less impor-
Db(lr) t(wé(r)j[wj.(rd)).t n 0. Althtougtr)lt a_IIkﬂhpomtst arcla f.u't' tant. Therefore, in the limitc — oo, we recover an effective
able 1o be studied, 1t 15 eaS|¢r 0 obtain M@oint SOIUON - Apelian behavior that explains in part the effective equiva-
as due to symmetryps(r) = ipath1(—r) wherep, = +1

; . . lence between the Quantum Hall effect hamiltonian and the
depending on the magic angle parity [20]. The zero-mod Quantu ron!

*rBG hamiltonian [28]. The emergent Kagome structure ob-

equation is thus translated into the following set of equat'onSServed in the pseudo-magnetic fields and for small angles

o1 (r) = apaU(r)y(—r), (41) o — oo [28,44], opens the question of whether there is any
= mechanism related to the Kagome lattice of the chiral magic
OY1(=7) = —apaU(=r)y(r). (42) " angle TBG like spin-liquids or magnetic frustration, and what

In the limit @« — oo, boundary layer theory of differential role it plays in the mechanism of superconductivity, FQHE
equations [42] applied to Eqs41)-(42) indicates thatif gra- and the physics of such strong correlations in TBG. This al-
dients are small, the derivatives can be neglected and thus tihaws us to take advantage of this ideal scenario to build highly
solution must satisfy; (r) — 0. Only in the boundary layer, entangled ground states and opens many exciting technolog-
| ical possibilities in moie materials.

Appendix
A. Exact diagonalization method for the squared Hamiltonian and its boundary conditions

A general Bloch’s wave function with momentuknin the mBZ has the form [20],
o 1;[}1671 (Ir) _ Amn i(Kpnt+k)r
\I/k(,r) - (1/%,2(7’) B Z b7nn€iq1-7' € ’ (Al)

wherea,,,, (b, are the Fourier coefficients of layer 1 (layer 2) ai¢,,, = mb; + nbs with by 5 are the two mot Brillouin
zone vectors anth, n integers. If we plug Eq/A.1) in H2U(r) = E?W(r) it follows that,
(|Kmn + k|2 + 3a0)amn + A_pAm+1.n + A pQm, n41 + Apm—1,n + Q_pQAm n—1 + QAplm4+1,n—1 + A_pQm—1,n+1

+ a[(2df_ : (Kmn + k + ‘h) - i)bmn + (2‘?; : (Km+1,n + k + lh) - i)bm+1,n
+ (2(?3% : (Km,n-i-l + k + Q1) - i)bm,n+1] = E2amn7 (A2)
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and

whereg;;

9

(|Kmn + k + (]1|2 + 3a0)bmn + afdnbmfl,n + aq&bm,nfl + a¢bm+1,n + a7¢bm,n+1 + a¢>bm71,n+1

+ a—¢bm+1,n—1 + Ol[(?ljf' : (Kmn + k) + Z.)amn + (Q(jé_ . (Km—l,n + k?) + i)am—l,n

+ (2‘?; : (Km,n—l + k) + i)afm

,n—l] = EQbmna (A3)

(cos [(n — 1)¢],sin[(n — 1)¢]) anda,, = e*®a?. Here Egs./A.2) and (A.3) form a coupled linear system that

can be solved to find the corresponding eigenvalues. In general, thebe=at@ N + 1) x (2N + 1) coefficientsa,,,,, (bynn)
with N the range of the matrix artdV + 1 the elements in the set, therefore, the Hamiltonian matrix has dimehsier2 L.
The full space for the Fourier coefficients is spannedsas; {{m,—N, N}, {n,—N, N}} whereS is the set of elements in
each layer with rang2N + 1.

For simplicity, the geometry of the mBZ withn, n) coordinates is spanned as a square lattice and the immediately effect

are the boundary conditions in each layer,

ar(N+1);m =0, am,+(N+1) = 0,

bi(Nt1)n =0,

b, +(N+1) = 0, (A.4)

therefore, forl M| > | N| all coefficients in both layers are zero. Also, symmetry considerations using the Braugdlow to
simplify the system to optimize the numerical calculation. To find the expected valuedapthiet, we needir-(r), obtained
by settingk = q;.
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