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Magnetostatic model for magnetic particle aggregates with cylindrical shapes
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Building micro and macro sized structures using compacted magnetic nanoparticles is a widely used approach that has proven a grea
potential as the basis for novel materials made by design. These materials are made by compactation of soft magnetic particles in the nan
or micrometer sizes and their macroscopic properties are mostly governed by magnetostatic effects and the combination of the intervening
shapes, namely those of the individual particles and that of the piece made with these particles. Herein a simplified mean-field model is
presented to describe the magnetostatic effects in soft magnetic composites with cylindrical macroscopic shape made of densely packe
ideal spherical soft magnetic particles. The model allows calculating the main magnetic parameters of the system as well as their most
relevant tendencies as a function of its main parameters. Furthermore, the model has also been successfully applied to arrays of interactin
macroscopic shapes, which provides a further controllable magnetic parameter.
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1. Introduction rent progress of current fabrication techniques that provide an
unprecedented control at the nanoscale to produce extremely
Using magnetic particles as building blocks to construct mor&omplex particle assemblies. In this sense, herein we propose
complex structures is a well known approach to fabricateand validate a simple mean-field model for spherical particle
materials with tailored magnetic properties. A well devel-assemblies which accounts for the magnetostatic properties
oped and extensively studied class of such materials are th§ these systems. These properties allow to obtain the mag-
so-called soft magnetic composites [1], in which magneticnetic shape anisotropy of the assembly. Moreover, we focus
powders of a soft magnetic material are compacted to forngur analysis to cylinder shaped assemblies of packed spheri-
a larger, macroscopic shape. These materials are very igal particles. The cylindrical shape includes the tube (hollow
teresting for their application as soft materials [2, 3]. Suchcylinder) and the homogeneous cylinder. For both cases, it
constructions using densely packed particles has also be@fipossible to use approximate expressions for the demagne-
explored with magnetic nanoparticles [4-6]. Another inter-tizing factors leading to simple analytical expressions. The
esting example was reported by Meek,al. [7], where they  model is extended to include the more complex case of a two
found that using wood as a template, an anisotropic comdimensional array of cylinder shaped assemblies of packed
posite material is obtained, related to the hierarchical strucspherical particles. The results show that despite using spher-
ture of wood. In another report, magnetic particles havecal isotropic particles, the assembly shows an effective mag-
been printed using an inkjet printer leading to an anisotropigetic anisotropy that originates in the dipolar interaction be-
printed material [8]. These reports show that when particlesween the magnetized particles. The symmetry and magni-
are packed in a given geometry, the assembly tends to showgde of this anisotropy depends explicitly on the geometrical
magnetic anisotropy having the symmetry of the envelopingarameters of the system.
volume [9, 10]. Interestingly, this has been observed when  Qerall, the model is shown to lead to the expected limit-
nearly spherical isotropic particles are packed together. Thigg cases without any inconsistency. Moreover, we show that
anisotropy is due to magnetostatic effects, in particular deit allows to vary independently all the relevant parameters of
magnetizing dipolar interaction between the particles. Morethe system. The results provide insight into the role played
over, there is evidence showing that changing the shape of th®, each parameter and sheds light to possible mechanisms

particle packing and forming arrays of such packings can leagiaple to control and tailor the magnetic anisotropy of these
to novel anisotropy properties which show symmetry properparticle assemblies.

ties derived from both the shape of the packing and the array
formed with them [4,5, 7,8, 11].

Calculation of the magnetic anisotropy properties of thes€2. Model for cylinder shaped assemblies of
systems is complex and requires specialized software and packed spherical particles
computing resources [12]. In this sense, simple model cal-
culations capable of providing a clear and practical view ofWhen forming a cylindrical packing of particles, we consider
the relation between the packing geometries and the resultwo main geometries: a homogeneous circular cylinder and
ing magnetic properties are needed. Specially given the cuthe hollow circular cylinder, or tube, as the ones depicted
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This expression corresponds to the sum of the demagne-
(1) tizing effects of the single elementary particle, namely the
> first term V¢, and the effects of the interaction between par-
r r ticles which are bounded by the external volume occupying a
1 volume fractionP, which is the second terdV, — N1 ) P. As
seen from Fig. 1b), in the limit wher® — 0, Eq. (1) reduces
to the case of a single isolated and non interacting particle
(Np¢ = Ni1). Whereas in the other limit? — 1, Eq. 1) is
reduced to the demagnetizing factor of the homogeneous and
continuous outer volume&s, this isNp; = Ns. In practice,
the geometry of the particles will determine the maximum
attainable packing fraction, which for spheres is less than 1.
a) Indeed, the maximum 3D packing fraction for spheres can
have different values: for the so-called close random packing
Vi Vs (vibrated bead) of identical spheres it is 0.625-0.64 while the
densest regular packing is 0.7405 [14, 15].
. Using these effective demagnetizing factors, the total
@ magnetostatic or shape anisotropy can be determined. To
: this end, we recall that the shape anisotropy is defined as
Egs = /,Lo]\/lszANDt, WhereANDt = ANth — ANth-
P=0 O<P<l P=1 Here it is assumed that the easy axis is along the long axis
b) of the cylinder, in this case theaxis while the hard axis is
along thex-axis, see Fig. 1a).

FIGURE 1. a) Two cylindrical packing of particles, a homogeneous Using Eq. (1) to calculate\ N, we obtain
cylinder and a tube, along with their main geometrical parameters. '

b) Particle assembly starting from the single isolated particle corre- _ _
sponding to a zero packing fraction, intermediate packing fractions ANpr = AN1 + (AN, — AN)P. @
and the completely filled volum® = 1.

I

;
R

This expression is proportional to the anisotropy energy

schematically in Fig. 1a). In the following we assume that thef’s:, S0 that in the following we use and refer to the effective
long axis is along the-axis. For the cylindrical packing we anisotropy asANp; = Es;/(uoM?). Equation B) shows
have the following parameters: cylinder diametgheight, that the total anisotropy of the assembly is the result of the
the corresponding aspect ratic= 1/¢ and the packing frac- competition between the easy axes c_>f the_ elem_entary particle
tion P, which is the fraction of the total volume of the cylinder @nd the outer volume. The competition is weighted by the
occupied by the particles. For the case of the tubular structurBacking fractions. Indeed, at low packing fractions the easy
we have the internal and external radiiandr, (r, = ¢/2), ~ @Xis approaches that of the single isolated particle as 0,
respectively. Additionally, for the case of several cylindersBndANp; = AN;. While, in the opposite limit, a$ — 1,
(tubes) we use the center to center distance between fhem the easy axis will approach that of the outer volume, so that
and the reduced distande= D/ . ANp; — ANy [13].

To describe the magnetostatic effects of these systems we This model was used to study the particular cases where
use the formulation of the effective demagnetizing field forthe external volume was a circular cylinder as well as a tube
particle assemblies reported by Magz-Huertaet al. [13]. or hollow cylinder filled with a volume fractio® with spher-

The model considers the assembly as a collection of identicafal particles, as shown in Fig. 1a). Then, the model was
particles contained in a bounding outer volume as ilustrate@xtended to treat the case of a 2D array of such parallel
in Fig. 1b). This particle is the elemental building block and tubes/cylinders packing of spheres, as those shown schemat-
it is characterized by its volume, and demagnetizing fac- ically in Fig. 2.
tor N;. Hereafter, and in order to evaluate the magnitude
of the relevant parameters, it is assumed that the individua.1. Cylinder shaped assemblies of packed spherical
particles are fully saturated. The external voluiiehas a particles
demagnetizing factoN,. The density of particles is taken
into account using the volume packing fractiBhoccupied ~ Consider an assembly of spherical particles which have no
by the particles in the external volume. For such particle asmagnetocrystalline anisotropy. The demagnetizing factor for
semblies, the effective demagnetizing fiel{;), or the ef-  this volume isN; = 1/3, i = x,y, 2. The external volume is
fective (total) demagnetizing factoNp; = Hp:/uoM,)is  acircular tube with3 = r, /r as the ratio between inner and
written as [13], outer radii and where the homogeneous (or solid) cylinder
corresponds to the particular case of the tube when:- 0
Npy = Ni+ (No = N1)P. 1) ands = 0. In the following, we analyze the case when the
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external volume is a tube, which includes the particular case
of the solid cylinder. The demagnetizing factor for the tube
is Ny = {Ngm, Nog, NQZ}, where by SymmetrWQm = NQy.
Since the particles are spherical)N; = 0. Additionally,
taking advantage of the symmetry in the-plane, we have
that2N, + N, = 1 andANy = (1 — 3N,,)/2. Therefore,
Eq. (2) for the effective anisotropy can be expressed as,
ANpe = [1 -3N.]%. 3)
Hereon, we drop the number 2 in the sub-index\6g =
N,. For N, we use the approximate expression for tubes
proposed by Nanxt al.[16]; that relates the demagnetizing
factor the tube with the one of the solid, homogeneous cylin-
derN,,,

N, = N.(1-3°). (4)  FiGURE 2. 2D array of parallel tubes each containing spherical

. . . . particles with a volume fractiof’;. The geometrical parameters of
While the axial demagnetizing factor of a homogeneous ciry,e system are the internal and external radij £-), their height:

cular cylinder is computed as a function of the aspect ratiggng the center-to-center distanBebetween the tubes.
T = h/¢ using the approximate expression proposed by Sato

and Ishii [17], namely, with the addition of the center-to-center distance between
1 cylindersD.
Nez = ——5—. (5) To extend the model we start with)( Since the tubed/,
1+ VT form an array, we callV] the effective demagnetizing factor

Sustitution of Eqs4) and ) in Eq. (3) leads to the following  ©f the tube array, so Edlfreads as,
approximate analytical expression for the shape anisotropy of

— I
a tube containg spherical particles, Npe = N1+ (Ny = Nu) Py, @)
31-p2] P Now, for N we use the same equation but introducing the
ANpt = [1 il Rox (6)  third volume (thin film) and the packing fraction occupied by
1+ 7= the tube array in the filmi): N} = No + (N3 — No)Po.

As we can see, the effective anisotropy depends on the aspeetPstitution in Eq.[{) and rearranging terms, we obtain the
ratio of the tubey > 0, as well as the thickness of the tube expression for this system,
wall (3) and the volume fraction occupied by the particles

and subjecttd < < 1y0< P < 1. Npt = Ni+ (N2 = Ni)Pr+ (Ns = No) PP, (8)

as in the previous section, the effective anisotropy is given as

2.2. Two dimensional array of cylinder shaped assem- ANp,, this is,

blies of packed spherical particles

We now extend the model for the case of a two dimensional ANpr = ANy + (AN> — AN Py
array of cylinder shaped assemblies of packed spherical par- + (AN3 — AN,) P, P, 9)
ticles. This case leads to the interaction between tubes. Fig-
ure 2 shows a 2D array of parallel tubes each containind\s done before, from this expression it is possible to ana-
spherical particles. In this case, we have the same parambrze the most important limiting cases. The first one is when
ters (inner and outer radii, height) with the addition of the P, — 0, that corresponds to a single particle and we see that
center-to-center distancB. For this system we have two indeed, the previous expression reduceAfép, = AN;. If
packing fractions:P; corresponding to the volume fraction now we take the limit?, — 1, which corresponds to a ho-
of the spherical particles in each tube, and a second packingpogeneous tube, we can see that the terms contaikikig
fraction P, corresponding to the tubes in the 2D array. are eliminated and we obtain the expression corresponding to
This system can be described using three different vola 2D array of tubes having a packing fractiéh analogue
umes and their respective demagnetizing factors. As previo Eq. (). Taking nowP, — 0 in Eqg. (9), we recover the
ously, the first volume is that of the spherical particlas, case of a single tube containing spherical particles. For the
The next volume is that of the cylindrical tub®&,; and now limit P, — 1, we have that the tubes ideally fill entirely the
we include a third volume which corresponds to a thin film,volume of the thin film. From Eqs8] and B) we see that the
N3, that contains the 2D array. Figure 2 depicts the systenterms containingVs are eliminated and we obtain the expres-
where the same geometrical parameters are used as befoson for a film (V3) containing spherical particlesvy) that
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occupy a volume fractiorP,. These are the four expected 3.1. Single cylinder shaped assembly of packed spheri-
limits. cal particles

The corresponding demagnetizing factors can be entered
in Eq. ©). For the spheres and tubes, we use the same &gom the expression derived in the previous sections it is pos-

before and for the thin filnivs = {0,0,1}. sible to analyze the properties of the effective demagnetizing
Taking againAN = N, — N,, we have tha\N; = 0, field and the effective shape anisotropy of the system.
ANy = (1—-3N,)/2y AN3; = —1. This leads to, As a first point, we note that the system has a finite mag-

1 3 3 netic anisotropy despite the fact that it is built using isotropic

ANp; = [ — NZ} P - {(1 - NZ)PQ} P,.  (10) spherical particles. Indeed, despitddV, = 0, ANp; # 0

2 2 2 implying a magnetic shape anisotropy. This anisotropy fol-

To further simplify, we use Eqs4) and 6) for N, as be-  lows from the dipolar interaction between the spherical parti-
fore. For the packing fraction of the tubes in the thin filmyY  cles and can be written in general form using 2}, hamely,
we use the expression reported previously for a 2D hexagonal
array of tubes with external diametgseparated by a center- ANp¢ = AN3P. (13)
to-center distanc® and reduced distance ds= D /¢ [18],

We can see that faP — 0 we obtain the expected limit for

P, = Lw (11)  asingle isotropic particleANp, = 0. While for P — 1
2v3 we obtain the shape anisotropy of the homogeneous tube of
Note that the first term in EqL0) reduces to Eql6). Substi-  arbitrary aspect ratid Np; = AN>.
tution of the expressions fa@y, and P, leads to the following From Eq. 6) it is possible to derive some important limit-

analytical expression for the (reduced) effective anisotropy, ing values of the effective shape anisotropy. The first impor-
tant limit is for very tall tubes, this is — oc. In this case,

3(1—-p%)| P —
ANp, = [1_ i+£) ?1 AN, =1/2 and
VT P
ANp; = —. 14
lmﬁ (1 (1—ﬂ2)> A=) By P 14)
I R — . Ly
2 1+ VT d 2 The case of an infinitely tall homogeneous cylinder fol-

This expression contains the sum of two terms and theyows whenP = 1, which leads to the well known value of
both correspond to dipolar interaction field contributions.the shape anisotropy &N p, = 1/2. This anisotropy value
Comparing to Eq/9), the first term in Eq./12) is the dipolar ~ Of 1/2 is an upper bound since it is obtained for= 1, for
interaction between the particles in a given tube. While thé?acked spheres this value is not achieved.
second term represents the dipolar interaction between tubes Another important property is the sign &Ny, as it re-
in the 2D array. Here agaiAN; = 0 as the spherical parti- flects the direction of the anisotropy easy axis. As pointed out
cles have zero shape anisotropy. Then the anisotropy in th@bove, it has been assumed that the easy axis is along the
systems originates in the dipolar interaction between the coraxis which is parallel to the long axis of the tube and the hard
stituent particles and their spatial arrangement. axis is perpendicular or in they-plane. Since the anisotropy

We note thatP;/2 appears multiplying both terms, is calculated a®\ Np; = N, — N, it is clear that the easy
which, as discussed in the previous section, will simply mod-axis is along the:-axis whenN, > N, and inversely, it is
ulate the amplitude of the effective anisotropy. Besides fronperpendicular to the tube axis whéf > N,.

Py, the anisotropy depends on the width of the tube wall Analyzing Eq. [8), we can see that the sign &fNp, is
(0), the tube aspect ratio) and the reduced center-to-center determined by the quantity in the square brackets. Taking
distance ). The particular case of a 2D array of continu- 1 — 3N, = 0 it follows thatV, = 1/3 andANp; = 0 which
ous/homogeneous tubes is obtained whRer- 1, so Eq.IL2) corresponds to the isotropic case. HoweveN if< 1/3 then

reduces to the expression reported previously [19]. ANp; > 0, and whenV, > 1/3 it follows that ANp; < 0.
To analyze this in more detaily, has been calculated as
3. Results and discussion a function of the aspect ratio using Ed4) and 5), for dif-

ferent values of the tube wall thicknessincluding the case
In the previous sections analytical approximate expressiongf the homogeneous cylindet & 0). The results are shown
have been obtained for the 2D array of tube shaped spherin Fig. 3.
cal particle arrays. These expressions can be easily evaluated As seen in the figure, the curves show the same general
making it practical and easy to obtain curves of the differentvariation. They reach their maximum value whegs- 0 and
guantities of interest. We analyze first the case of a singl¢hey decrease as the aspect ratio increases, tending asymptot-
cylinder shaped assembly of packed spherical particles, andally to zero for large values af. For the particular case of
then we consider the 2D array of such cylinder shaped asserthe homogeneous cylindes & 0), the well known curve for
blies. N, is obtained [17]. However, for larger values gf the
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factor decreases. This behaviour is characteristic for contin-  b) L Aspect ratio
uous and homogeneous tubes [18]. Relating the values of the

demagnetizing factor to the anisotropy, we can see dhat

takes values larger and smaller than 1/3, shown as a horizofr/GURE 4. Reduced effective anisotropy as a function of the as-

tal dashed line in Fig. 3. However, the value of the aSDECPeCt ratio for dlf_ferent tube wall thlcknesﬁfo_r a) the partlcul_ar

ratio at whichN.=1/3 depends on the value 6f In partic- case of the continuous tulié = 1 and b)a particle volume fraction

ular, for values ofs > 0.816 N, does not take values larger of =0.5.

than 1/3. This will be discussed in more detail in the follow-

ing sections, however at this point we note that this implied1© longer reaches zero. In this case, the easy axis no longer
that when the tube wall thickness decreasks; 1, the tube  reverses regardless of the aspect ratio. As expected, these re-
can no longer have its easy axis perpendicular to:tagis ~ Sults (P = 1) are equivalent to those reported for continuous
regardless of the value of tubes [19]. Regarding the effect of the packing fraction, we

Besides the effects of the aspect ratio and tube wall thickP0te from Eq.[6) that the packing fraction is a multiplicative
ness on the demagnetizing factor and the resulting magnetfgctor and therefore it only modulates the amplitude of the
anisotropy, the packing fraction of the particles is another jm{otal anisotropy. As expected, the anisotropy is zero when
portant parameter. Consider first the limiting case- 1and £ = 0, which is the case of a single isotropic sphere and it

the material is a continuous and homogeneous tgbg () reaches its maximum value of 1/2 fér= 1 for large aspect
or cylinder (3 = 0). This case serves as a reference to comZatio values. This modulating effect of the packing fraction is

pare with previous results reported for tubes [19]. shown in Fig. 4b), where the total anisotropy as a function of

Figure 4a) shows the reduced effective anisotropy as Hwe aspect ratio for different values of the tube wall thickness

function of the aspect ratio for different tube wall thickness'S Shown for the particular case whefe= 0.5. Comparing
3 for the particular case of the continuous tubie & 1). to the results shown in Fig. 4a), we see the same behavior

As seen in the figure, the curves show an increase of th ut, as expected, the amplitude is reduced. We can see that

anisotropy with the aspect ratio. However, this increase i{he maximum value of the anisotropy #%'2.
faster as the value of increases, corresponding to a re-  To gain further insight on the role of the packing fraction
duction of the tube wall thickness. So that a reduction ofthe effective anisotropy was calculated as a function of the
the tube wall thickness enhances the shape anisotropy of th&pect ratio while keeping the value of the tube wall thick-
tube [18,19]. ness constant3( = 0.5) for different values of the packing
From the figure it can also be noted that for small val-fraction. The results are shown in Fig. 5a). As seen from the
ues of(3, the anisotropy goes from positive to negative as thdigure, the volume fraction simply modulates the amplitude
aspect ratio decreases. This change in sign corresponds taéthe anisotropy and its general variation with the aspect ra-
change of the easy axis direction below a critical aspect ratidio is independent. Here we note that the point where the
For an homogeneous (continuous) cylinder this critical valueanisotropy is zero is the same regardless of the valué of
has a well-known value of = 0.906 [19]. However, as the and therefore the reorientation of the easy axis only depends
value of 3 increases, the value of the aspect ratio where theny 3. This is clear in Eq.&), where a change of sign in
anisotropy is equal to zero decreases, angifor 0.8 it A Np. can only result from the quantity in the brackets.
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0 following Eq. (15), regardless of the volume packing of the
spherical particles.

=
[

3.2. 2D array of cylinder shaped assembly of packed
spherical particles

In contrast to the single tube/cylinder, the 2D array intro-

, duces additional contributions to the effective anisotropy

a) O 1 2 3 4 5 which originate in the classical dipolar interaction between
Aspect ratio the tubes/cylinders.

1 ‘ T ‘ Equation [2) shows the sum of two terms. The first one
is the interaction between spherical particles in a given tube.
This is the case already analyzed in the previous section. The
second term is the dipolar interaction between tubes in the
2D array. The second term is always negative which indi-
cates that this interaction term favors an easy anisotropy axis
perpendicular to the tube axis, or in thg-plane. The ampli-
tud of this term is modulated by both packing fractioi:

b) 4 BE fiet e i I of the patrticles in the tube ank, volume occupied by the
p=ri/r, tubes in the thin film containing the 2D array.
FIGURE 5. a) Reduced effective anisotropy as a function of the ~ To analyze the behavior and the effects of this second
aspect ratio for different values of the packing fractiBrfor the term, we have calculated separately the values of this term
particular case off = 0.5. b) Zero anisotropy curve, showing alone as well as the total anisotropy, Efi2); For this cal-
the critical aspect ratio value at which the anisotropy is zero as acylation, the tube aspect ratio was kept constant at a value of
function of the tube wall thickness. 7 = 10, and we varied the tube wall thickne$s
The results are plotted as a function of the inverse of the
reduced distance, this i5/d since it is more practical. In-
deed, it varies betwedn, 1], the valuel /d = 0 corresponds
to the case were the tube and infinitely apart and the interac-
L 3VT <2 B 52) (15)  tion goes to zero. Inversely, whénid = 1 corresponds to
¢ 4 3 ' the limiting case where the tubes touch and its the smallest

This expression is equal to Eq. (13) in Ref. [19] which re-pOSS!ble distance between them. ) S
flects a quadratic dependence ®n This expression can be Figure 6a) and b) show the reduced interaction field, (c)
evaluated to obtain the zero anisotropy curve for the criticaRnd (d) the reduced anisotropy as a function of the inverse
aspect ratio as a function & which is shown in Fig. 5b), reQuced distancel (d) for different vaIl_Jes of the tube wall
where, as shown schematically, those values above the curf@icknessd and a constant aspect ratio 0f10. In (a) and
correspond to an easy axis parallel to the tube axial axidC) 1=1, while (b) and (d) were obtained fé#=0.5.
ANp, > 0, while those values below the curve correspond ~ For the interaction field between the tubes in the 2D ar-
to an easy axis perpendicular to the tube a&i8],; < 0. In ~ ray, Fig. 6a), it goes to zero when the tubes are separated
addition, we note that the curve goes to zerg at 0.8. This  (1/d = 0). When the distance between them is reduced,
means that above this value @fthe total anisotropy has the the interaction field increases following a quadratic behavior
easy axis parallel to the tube axi8 I/, > 0) regardless of (1/d?), until reaching its highest value when the tubes come
the value of the aspect ratio. This is the same result pointetiito contact{/d = 1). We can see that as the tube wall thick-
out in Figs. 4a) and b), where above a valug30f0.8 the  N€SS decreases,increases; the magnitude of the interaction
anisotropy no longer reaches negative values. Taking 0 field decreases. This is similar to the effect described for a
in Eq. (15) we obtain the value off above which it is no single tube in the previous section, this is, the anisotropy of
longer possible to reverse the easy axis by changing the tuge tube is reinforced when the tube wall becomes thinner.
aspect ratio. This value j$2 = 2/3 or 3. = 0.82. As pointed out before, the amplitude of both terms in
This condition related to the tube wall thicknes® s  Ed. (12) is modulated by the factaP; /2. To this end we
well as Eq. IL5) have already been identified and predictedcompare the reduced interaction field =1 a 1=0.5 in
for the case of a 2D array of homogeneous tubes [15]. HowFigs. 6a) and b). As expected, the same behavior is obtained
ever, for the cylinder shaped assembly of packed sphericah both cases, the only change being the amplitude of the in-
particles considered herein, this diagram becomes importatgraction field.
since itis independent of the packing fraction. This is, to tai- Regarding the effective magnetic anisotropy, this is
lor the easy axis direction it is only necessary to adjushd  shown in Fig. 6¢) and d). The overall behavior reflects the

Reduced anisotropy
(e}

Aspect ratio

To find the condition for the isotropic point, we equate
Eg. [6) to zero an solve to find the critical aspect ratio
which is given by:
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§ FIGURE 7. Reduced anisotropy as a function of the inverse of the
== . . . . .
—05L0© | d) A reduced distance for different packing fractions of the spherical par-
0 02 04 06 08 10 02 04 06 08 1 tlc_les in the tubes”; with constant tube aspect ratto= 10 and
d i thickness of the tube walf = 0.2.

FIGURE 6. a) and b) Reduced interaction field, c) and d) reduced the same for all the values dP,. This is in agreement
anisotropy as a function of the inverse reduced distanegfor with the results from the previous section, in particular those
different values of the tube wall thicknegsand a constant aspect shown in Fig. 5a).
ratio of 7 = 10. Ina) and c)P1 = 1, while b) and d) were obtained As observed for the case of a single tube, the effective
for P = 0.5. anisotropy shows a change of sign, as seen in Figs. 6c), d)
] ] ] and 7. However, this does not happen above certain values
sum of the shape anisotropy, the first term in B@)(andthe 4t 3 As before, the change in sign indicates that the easy
dipolar interaction between tubes, second term in E8),(  axis direction changes from being parallel to the tube axis
which is preceo_led by a negat_lve sign. As seen in the f'g(positive anisotropy) to perpendicular to the axis (negative
ure, the total anisotropy is maximal when the tubes are apargpisotropy). However, this easy axis reorientation is inhibited
1/d = 0, and as the distance between them is reduced, the injs the tube wall thickness decreases. To find the conditions
teraction between them (with its negative sign) leads to a reghere the effective anisotropy vanishes, we equate to zero

duction of the total anisotropy, leading to a change in sign forEq_ (12) and solve to find the critical aspect ratig leading
certain values off. At large separation]/d = 0, the effec- to, )

tive anisotropy reduces to that of the single (non-interacting)

tube, which as discussed above, increases as the width of the N 72,{25 (1 — g2) -3 )
tube wall decreases} (approaches 1), in agreement with the =73\ =3 1 2 1 (1 -8 ) -1]. (18)
results shown in Fig. 4. 2 (1= %) —

As mentioned before, the amplitude of the effective  This expression shows that the critical aspect ratioX
anisotropy is proportional to the packing fraction of the () is given solely by the tube wall thickness € 3 < 1) and
spheresP; /2, which also defines the upper limit value of the reduced distance between tuhés(1).
the anisotropy. This is shown as horizontal dashed lines Equation [(6) allows calculating the zero anisotropy
in Fig. 6¢) and d). So by increasing the distance betweegurves for the tube aspect ratio)(as a function of the re-
tubes,1/d — 0, we see that the anisotropy tends to this up-duced distance between them for different values of the tube
per limit and as this distance is reduced (increasifid),  wall thickness3. Figure 8 shows these results.
the anisotropy decreases as the interaction field becomes Aswe can see, each value@provides a different curve.
stronger. The rate at which the anisotropy decreases arfach curve corresponds to the aspect ratio and the corre-
changes sigri,/d = 0, depends on the tube wall thickngss  sponding reduced distance for which the effective anisotropy

As already mentioned, the packing fraction of the parti-vanishes. Points above and to the right of the curve corre-
cles in the tubeP; modulates the amplitude of the effective spond to an easy axis along the tube axisXis). On the
anisotropy but its not expected to change its behavior. Taontrary, those points below the curve are those with the easy
verify this we have calculated the effective anisotropy as axis perpendicular to the tube axis. An important property
function of the inverse of the reduced distance for differentis that, as mentioned before, reducing the tube wall thick-
packing fractions of the spherical particles in the tubes withhess (increasing) reinforces the easy axis direction along
constant tube aspect ratito= 10 and thickness of the tube the tube axis. So that above a certain value, it is no longer
wall 8 =0.2. The results are shown in Fig. 7 where we ver-possible to reverse the easy axis when the aspect ratio is de-
ify that the volume fraction of the particles in the tube only creased.
change the amplitude of the anisotropy. For the case shown A final remark is that Eq.16) for the 2D array of tubes
in Fig. 7 we see that the point where the anisotropy is zero isnade of spherical particles is the same as equation (17) in
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Ref. [19] for the case of continuous tubes. This despite of beles, the analysis of the magnetic properties of the magnetic
ing different systems. However, the case reported in Ref. [19fvood shows a magnetic anisotropy favoring an easy axis par-
8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ allel to the symmetry axis of the tubes. This anisotropy is
attributed to the dipolar interaction between particles that are
confined to the tubular shape. In the context of our model,
this follows from either Eq. (3) or (6), where it is clear that
a finite magnetostatic anisotropy arises from the dipolar in-
teraction between the particles. Moreover, from Eq. (3) we
see that the magnitude of the resulting anisotropy is a func-
tion of the cylinder aspect rati&y, and the packing fraction

7 P of the particles. For the more complex case of analyzing
the inter-cylinder dipolar interaction, these studies do not ex-
: ‘ : plore experimentally these effects, although they recognize
0 2 4 6 8 10 its importance.

Reduced distance The model is also well suited for 2D arrays of magnetic
nanowires grown by electrodeposition into nanoporous tem-
plates. These are 2D arrays of circular cylinders, arranged so
that their long exes are parallel to each other and distributed
spatially forming a film. In this case, the geometrical features
is obtained as a particular case of Efi2)(when P, = 1.  are the circular cylinder and the thin film containing the 2D
In this sense, the main reason why the same expression @&fay. For this system, E{L2) needs to be simplified by tak-
obtained is that the spherical particles are isotropic and therédg Py = 1 corresponding to ideal case of a continuous mag-
fore they do not contribute to the shape anisotropy. Indeed, atetic material and then, to treat the case of a homogeneous
seen from Eqgs/10) and {L2), the only variable related to the cylinder, we need to také = 0. Leaving only a dependence
spherical particles present in the effective anisotropy is theipn the wire aspect ratio and the distance between wires, this
packing fractionP?; which, as discussed above, only mod- is,
ulates the magnitude of the anisotropy without changing its
behaviour. AN, — L [1 3

. . Dt —

To validate the model, we analyze selected experimen- 2 1+ %
tal reports based on systems with affine geometrical features.
The first case of interest is that of individual magnetic par- This expression shows the competition between two
ticles packed into, or confined to, a well defined geometryterms: (&) the shape anisotropy which favors an easy axis
where the dipolar interaction between particles leads to aparallel to the wires long axis theaxis and (b) the dipolar
observable magnetic anisotropy. In these regards, there aitateraction between wires, which due to the negative sign pre-
two notable examples, the first one involves packing mageeding it, favors an easy axis perpendicular to the long axis
netic nanoparticles into cylinders, ideally as shown schematef the wires. The effective anisotropy of the system, in the
ically in Fig. 1a). In a report, Pakt al. [20], filled carbon absence of other anisotropy contributions, is the result of this
nanotubes with small magnetic nanoparticles. In another resompetition. In this sense, a well known effect observed in
port, Duong.et al. [5], filled cylindrical nano holes made in arrays of NWs is the rotation of the easy axis from parallel
a polyacrylinitrile substrate with magnetite nanopatrticles. Into perpendicular to the long axis of the wires when the dipo-
these two studies, the magnetic characterization showed dar interaction overcomes the shape anisotropy [22, 23]. For
increase of both remanence and coercive field in the cylinthe case of an array of continuous cylindrical NWs, the ex-
drically confined particles with respect to the non-confinedpression defining the easy axis rotation is given by Eq. (16)
particles. This is an indication of the presence of a magfor 3 = 0. In this case, it only depends on the interwire dis-
netic anisotropy. In both cases, these effects are attributeidnce and the aspect ratio of the wires. As mentioned above,
to the enhancement of the dipolar interaction between théhis leads to a curve defining the limit where the system is
confined particles. The other example is the work of Merkisotropic, this is, where the shape anisotropy of the single
et al.[7], and Segmehlet al.[21], who have performed the wire and the dipolar interaction cancel out and the effective
synthesis of magnetic nanoparticles within the hierarchicagnisotropy of the system is zero.
structure of wood. This structure is highly anisotropic with  This effect can be analyzed using the model and compar-
a predominant cylindrical structure as building block, similaring it with reported experimental results where the easy axis
to an array of pores aligned parallel to each other. The inis shown to rotate as a function of either the distance between
situ growth of nanoparticles from liquid solutions leads to anwires or their aspect ratio. To this end, we have selected data
important fraction of the particles being fixed on the walls offor Ni [24—26] and NiFe [27] NWs in order to avoid other
the pores, leading to a tubular structure. This corresponds apaaterials that can have other magnetic anisotropy contribu-
proximately to the situation depicted in Fig. 1a). In both stud-tions.
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FIGURE 8. Isotropic curves for the tube aspect rati@s a func-
tion of the reduced distance between them for different values of
the tube wall thickness.
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Figure 9a) shows the easy axis diagram as a function ahe wire aspect ratio increases, the distance between wires
the aspect ratio and the inverse of the reduced distance. Thequired to reverse the easy axis needs to be reduged (
‘ ; increases) in order to increase the strength of the interaction

L T
. field. The largest value of the shape anisotropy for the circu-
B qapl- | lar cylinder is attained when the aspect ratio is very large. In
S this case, as mentioned before, the easy axis rotates when the
s 100; e Ref [24] | packing fraction is Iarger than 1/3. Tr_lis is seen in Fig. 9a) for
3 |+ Ref [25] ) the data corresponding to those series of samples where the
& —o— Ref. [24] - packing fraction is larger than 1/3 [24, 26, 27]. Furthermore,
A g‘? [gg] i we can see that the easy axis rotation takes place at differ-
0’ IC -[27] ‘ a) ent aspect ratio values. The predictions of the model are in
I 04 ‘ ' ‘ excellent agreement with the experimental results.
S [ W Co[2] The other measurements that can be compared with the
5 03" ; E?IE;O[]ZQ] model are those of the axial component of the dipolar interac-
§ | % CoFe[30] tion field. To compare the model with available experimental
s 021 NiFe [30] results on arrays of tall NWs, we have taken the date obtained
';f- * sl using FORC diagrams for Cal{s =1400 emu/crh) [28]
g 01 and CoFe /5 =1991.5 emu/cri) [29], as well as those ob-
B r ﬂ,xcé tained using remanence curves in Mi§¢ =485 emu/cm),
< o, ., . ] NiFe(Ms =788 emulcrd) and CoFe [{s =1900 emu/crh)
0 0.2 04 0.6 0.8 1 NWs with diameters of 71 nm and below [30]. In addition,
d we have extracted the data obtained from the width of the

FIGURE 9. a) Effective anisotropy diagram for an array of switching field distribution (SFD) for Ni NWs [31]. To obtain
nanowires as a function of the wire aspect ratend the inverse re-  the value of the interaction field from the width of the SFD we
duced distancé/d. The continuous line corresponds to the model, gssume that the reported widthis the sum of the constant
Eq. (17). The horizontal dashed line &fd = 0.606 corresponds  jntrinsic widthw, and the shearing due to the interaction field
to the distance for the critical pacl_qng fraction 85 = 1/3 in Hint(d), this is,w = wo+ Hine (d). By interpolating the data
an hexagonal array. The data points correspond to examples Ofor infinite separation between NWSI(,, = 0), we obtain
Ni [24-26] and NiFe [27] NWs. (b) Axial component of the re- " '

wo SO thatHim(d) = W — wy.

duced interaction field calculated from the model (continuous line) . .
and compared to experimental results reported for arrays of very The_values reported m_ these studies correspond to_ the
tall nanowires [28-31]. interaction term of the axial component of the interaction
field [13], so to convert these values to dimensionless effec-

continuous curve corresponds to Eb6)for 3 = 0. The hor-  tive field, we have divided their magnitude gy 1/, (CGS)
izontal dashed line at/d= 0.606 corresponds to the distance or 1M (MKS), using the values ols mentioned above.
for the critical packing fraction oP, = 1/3 in an hexagonal Moreover, Eq.[17) is the total effective anisotropy field, so
array at which the easy axis rotates for the limiting case oto obtain the axial component, we have to divide the second
infinitely tall nanowires [23]. Notice that this is the value at term by 3 [13]. The axial component of the interaction field
which the continuous curve tends asymptotically. is given by the second term in EA7), which for infinitely

In this diagram, the region above and to the left side of thdall NWs, requires taking — oc. By doing so, and using
curve, corresponds to an easy axis parallel to the long axis ¢he inverse of the reduced distance, we can compare a single
the wires. The region below and to the right of the curve,interaction curve for all the experimental points as shown in
corresponds to the case where the easy axis is perpendiculaig: 9b). Here, the continuous line corresponds to the model
to the long axis of the wires. while the points correspond to the experimental data. As seen

Consider first the experimental data for the case when thi# the figure, the entire data set shows a very good agreement
aspect ratio is varied while keeping constant the distance bavith the model.
tween wires [24, 25]. As seen in the figure, the easy axis ro-
tates from parallel to perpendicular to the cylinder axis whery.  Conclusions
the aspect ratio is reduced. Moreover, as seen from the two
series of data shown in the figure, the aspect ratio at whiclh simple mean field model has been presented to describe
the transition takes place is lower for larger interwire dis-magnetostatic effects in assemblies made of isotropic spher-
tance {/d — 0). The easy axis rotation is conditioned by the ical particles. For a two dimensional array of cylinder
wires having an easy axis parallel to the symmetry axis. Foshaped assembly of packed spherical particles we derive ap-
a single, non-interacting, cylinder this requires an aspect rgproximate analytical expressions for the effective magnetic
tio larger than 0.91, since at this point the system is isotropicanisotropy. We find that in such particle assemblies, the
Wires with aspect ratios larger but close to the critical valueshapes of the volumes that contain the particles lead to a mag-
require a small interaction field to reverse the easy axis. Asetic anisotropy related to the dipolar interaction despite the
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fact that the particles in the assembly are isotropic. We haveompare well with results reported in other studies.
analyzed the main limiting cases for the anisotropy of a single
tubular structure containing the particles as well as the 2D ar-
ray of tubular assemblies, finding for each case the expecteiCknowledgements
results. Since the expressions are analytical it is simple to
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