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Application of the SU(1, 1) spinors in the study of the Lorentz transformations

G. F. Torres del Castillo

Instituto de Ciencias, Bendrita Universidad Autnoma de Puebla,
72570 Puebla, Pue., &kico

Received 12 December 2022; accepted 17 February 2023

We show that the orthochronous proper Lorentz transformations that preserve the conditibnan be parametrized by (two-component)
SU(1, 1) spinors in such a way that the Wigner angle associated with a pair of non-collinear boosts is given by one of the scalar products
defined between these spinors.
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1. Introduction 2 + 1 space-times (se@,g, Ref. [4]), which, even though
are not the main objective in the theory of gravitation, are
In a recent paper [1] the group of proper orthochronousf interest as guides for the more realistic case (seg,
Lorentz transformations that leave one of the spatial coordiRef. [7]). The group S, 1) is also of interest in connection
nates fixed was represented by 2 matrices whose entries with squeezed light and polarization optics, and the Wigner
are double numbers (also known as hyperbolic numbershngle has analogs in those fields (seg, Refs. [8, 9]).
This representation is useful if one is interested in Lorentz | Sec. 2 we summarize some basic facts about the repre-
transformations involving one or two spatial directions only. sentation of S, 1) by SU(1, 1) and the SY1, 1) spinors,

As is well known, the composition of two pure boosts and we show that there exist two scalar products between
in two different directions is equivalent to the composition SU(1,1) spinors. In Sec. 3 we show that each spinor repre-
of a boost and a spatial rotation through an angle known asents an inertial frame of the restricted class mentioned above
the Wigner angle (see.g, Ref. [2] and the references cited and we relate the Wigner angle with one of the scalar prod-
therein). In Ref. [1] the Wigner angle was calculated makingycts between spinors. As a second application we derive the
use of the representation mentioned above. Actually, the repstandard formulas for the relativistic Doppler effect and the
resentation obtained in Ref. [1] is one of the group(8Q@),  aberration of light making use of the fact that a null vector
which can be regarded as a subgroup of the Lorentz grougyith one of its spatial components equal to zero can be rep-

SQO(3,1). In the same manner as the @Ptransformations resented by a SU, 1) spinor. In Sec. 4 the connection with
can be viewed as the Lorentz transformations maintaining thghe hyperbolic geometry is briefly discussed.

conditiont = 0, the SQ@2, 1) transformations correspond to
the Lorentz transformations maintainirgg, z = 0. Besides )
the representation given in Ref. [1], the group(8Q) can 2. Representation of S@2, 1)
also be represented by compizx 2 matrices (belonging to i
the group SW1, 1)) and by real x 2 matrices (belonging to '!'he homogeneou_s Lorentz_ group can be defined as the set of
SL(2,R)) (seee.g, Refs. [3, 4]). linear transformations leaving

The existence of the Wigner angle is the basis of the
Thomas precession, which is relevant in atomic and nuclear

physics, explaining the observed fine-structure intervals anﬁwariant, wherg(z, y, =, ct) are the coordinates of an event

the spin-orbit interaction in atomic nuclei, respectively. with respect to some inertial frame. Hence, the homogeneous

The aim of this paper is to show explicitly that the or- | 5rent transformations that leaweg, = = 0 invariant, also
thochronous proper Lorentz transformations maintaining  |o5ve

0 can be represented by (two-component)(8UW) spinors 2, 2 2
. A ; - x4+ y° — (ct) @)

or, equivalently, that the inertial frames sharing the origin
and thez-axis can be represented by QU1) spinors. We invariant. The linear transformations leavirt) (nvariant
also show that this correspondence can be employed to finfdrm the group @2, 1).
the Wigner angle making use of one scalar product between Apart from the natural representation of2)1) by real
spinors. 3 x 3 matrices there exist representations of this group, or its

The spinor formalism is a very useful tool in the stan- subgroups, b x 2 matrices (see.g, Refs. [1,3,4]). In this
dard general relativity, which deals with four-dimensional section we show, in an elementary manner, that soi2e 19
curved space-times (see,g, Refs. [5, 6]). Similarly, the transformations (namely, those with positive determinant be-
SU(1, 1) spinors employed here are useful in the study oflonging to the connected component of the identity) can be

2%+ y? + 22 — (ct)?
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represented by compléxx 2 matrices (a detailed discussion
can be found in Refs. [3,4]).
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that a rotation through an angleon thexy-plane is given by

As in Refs. [1, 10], we start by establishing a one-to-one

correspondence between points and ce@tair2 matrices. In

the present case we associate the point with (real) coordinates

(z,y, ct) with the2 x 2 complex matrix

o ct —x — iy
P_(x—iy —ct ) (2)
Then, one can readily verify that
tr P =0, Pt =Py, (3)
where
(1 0
"=\o -1

and that any compleXx 2 matrix satisfying Eqs/3) must be

o—i6/2
0

0

oi/2 (6)

(4) with @ given by

or its negative. Similarly, for a pure boost in an arbitrary
direction in thexy-plane which makes an angfewith the
x-axis,q is given by

coshw/2 —e'? sinhw/2 )
—e 9 sinhw/2 coshw/2
or its negative, with the relative velocity, given by
v = ctanh w. (8)

The parametew is called rapidity. Then, from Eq4j it fol-

of the form @). Thus, there is a one-to-one correspondencgows that the matrix corresponding to the composition of a

between pointéz, y, ct) and matrices2), which is employed
below.
Sincedet P = 2% + y? — (ct)?, and the determinant is

pure boost, in the direction making an andlevith the z-
axis, followed by a rotation through the angles given by
the product of §) (as the factor on the left) by}, namely

invariant under similarity transformations, the transformation

P — P’ given by
P'=QPQ, 4)

whereP’ is the matrix @) corresponding tdzx’, y’, ct’), rep-
resents an @, 1) transformation provided tha®'" = nP'n
[see Egs.3)], that is, (Q~HTPTQT = n(QPQ~")n, or
QN PnQt = nQPQ~'n, which is satisfied iiHQT =
Q 'y or, equivalently,

QnQt =n. (5)

(Note that the conditionr P = 0 is preserved by any simi-
larity transformation/4).)

Taking the determinant on both sides of EB), (using
the fact thatdet QT is the conjugate oflet ), one finds
thatdet Q = ¢'@, for somea € R, then the matrixQ) =
e~i2/2() also satisfies Eq5J anddet Q = 1. Furthermore,
QPQ~' = QPQ', which means thaf) andQ produce
the same @2, 1) transformation. Hence, we can restrict our-

e 1%/2 coshw/2
—el/2e710 sinh w /2

—e719/21% sinh w /2
e'®/2 cosh w/2

( ). ®
2.1. Two-component spinors. Scalar products
The2 x 2 matrices) € SU(1, 1) act on two-component vec-
tors
( ), (u,v € C),

called spinors (or SU, 1) spinors), in the simple manner:
1 — Qv (see also EQ.25) below). As a consequence
of (5), the scalar product of the spinogsand ¢ defined
by xTn is invariant under the action of SU,1). In fact,
Xy = (Q@x)™(Qy) = X" (Q™Q)Y = x'ny, since )

is equivalent taQtnQ = ». (This can be proved in the fol-
lowing way: sincen? is the unit matrix, Eq.%) implies that
Q1 = nQ'n, hence(nQin)Q is the unit matrix and multi-
plying on the left by one gets the desired relation.)

u
[

(4

selves to matrices with determinant equal to 1 that satisfy Eq. There is a second scalar product between spinors that

(5). These matrices form the group 8UU1). (The group
SU(p, q) is formed by quegp + ¢) x (p + ¢) complex ma-
trices, Q, with determinant equal to 1 such th@yQt = »,
wheren is the diagonal matrix witlp entries equal te-1 and
q entries equal te-1.) It may be noticed that i€) belongs
to SU(1, 1) then—Q also belongs to this group and from Eg.
(4) it follows that@ and—(@ produce the same (@, 1) trans-
formation.

It can be shown that the transformatio@ with @ €
SU(1,1) correspond to S,1) transformations (that is,
transformations belonging to(®, 1) with determinant equal

can be constructed by defining first theateof a spinor. A
straightforward computation shows that any matrix belong-
ing to SU1, 1) is of the form

a 3

6 @
wherea is the complex conjugate of, anda, 5 are complex
numbers such thatv|? — |3]? = 1 (cf. Ref. [10]). (The com-
plex numbersy andj are analogous to the Cayley—Klein pa-

rameters employed in the case of the(3ransformations,

(10)

to 1) [3,4]. For our purposes it suffices to verify that the trans-see,e.g, Ref. [10] and the references cited therein.) Hence,

formations @) with @ € SU(1, 1) reproduce the pure boosts
in arbitrary directions (in the:y-plane) and the rotations in

the zy-plane. In fact, a straightforward computation shows

if o/ = Qu, with

vt a

).
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APPLICATION OF THE SU1, 1) SPINORS IN THE STUDY OF THE LORENTZ TRANSFORMATIONS 3

we have, in explicit form, or its negative, i is moving with respect to@with velocity
' = au+ B ctanhw in the direction making an angtewith the z-axis,
o ’ (12) and the axes andy are rotated an anglé with respect to
v' = fu+ aw, the axesr andy. The scalar productg’n¢ andy'né¢ are
which is equivalent to 2
q _ xIng = €'?/? cosh w/2 (18)
v = av + fu
_ (13)
o = Bv + au. and ~ )
. . Stpe = _ei®/26-10 Ginh 1
Comparing/13) with (12) one concludes that the matef X'nE = —e¥"e™V sinhw/2. (19)
defined by R 7 Even though the spinorg and¢ depend on the choice of
Y= ( - ) ; (14)  the inertial frame § the scalar productd8) and (19), being

invariant under the SU, 1) transformations, only depend on
the inertial frames represented Ryand¢ (in the same man-
ner as the position vectors; andrs, of two points of the
Euclidean space depend on the choice of the origin, but the
distancdrs, — ;]| is independent of that choice).

Thus, given two inertial frames,Sand S sharing thez-
axis, they can be represented by unit spinped¢, respec-
tively, and, according to Eql8), the modulus of the scalar
3. Representation of the Lorentz transforma-  producty ¢ determines the velocity & with respect to &,

transforms in the same way @s[3], hence, for any pair of
spinorsy ands we can form another scalar produgttn
(also invariant under the action of $U1)). (The defini-
tion (14) differs from that given in Ref. [4] by a constant
factor) One can readily verify thatfny = iny and

Yiny = =Xy,

tions by spinors while the argument offn¢ determines the angle between the
axesz, 7 and the axes, y. The modulus ofTn¢ also gives
Given a two-component spinor the relative velocity of the two frames, but its argument does
. ( ” ) not give the angles andd separately [see Edl19)].
v )

with [ul?2 — [v]2 = 1 (thatis,is'm — 1), which we shall call > The Wignerangle

aunit spinor, there exists a uniqug € SU(1, 1) such that Now, let S and Sbe two inertial frames moving with respect

(1 to § with velocitiesv andv’ in the zy-plane which make an-
v=aQ ( 0 ) glesd and¢’ with respect to the:-axis (of §), respectively,
or, equivalently with the spatial axes of S parallel to those of &d, simi-

' ’ 1 larly, the spatial axes of’$arallel to those of § in other
QY = ( 0 ) (15)  words, S and Sare related to §by means of pure boosts and
. - . these boosts are represented (with respectYdpthe unit
In fact, @ is explicitly given by

spinors

( u - ) b2

v u coshw

. ) ) ¥= ( e ¥ sinhw/2 > and

[see Eq.10)] and since anyy € SU(1,1) gives rise to a

SO(2,1) transformation, which represents a Lorentz trans- W = ( coshw'/2 )

formation of a restricted class, it follows that any unit spinor “\ e sinhw'/2 )’

defines a proper orthochronous Lorentz transformation that

leaves invariant the-axis. respectively, withv = ctanhw andv’ = ctanhw’ [see
Hence, starting with an inertial framey,Sany other iner-  Eq. (L7)]. R

tial frame,S, sharing thez-axis with S, is represented by a Then, the scalar products v’ and«iny’ are

unit spinor (defined up to sign) o Sself is represented by

1 YTy’ = coshw/2 coshw’ /2
=(s)

16 ,

0 (16) — (029 sinh w/2 sinh w' /2 (20)
or its negative (since the Lorentz transformation leading from
S, to § is the identity) and, according to Eq$)@nd (15, and
the unit spinor representiryis R ,

~ Yiny' = e sinhw/2 coshw’ /2
e'?/2 cosh /2 17 .

¢= ei®/2e=10 sinh /2 a7 — e coshw/2sinhw' /2. (21)
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4 G. F. TORRES DEL CASTILLO

By equating Egs./18) and 20), we conclude that, with re- which, separating the modulus and the argument of the com-
spect to S, the inertial frame’ & moving with rapidityw, plex number on the left-hand side, amounts to

and with its axes rotated by an anglethe Wigner angle),
given by Y 9l g gle) k' = k°(coshw — sinhw cos o) = k°(y — v(v/c) cos o)

i3/ ~ , and
e'?/ coshw/2 = coshw/2 coshw’/2

: / w 14+v/c
— =) sinh w/2sinh w' /2. (22) tan 3o’ = e" tan for = 4 T v?c tan Sa. (27)

One can readily verify that the real and imaginary parts of thigt may be remarked that even though E2i)(is a well-known
equation are precisely Egs. (20) and (21) of Ref. [1]. Simi-result, in the standard procedure, making use of the four-

larly, the real and imaginary parts of the equation vector transformations, it is somewhat laborious to get it; and
- , . even with the two-component $2, C) spinors its derivation
—e'/2e7 ¥ sinh /2 = e sinh w/2 cosh w’ /2 is not so straightforward.

— e coshw/2sinhw'/2, (23) o )
4. Geometric interpretation

(1)

defines two vectors,R, and M,, with components

R',R?,R®andM', M2, M3 given by [4]
The aberration of light and the relativistic Doppler effect can P ; T
be conveniently studied with the aid of the formalism intro- R =whyrly, M =iy, (28)
duced above. An electromagnetic plane wave is characterr— 1,2 3, with
ized by a wave four-vectde®, which is null. Assuming that )
k3 = 0, we are left with three possibly nonzero components, 7= < 0 1 ) , 2= ( 0 1 ) ,
kY, k' andk?, such thatk')? + (k?)? — (k°)? = 0, hence 1.0

obtained by equating Egsl9) and R1), are precisely _
Egs. (22) and (23) of Ref. [1]. The spinor

3.2. Aberration of light and the relativistic Doppler ef-
fect

k' = k%cosa, k* = k%sina, wherea is the angle be- . i 0
tween the propagation direction and theaxis, and in this T = < 0 i ) ) (29)
case the analog of the matri)(can be expressed in terms of )
a SUul, 1) spinor,x, that is
0 Rl k2 %0 _j0gicr ; Ry = (u¥ + v, —iuv + iva, [ul* + [v]?),
. = i =KK

(k1_1k2 —k° ) (koe —k° ) ! M, = (u? + 0%, —iu? +iv?, 2uv). (30)

with o (The matrices” are a basis for the Lie algebra (oWYof the
) ( e/ ) _ (24)  traceles2 x 2 complex matricesd, such thatdfn = —nA,
e/ which is the Lie algebra of SU,1). One can readily ver-

ify that the matricesl@) and [7) can be expressed in the

form exp (3¢ 7°) andexp[%‘w(sint%'1 - COSHT?)L respec-

o = Qa. (25) tively.) The components:’ are real and thél/” are com-
plex. The vectors®’ and M’ are orthogonal, in the sense

That is, in the case of the wave four-vector, the transformathatg;; R"M7 = 0, where

tion rule @) is a consequence 02E). Hence, for a boost .

along thez-axis [see Eq.[{)] the transformation25) takes (935) = diag(1,1, -1),

The two-component spiner transforms according to

the form M7 is null, that isg;; M* M7 = 0, and if+ is a unit spinor
. thenR? is normalizedg,;; R'R’ = —1.
ia’ /2 _q v
VKO ( Eiia,/z > = < CO.Shhw/22 SH;lhw? ) In the case of the unit spingrgiven by (L7), the real vec-
¢ —sinhw/2 coshw/ torsR¢ andRe M are unit vectors along the axeandz of
olor/2 S (with respect to ther, y, ct-axes of §). Sinceg;; R'R/ =
X \/170( o—ie/2 ) —1andR?® > 0, the point(R!, R?, R?) belongs to a sheet

of a hyperboloid. With§ parametrized as irl{), the point

which is equivalent to the single equation (R, R%, R?) is given by(sinh 1 cos 6, sinh 1 sin 6, cosh @)
and thereforav and# can be used as local coordinates on

VEOe! 2=v/k0 (61%/2 coshw/2—e /2 sinhw/2) (26)  the hypersurfac@l = {(x,y,ct) € R? |22 + > — (ct)? =

Rev. Mex. Fis69040701
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—1,¢t > 0}. The (indefinite) metric tensay;;dz'dz? =
(dz)? + (dy)? — (cdt)? induces a (positive definite) metric
tensor onM given by

(dw)? + sinh? w (d6)>. (31)
(This straightforward construction of the metrR1j can be
compared with the one presented in Ref. [11].)

The meridiansd const. of M are geodesics of
the metric 81). Hence, the distance (o) between the
point with w 0 (corresponding to § and the point
(sinh @ cos 0, sinh @ sin §, cosh @) of M (corresponding to
S), along the geodesic joining these pointspis

Thus, each point of\/ correspond to the time axis of

5

axes of the inertial frames,SandS$, is the angle between
the flag corresponding t and the flag corresponding t¢ S
parallelly translated to itself along the geodesic joining the
points of M that represent these frames. (An entirely similar
result holds in the case of the 8] spinors [12].)

In the case of the framesySS and 3 considered in
Sec. 3.1, we will have three points 81 determined by the
intersections of the time axes of the frames with These
three points define a geodesic triangle (constructed joining
each pair of points by a geodesic), with the distance between
vertices [determined with the metri81)] being the relative
rapidity between the corresponding frames.

When the flag corresponding tg & translated parallelly
to itself along the geodesics going from ® S and from §

points of M is the rapidity of one the frames with respect to
the other. (It should be stressed thatwith the metric8l) is

respectively (by construction, since S arich® obtained by
pure boosts from §, but when this flag is translated paral-

a maximally symmetric space, with constant curvature, analre”y to itself from S to $, the resulting flag forms an angle

ogous to the standard spherelof, among other things)/

equal to the Wigner angle with the flag corresponding’to S

is a homogeneous space, which is in agreement with the fag§ gifferential geometry, this angle is called the holonomy

that all the inertial frames are equivalent.)
As in the case of the SI2) and the SI(2, C) spinors, the
SU(1, 1) spinors can be represented by flags (seg, Refs.

angle of the closed curve (in this case the triangle) and, for
a constant curvature hypersurface, suchasthis angle is
equal to the curvature of the hypersurface multiplied by the

[4,5]) and in all cases one spinor and its negative define thgrea enclosed by the curve (see also Refs. [2,11] and the ref-

same flag. For a unit spingrthe flagpole is given by the vec-
tor R, and the flag points alonBe M,,. A straightforward
computation shows that, for a unit spinpparametrized in
the form (L7),

Re M, = cos(f — ¢) e, — sin(f — ¢) ey,

(32)

erences cited therein).

5. Concluding remarks

As is well known, the entire proper orthochronous Lorentz
group can be represented by (8LC) matrices (seee.g,

where{e,,, e} is the orthonormal basis of the tangent spaceRefs. [5, 6]), which amounts to say that, excluding spatial

of M (atR¢) defined by the coordinatéss, 6) of M.

The flag corresponding to the unit spingmpoints along
(1,0,0) [see Eqs.30)], which forms an anglé with the tan-
gent vector to the geodesic curie= 6, at the point0,0,1)
of M, while the flag corresponding toforms an anglé — ¢
with the tangent vector to this curve, at the pditi of M
[see Eq./82)]. As is well known, when a vector is translated

reflections and time inversions, each inertial frame can be
identified with apair of two-component spinors (frequently
denoted by and: in the Newman—Penrose notation). The
alternatives presented in Ref. [1] and this paper constitute
a considerable simplification in the restricted case discussed
here, where a single two-component spinor is enough.

parallelly to itself along a geodesic, the angle between thig\cknowledgement
vector and the tangent vector to the geodesic does not vary

along the geodesic, hence, the anglebetween the spatial
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