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1. Introduction

In a recent paper [1] the group of proper orthochronous
Lorentz transformations that leave one of the spatial coordi-
nates fixed was represented by2 × 2 matrices whose entries
are double numbers (also known as hyperbolic numbers).
This representation is useful if one is interested in Lorentz
transformations involving one or two spatial directions only.

As is well known, the composition of two pure boosts
in two different directions is equivalent to the composition
of a boost and a spatial rotation through an angle known as
the Wigner angle (see,e.g., Ref. [2] and the references cited
therein). In Ref. [1] the Wigner angle was calculated making
use of the representation mentioned above. Actually, the rep-
resentation obtained in Ref. [1] is one of the group SO(2, 1),
which can be regarded as a subgroup of the Lorentz group,
SO(3, 1). In the same manner as the SO(3) transformations
can be viewed as the Lorentz transformations maintaining the
conditiont = 0, the SO(2, 1) transformations correspond to
the Lorentz transformations maintaining,e.g., z = 0. Besides
the representation given in Ref. [1], the group SO(2, 1) can
also be represented by complex2× 2 matrices (belonging to
the group SU(1, 1)) and by real2× 2 matrices (belonging to
SL(2,R)) (see,e.g., Refs. [3,4]).

The existence of the Wigner angle is the basis of the
Thomas precession, which is relevant in atomic and nuclear
physics, explaining the observed fine-structure intervals and
the spin-orbit interaction in atomic nuclei, respectively.

The aim of this paper is to show explicitly that the or-
thochronous proper Lorentz transformations maintainingz =
0 can be represented by (two-component) SU(1, 1) spinors
or, equivalently, that the inertial frames sharing the origin
and thez-axis can be represented by SU(1, 1) spinors. We
also show that this correspondence can be employed to find
the Wigner angle making use of one scalar product between
spinors.

The spinor formalism is a very useful tool in the stan-
dard general relativity, which deals with four-dimensional
curved space-times (see,e.g., Refs. [5, 6]). Similarly, the
SU(1, 1) spinors employed here are useful in the study of

2 + 1 space-times (see,e.g., Ref. [4]), which, even though
are not the main objective in the theory of gravitation, are
of interest as guides for the more realistic case (see,e.g.,
Ref. [7]). The group SU(1, 1) is also of interest in connection
with squeezed light and polarization optics, and the Wigner
angle has analogs in those fields (see,e.g., Refs. [8,9]).

In Sec. 2 we summarize some basic facts about the repre-
sentation of SO(2, 1) by SU(1, 1) and the SU(1, 1) spinors,
and we show that there exist two scalar products between
SU(1, 1) spinors. In Sec. 3 we show that each spinor repre-
sents an inertial frame of the restricted class mentioned above
and we relate the Wigner angle with one of the scalar prod-
ucts between spinors. As a second application we derive the
standard formulas for the relativistic Doppler effect and the
aberration of light making use of the fact that a null vector
with one of its spatial components equal to zero can be rep-
resented by a SU(1, 1) spinor. In Sec. 4 the connection with
the hyperbolic geometry is briefly discussed.

2. Representation of SO(2, 1)

The homogeneous Lorentz group can be defined as the set of
linear transformations leaving

x2 + y2 + z2 − (ct)2

invariant, where(x, y, z, ct) are the coordinates of an event
with respect to some inertial frame. Hence, the homogeneous
Lorentz transformations that leave,e.g., z = 0 invariant, also
leave

x2 + y2 − (ct)2 (1)

invariant. The linear transformations leaving (1) invariant
form the group O(2, 1).

Apart from the natural representation of O(2, 1) by real
3× 3 matrices there exist representations of this group, or its
subgroups, by2×2 matrices (see,e.g., Refs. [1,3,4]). In this
section we show, in an elementary manner, that some O(2, 1)
transformations (namely, those with positive determinant be-
longing to the connected component of the identity) can be



2 G. F. TORRES DEL CASTILLO

represented by complex2× 2 matrices (a detailed discussion
can be found in Refs. [3,4]).

As in Refs. [1, 10], we start by establishing a one-to-one
correspondence between points and certain2×2 matrices. In
the present case we associate the point with (real) coordinates
(x, y, ct) with the2× 2 complex matrix

P =
(

ct −x− iy
x− iy −ct

)
. (2)

Then, one can readily verify that

tr P = 0, P † = ηPη, (3)

where

η ≡
(

1 0
0 −1

)

and that any complex2×2 matrix satisfying Eqs. (3) must be
of the form (2). Thus, there is a one-to-one correspondence
between points(x, y, ct) and matrices (2), which is employed
below.

SincedetP = x2 + y2 − (ct)2, and the determinant is
invariant under similarity transformations, the transformation
P 7→ P ′ given by

P ′ = QPQ−1, (4)

whereP ′ is the matrix (2) corresponding to(x′, y′, ct′), rep-
resents an O(2, 1) transformation provided thatP ′† = ηP ′η
[see Eqs. (3)], that is, (Q−1)†P †Q† = η (QPQ−1) η, or
(Q†)−1ηPηQ† = ηQPQ−1η, which is satisfied ifηQ† =
Q−1η or, equivalently,

QηQ† = η. (5)

(Note that the conditiontr P = 0 is preserved by any simi-
larity transformation (4).)

Taking the determinant on both sides of Eq. (5), using
the fact thatdetQ† is the conjugate ofdet Q, one finds
that det Q = eiα, for someα ∈ R, then the matrixQ̃ =
e−iα/2Q also satisfies Eq. (5) anddet Q̃ = 1. Furthermore,
Q̃P Q̃−1 = QPQ−1, which means thatQ and Q̃ produce
the same O(2, 1) transformation. Hence, we can restrict our-
selves to matrices with determinant equal to 1 that satisfy Eq.
(5). These matrices form the group SU(1, 1). (The group
SU(p, q) is formed by que(p + q) × (p + q) complex ma-
trices,Q, with determinant equal to 1 such thatQηQ† = η,
whereη is the diagonal matrix withp entries equal to+1 and
q entries equal to−1.) It may be noticed that ifQ belongs
to SU(1, 1) then−Q also belongs to this group and from Eq.
(4) it follows thatQ and−Q produce the same O(2, 1) trans-
formation.

It can be shown that the transformations (4) with Q ∈
SU(1, 1) correspond to SO(2, 1) transformations (that is,
transformations belonging to O(2, 1) with determinant equal
to 1) [3,4]. For our purposes it suffices to verify that the trans-
formations (4) with Q ∈ SU(1, 1) reproduce the pure boosts
in arbitrary directions (in thexy-plane) and the rotations in
the xy-plane. In fact, a straightforward computation shows

that a rotation through an angleφ on thexy-plane is given by
(4) with Q given by

(
e−iφ/2 0

0 eiφ/2

)
(6)

or its negative. Similarly, for a pure boost in an arbitrary
direction in thexy-plane which makes an angleθ with the
x-axis,Q is given by

(
cosh w/2 −eiθ sinhw/2

−e−iθ sinhw/2 cosh w/2

)
(7)

or its negative, with the relative velocity,v, given by

v = c tanh w. (8)

The parameterw is called rapidity. Then, from Eq. (4) it fol-
lows that the matrix corresponding to the composition of a
pure boost, in the direction making an angleθ with the x-
axis, followed by a rotation through the angleφ is given by
the product of (6) (as the factor on the left) by (7), namely

(
e−iφ/2 cosh w/2 −e−iφ/2eiθ sinhw/2

−eiφ/2e−iθ sinh w/2 eiφ/2 cosh w/2

)
. (9)

2.1. Two-component spinors. Scalar products

The2×2 matricesQ ∈ SU(1, 1) act on two-component vec-
tors

ψ =
(

u
v

)
, (u, v ∈ C),

called spinors (or SU(1, 1) spinors), in the simple manner:
ψ 7→ Qψ (see also Eq. (25) below). As a consequence
of (5), the scalar product of the spinorsχ and ψ defined
by χ†ηψ is invariant under the action of SU(1, 1). In fact,
χ′†ηψ′ = (Qχ)†η(Qψ) = χ†(Q†ηQ)ψ = χ†ηψ, since (5)
is equivalent toQ†ηQ = η. (This can be proved in the fol-
lowing way: sinceη2 is the unit matrix, Eq. (5) implies that
Q−1 = ηQ†η, hence(ηQ†η)Q is the unit matrix and multi-
plying on the left byη one gets the desired relation.)

There is a second scalar product between spinors that
can be constructed by defining first themateof a spinor. A
straightforward computation shows that any matrix belong-
ing to SU(1, 1) is of the form

(
α β

β α

)
, (10)

whereα is the complex conjugate ofα, andα, β are complex
numbers such that|α|2 − |β|2 = 1 (cf. Ref. [10]). (The com-
plex numbersα andβ are analogous to the Cayley–Klein pa-
rameters employed in the case of the SO(3) transformations,
see,e.g., Ref. [10] and the references cited therein.) Hence,
if ψ′ = Qψ, with

ψ′ =
(

u′

v′

)
, (11)
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we have, in explicit form,

u′ = αu + βv,

v′ = βu + αv,
(12)

which is equivalent to

v′ = αv + βu

u′ = βv + α u.
(13)

Comparing (13) with (12) one concludes that the mate ofψ,
defined by

ψ̂ ≡
(

v
u

)
, (14)

transforms in the same way asψ [3], hence, for any pair of
spinorsχ andψ we can form another scalar product:χ̂†ηψ
(also invariant under the action of SU(1, 1)). (The defini-
tion (14) differs from that given in Ref. [4] by a constant
factor.) One can readily verify thatχ†ηψ = ψ†ηχ and
ψ̂†ηχ = −χ̂†ηψ.

3. Representation of the Lorentz transforma-
tions by spinors

Given a two-component spinor

ψ =
(

u
v

)
,

with |u|2 − |v|2 = 1 (that is,ψ†ηψ = 1), which we shall call
aunit spinor, there exists a uniqueQ ∈ SU(1, 1) such that

ψ = Q−1

(
1
0

)

or, equivalently,

Qψ =
(

1
0

)
. (15)

In fact,Q is explicitly given by
(

u −v
−v u

)

[see Eq. (10)] and since anyQ ∈ SU(1, 1) gives rise to a
SO(2, 1) transformation, which represents a Lorentz trans-
formation of a restricted class, it follows that any unit spinor
defines a proper orthochronous Lorentz transformation that
leaves invariant thez-axis.

Hence, starting with an inertial frame, S0, any other iner-
tial frame,S̃, sharing thez-axis with S0, is represented by a
unit spinor (defined up to sign). S0 itself is represented by

χ =
(

1
0

)
(16)

or its negative (since the Lorentz transformation leading from
S0 to S0 is the identity) and, according to Eqs. (9) and (15),
the unit spinor representing̃S is

ξ =

(
eiφ̃/2 cosh w̃/2

eiφ̃/2e−iθ̃ sinh w̃/2

)
(17)

or its negative, if̃S is moving with respect to S0 with velocity
c tanh w̃ in the direction making an anglẽθ with thex-axis,
and the axes̃x and ỹ are rotated an anglẽφ with respect to
the axesx andy. The scalar productsχ†ηξ andχ̂†ηξ are

χ†ηξ = eiφ̃/2 cosh w̃/2 (18)

and

χ̂†ηξ = −eiφ̃/2e−iθ̃ sinh w̃/2. (19)

Even though the spinorsχ andξ depend on the choice of
the inertial frame S0, the scalar products (18) and (19), being
invariant under the SU(1, 1) transformations, only depend on
the inertial frames represented byχ andξ (in the same man-
ner as the position vectors,r1 andr2, of two points of the
Euclidean space depend on the choice of the origin, but the
distance|r2 − r1| is independent of that choice).

Thus, given two inertial frames S0 and S̃ sharing thez-
axis, they can be represented by unit spinorsχ andξ, respec-
tively, and, according to Eq. (18), the modulus of the scalar
productχ†ηξ determines the velocity of̃S with respect to S0,
while the argument ofχ†ηξ determines the angle between the
axesx̃, ỹ and the axesx, y. The modulus of̂χ†ηξ also gives
the relative velocity of the two frames, but its argument does
not give the angles̃φ andθ̃ separately [see Eq. (19)].

3.1. The Wigner angle

Now, let S and S′ be two inertial frames moving with respect
to S0 with velocitiesv andv′ in thexy-plane which make an-
glesθ andθ′ with respect to thex-axis (of S0), respectively,
with the spatial axes of S parallel to those of S0 and, simi-
larly, the spatial axes of S′ parallel to those of S0; in other
words, S and S′ are related to S0 by means of pure boosts and
these boosts are represented (with respect to S0) by the unit
spinors

ψ =
(

cosh w/2
e−iθ sinhw/2

)
and

ψ′ =
(

cosh w′/2
e−iθ′ sinh w′/2

)
,

respectively, withv = c tanh w and v′ = c tanh w′ [see
Eq. (17)].

Then, the scalar productsψ†ηψ′ andψ̂†ηψ′ are

ψ†ηψ′ = cosh w/2 cosh w′/2

− ei(θ−θ′) sinh w/2 sinh w′/2 (20)

and

ψ̂†ηψ′ = e−iθ sinh w/2 cosh w′/2

− e−iθ′ cosh w/2 sinh w′/2. (21)
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By equating Eqs. (18) and (20), we conclude that, with re-
spect to S, the inertial frame S′ is moving with rapidityw̃,
and with its axes rotated by an angleφ̃ (the Wigner angle),
given by

eiφ̃/2 cosh w̃/2 = cosh w/2 cosh w′/2

− ei(θ−θ′) sinh w/2 sinh w′/2. (22)

One can readily verify that the real and imaginary parts of this
equation are precisely Eqs. (20) and (21) of Ref. [1]. Simi-
larly, the real and imaginary parts of the equation

−eiφ̃/2e−iθ̃ sinh w̃/2 = e−iθ sinhw/2 cosh w′/2

− e−iθ′ cosh w/2 sinh w′/2, (23)

obtained by equating Eqs. (19) and (21), are precisely
Eqs. (22) and (23) of Ref. [1].

3.2. Aberration of light and the relativistic Doppler ef-
fect

The aberration of light and the relativistic Doppler effect can
be conveniently studied with the aid of the formalism intro-
duced above. An electromagnetic plane wave is character-
ized by a wave four-vectorkα, which is null. Assuming that
k3 = 0, we are left with three possibly nonzero components,
k0, k1 andk2, such that(k1)2 + (k2)2 − (k0)2 = 0, hence
k1 = k0 cos α, k2 = k0 sin α, whereα is the angle be-
tween the propagation direction and thex-axis, and in this
case the analog of the matrix (2) can be expressed in terms of
a SU(1, 1) spinor,κ,

(
k0 −k1−ik2

k1−ik2 −k0

)
=

(
k0 −k0eiα

k0e−iα −k0

)
=κκ†η

with

κ ≡
√

k0

(
eiα/2

e−iα/2

)
. (24)

The two-component spinorκ transforms according to

α′ = Qα. (25)

That is, in the case of the wave four-vector, the transforma-
tion rule (4) is a consequence of (25). Hence, for a boost
along thex-axis [see Eq. (7)] the transformation (25) takes
the form

√
k′0

(
eiα′/2

e−iα′/2

)
=

(
cosh w/2 − sinh w/2
− sinhw/2 cosh w/2

)

×
√

k0

(
eiα/2

e−iα/2

)

which is equivalent to the single equation
√

k′0eiα′/2=
√

k0
(
eiα/2 cosh w/2−e−iα/2 sinhw/2

)
(26)

which, separating the modulus and the argument of the com-
plex number on the left-hand side, amounts to

k′0 = k0(coshw − sinhw cosα) = k0
(
γ − γ(v/c) cos α

)

and

tan 1
2α′ = ew tan 1

2α =

√
1 + v/c

1− v/c
tan 1

2α. (27)

It may be remarked that even though Eq. (27) is a well-known
result, in the standard procedure, making use of the four-
vector transformations, it is somewhat laborious to get it; and
even with the two-component SL(2,C) spinors its derivation
is not so straightforward.

4. Geometric interpretation

The spinor

ψ =
(

u
v

)

defines two vectors,Rψ and Mψ, with components
R1, R2, R3 andM1,M2,M3 given by [4]

Rj = iψ†ητ jψ, M j = iψ̂†ητ jψ, (28)

j = 1, 2, 3, with

τ1 ≡
(

0 −i
i 0

)
, τ2 ≡

(
0 1
1 0

)
,

τ3 ≡
( −i 0

0 i

)
, (29)

that is

Rψ = (uv + vu,−iuv + ivu, |u|2 + |v|2),
Mψ = (u2 + v2,−iu2 + iv2, 2uv). (30)

(The matricesτ j are a basis for the Lie algebra (overR) of the
traceless2× 2 complex matrices,A, such thatA†η = −ηA,
which is the Lie algebra of SU(1, 1). One can readily ver-
ify that the matrices (6) and (7) can be expressed in the
form exp( 1

2φ τ3) andexp[ 12w(sin θ τ1 − cos θ τ2)], respec-
tively.) The componentsRj are real and theM j are com-
plex. The vectorsRj andM j are orthogonal, in the sense
thatgijR

iM j = 0, where

(gij) = diag(1, 1,−1),

M j is null, that isgijM
iM j = 0, and if ψ is a unit spinor

thenRi is normalized,gijR
iRj = −1.

In the case of the unit spinorξ given by (17), the real vec-
torsRξ andReMξ are unit vectors along the axest̃ andx̃ of
S̃ (with respect to thex, y, ct-axes of S0). SincegijR

iRj =
−1 andR3 > 0, the point(R1, R2, R3) belongs to a sheet
of a hyperboloid. Withξ parametrized as in (17), the point
(R1, R2, R3) is given by(sinh w̃ cos θ̃, sinh w̃ sin θ̃, cosh w̃)
and thereforew andθ can be used as local coordinates on
the hypersurfaceM ≡ {(x, y, ct) ∈ R3 |x2 + y2 − (ct)2 =

Rev. Mex. Fis.69040701
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−1, ct > 0}. The (indefinite) metric tensorgijdxidxj =
(dx)2 + (dy)2 − (cdt)2 induces a (positive definite) metric
tensor onM given by

(dw)2 + sinh2 w (dθ)2. (31)

(This straightforward construction of the metric (31) can be
compared with the one presented in Ref. [11].)

The meridiansθ = const. of M are geodesics of
the metric (31). Hence, the distance (onM ) between the
point with w = 0 (corresponding to S0) and the point
(sinh w̃ cos θ̃, sinh w̃ sin θ̃, cosh w̃) of M (corresponding to
S̃), along the geodesic joining these points, isw̃.

Thus, each point ofM correspond to the time axis of
some inertial frame and the geodesic distance between two
points ofM is the rapidity of one the frames with respect to
the other. (It should be stressed thatM with the metric (31) is
a maximally symmetric space, with constant curvature, anal-
ogous to the standard sphere ofR3; among other things,M
is a homogeneous space, which is in agreement with the fact
that all the inertial frames are equivalent.)

As in the case of the SU(2) and the SL(2,C) spinors, the
SU(1, 1) spinors can be represented by flags (see,e.g., Refs.
[4, 5]) and in all cases one spinor and its negative define the
same flag. For a unit spinorψ the flagpole is given by the vec-
tor Rψ and the flag points alongReMψ. A straightforward
computation shows that, for a unit spinorξ parametrized in
the form (17),

ReMξ = cos(θ̃ − φ̃) ew − sin(θ̃ − φ̃) eθ, (32)

where{ew, eθ} is the orthonormal basis of the tangent space
of M (atRξ) defined by the coordinates(w, θ) of M .

The flag corresponding to the unit spinorχ points along
(1, 0, 0) [see Eqs. (30)], which forms an anglẽθ with the tan-
gent vector to the geodesic curveθ = θ̃, at the point(0, 0, 1)
of M , while the flag corresponding toξ forms an anglẽθ− φ̃
with the tangent vector to this curve, at the pointRξ of M
[see Eq. (32)]. As is well known, when a vector is translated
parallelly to itself along a geodesic, the angle between this
vector and the tangent vector to the geodesic does not vary
along the geodesic, hence, the angle,φ̃, between the spatial

axes of the inertial frames S0 and S̃, is the angle between
the flag corresponding tõS and the flag corresponding to S0

parallelly translated to itself along the geodesic joining the
points ofM that represent these frames. (An entirely similar
result holds in the case of the SU(2) spinors [12].)

In the case of the frames S0, S and S′ considered in
Sec. 3.1, we will have three points ofM determined by the
intersections of the time axes of the frames withM . These
three points define a geodesic triangle (constructed joining
each pair of points by a geodesic), with the distance between
vertices [determined with the metric (31)] being the relative
rapidity between the corresponding frames.

When the flag corresponding to S0 is translated parallelly
to itself along the geodesics going from S0 to S and from S0
to S′ it coincides with the flags corresponding to S and S′,
respectively (by construction, since S and S′ are obtained by
pure boosts from S0), but when this flag is translated paral-
lelly to itself from S to S′, the resulting flag forms an angle
equal to the Wigner angle with the flag corresponding to S′.
In differential geometry, this angle is called the holonomy
angle of the closed curve (in this case the triangle) and, for
a constant curvature hypersurface, such asM , this angle is
equal to the curvature of the hypersurface multiplied by the
area enclosed by the curve (see also Refs. [2,11] and the ref-
erences cited therein).

5. Concluding remarks

As is well known, the entire proper orthochronous Lorentz
group can be represented by SL(2,C) matrices (see,e.g.,
Refs. [5, 6]), which amounts to say that, excluding spatial
reflections and time inversions, each inertial frame can be
identified with apair of two-component spinors (frequently
denoted byo andι in the Newman–Penrose notation). The
alternatives presented in Ref. [1] and this paper constitute
a considerable simplification in the restricted case discussed
here, where a single two-component spinor is enough.
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