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The linear and the angular momentum stored
in a distribution of charges in a magnetic field
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We show that it is possible to defireg, thez-component of the linear momentum of the system formed by a charged particle and a magnetic
field if and only if the magnetic field is invariant under translations along:tagis. Similarly, it is possible to define thecomponent of

the angular momentum of the system formed by a charged particle and a magnetic field if and only if the magnetic field is invariant under
rotations about the-axis.
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1. Introduction

u-i/rx(ExB)dv. 2

In the elementary treatment of electromagnetism, the energy . dme o .
stored in a bounded electric charge distribution is defined as AS iS well known, by combining the Maxwell equations
the work needed to bring the charges from infinity to theirone finds that it is possible to d_efm_e a density of linear mo-
final positions (seee.g, Refs. [1,2]). In the computation one Mentum for the electromagnetic field (seeg, Ref. [3]),
makes use of the fact that the electrostatic force is conservithich is precisely given b x B/4rwc [cf. Eq. {1)], but this

tive and, therefore, the paths followed by the charges in ordeieSult does not depend on the assumption of some symmetry
to get to their final positions are irrelevant. Hence, there is Jor B. The difference is related to the fact that in the standard

well defined energy for a given charge configuration, withoutd€rivation of the density mentioned above one considers the
having to specify the way in which it was formed. interaction of the electric and magnetic fields with the charges

Imitating this procedure, in this paper we compute the Iin_and currents producing them, whereas in the calculation pre-

ear and the angular momentum transferred to a point chargféen;ed heretyvr;‘. Clcéns'dedr thedfgrcetr?n an electr]:p (cj:harge n a
that is displaced fromg.g, infinity to some final position in xed magnetic field, produced by other (unspecified) sources.

a given static magnetic fielB. We find that the component The coincidencg of the final results _When the magnetic fi_eld
along some axis of the linear momentum transferred to thg'fals the appropriate symmetry explains why the computations

point charge is independent of the path followed if and only9d'Ve" ;E Refs. [4,t 5]f _tcl)dsolve Zey”g‘?mt’ﬁ paradox [6], WOrkiI
if the magnetic field is invariant under translations along that " 'c© te' magnetic field consiaered In those papers IS axially
axis. Similarly, the component along some axis of the angu_symme re.

lar momentum transferred to the point charge is independer|1_t In Sec. 2 V\f[e fm:]l an ?xpre:jstsmn fﬁr t}fmqmponent ofthe i
of the path if and only if the magnetic field is invariant under Inéar momentum transterred to a charge in a given magnetic

rotations about that axis. This means that there is a well def-'QId and we show that if the magnetic field does not depend

fined value of one component of the stored linear or angulaﬁnz itis possible to define a value for thecomponent of the

momentum of the system formed by the charged particle an fear mpmentum of the system fqrmed by the charge and the
the magnetic field if and only if the magnetic field has the Magnetic field. In Sec. 3 we obtain analogous results for the
appropriate symmetry case of thez-component of the angular momentum, assum-

. e . . ing that the magnetic field is invariant under rotations about
We also show that, if the magnetic field is invariant under, g g

; ) the z-axis. Throughout this paper we use cgs units.
translations along some axis then the component along
of the linear momentum of the system (in cgs units) is given

by 2. The transferred linear momentum
u- 1 E x Bdv, (1) In this section and the following one we start from the usual
dme expression for the force on a charged particle, with electric
whereE is the electric field produced by the point charge andchargeq, in a magnetic fields:
the integral is over all space. In a similar manner we show F=2y x B, ()
that if the magnetic field is invariant under rotations about c

some axiqa, then the component alongof the angular mo-  wherec is the speed of light in vacuum andis the velocity
mentum of the system is given by of the charged particle. According to Newton’s second law,
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the right-hand side of Eq3] must be equal tdp/d¢, where 2.1 Expression in terms of the fields

p is the linear momentum of the particle. Hence, the linear

momentuntransferredto the chargepy, in order to displace Denoting bya the position vector of the chargg accord-

it quasistatically must be such that ing to Gauss'’s law, the electric field produced by this charge

q q must satisfyV - E = 4m¢é(r — a), hence, if the magnetic

dp, = VX Bdt = EB x dr field is invariant under translations along the directiorof

and the total linear momentum transferred to the charge whet® component of the linear momentum of the system along

it is displaced along a patfi is given by the line integral u is given by

q 1
Aptzf/Bxdr. a4 _ / .
¢ Jo u-p CH(a) T (V-E)IIdo,

If we want to consider the component&p; along some _ _
direction, without any loss of generality we can take that di-wherell is a function such thaVll = u x B [cf. Eq. 6)]
rection as the-axis of a set of Cartesian axes. We have and the integration is over all space. Making use of the Gauss

q theorem we have
Apy, = - / (Bydy — Bydz). 4) . .
C

The value of the line integralf only depends on the end- @ P =3 [ E-VIldv=—"—— [ E-uxBdy
points of the pathC if and only if B,dy — Bydx + 0dz is 1
exact. This means that the crossed partial derivatives of the =u-— | ExBdv. @)
coefficients must coincide: dme

9B, _ _3By’ IB: _ 0, 9B, _, (5)  Inthis way, the component of the linear momentum alang

Ox dy 0z 0z is expressed in terms of the electric and magnetic fields alone.

Since the magnetic field must ob®y- B = 0, the first equa- It may be noticed that the right-hand side of Ef). ¢ontains
tion (5) amounts to9B./9z = 0 and, therefore, Eqs5) the integral of the density of linear momentuinx B/4nc
mean that the Cartesian component®8oflo not depend on mentioned at the Introduction.
z, or thatB is invariant under the translations along the
axis.

Another way of expressing the fact that the differential3- The transferred angular momentum
form B,dy — Bydx 4+ 0dz is exact is saying that there ex-
ists a functionII, defined up to an additive constant, such
that B, dy — B,dx = dII or, equivalently, that there exists a
functionII such that

VIl = -Byiz+ B,y =2 x B. (6)
When the magnetic field depends onthe transferred

momentum 4) does depend on the path followed and weyyithoyt any loss of generality, we consider theomponent
cannotdefllne the “function _of statell (borrowing the term ¢ the transferred angular momentum but in order to sim-
employed in thermodynamics). plify the interpretation it will be convenient to make use of
Thus, if the magnetic field is independent of the  ihe circular cylindrical coordinate&o, ¢, z). Thendr =
amount of thez-component of linear momentum transferred dp p+pdd d+dz 2, where{p, 6, £} is the orthonormal basis

to the charge during its motion alorigonly depends onthe yefined by the cylindrical coordinatas= p 5 + = , and
endpoints of the path, and we caasigna value for thez-

component of the linear momentum of the system (formed by
the magnetic field and the charge) given(gyc) I(z, y, 2),

if (z,y, z) are the Cartesian coordinates of the position of the
charge [see Eg4f]. In Refs. [7] and [8], Exercise 1.22, it = Q/ p(B.dp — B,dz). (8)
is shown that for a charged patrticle in a given magnetic field ¢Jo

independent of, mZ + ¢II/cis a constant of motion.

Making use of Eq.3), we now calculate the angular mo-
mentum transferred to a point charge in order to displace it
quasistatically along a patfi in a given magnetic field

ALt:g/rx(Bxdr):g/(r-dr)B—(r~B)dr.
Cc Jo Cc Jo

AL, = %/ [(pdp + 2dz)B. — (pB, + 2B.)dz]
c

The value of the line integre8f depends only on the end-

It should be clgar that if instead of considering the goints of the path if and only i6B.dp — pB,dz + 0d¢ is
component of the linear momentum of the system, we want t . "
exact, which amounts to the conditions

define the component of the linear momentum of the system

along the direction of the (constant) unit vectarthe mag- d(pB.) d(pB,)

netic field must be invariant under translations in the direction 0 ap

of u and the linear momentum will be defined in terms of a

functionII such thatVIl = u x B. The assumed symmetry 9(pB-:) -0 9(pBy) —0. )
of B guarantees the existenceldf o ’ 99
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Using the fact that It should be clear that a similar expression would be ap-
0=V-B= 10(pB,) , 10By 0B, plicable if instead ofz we take any other constant vector,
= = op > 06 EP provided that the magnetic field is invariant under rotations

about that constant vector. The right-hand side of &d) (
contains the integral of the densityx (E x B)/4mc, which

is usually interpreted as a density of angular momentum for
the electromagnetic field.

we see that Eqs9) are equivalent to saying that the compo-
nentsB,, B4, B. do not depend o. In other words, the
magnetic field is invariant under rotations about thaxis.

The symmetry conditions9f are equivalent to the exis-
tence of a functior\, defined up to an additive constant, such
thatdA = pB,dp — pB.dz or that 3. Final remarks

VA =pB.p—pBy2 = (2 xr) xB. (10)  As pointed out at the Introduction, for the system formed by
Then, thez-component of the angular momentum of the sys-a point charge and a static magnetic field, theomponent
tem can belefinedas(q/c)A, with the functionA evaluated of the linear or angular momentum of the combined electro-
at the position of the charge. (Note that the functibhand ~ magnetic field computed making use of the density of lin-
A depend only on the magnetic fieBl.) In Refs. [7], [8], €ar momentunk x B/4rc coincides with the;-component
Example 1.21, and [9] it is shown that for a charged particleof the stored linear or angular momentum, provided that the
in a given magnetic field invariant under rotations about thgnagnetic field is invariant under translations along#texis

z-axis,m(xy — yi) + gA/c is a constant of motion. or rotations about the-axis, respectively.
In all the calculations presented above we have consid-
3.1 Expression in terms of the fields ered a single test charge in a given magnetic field. Owing

to the additivity of the linear and the angular momenta, the

Using the same notation as in Sec. 2.1, if the magnetic fielgesyits obtained above can be applied to a collection of test
is invariant under rotations about theaxis, thez-component  charges if the interaction among them is neglected.

of the angular momentum of the system can be expressed as

1
2. L= %A(a) =i /(v -E) Adv, Acknowledgement
with A defined by Eq./20) and the integration is over all The author wishes to thank the referee for helpful sugges-
space. Making use of the Gauss theorem we have tions.
2-L=—L E-VAdv
4me
b E-[(2xr)xB]d
4me v
—s. L rx (ExB)d (11)
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