
Gravitation, Mathematical Physics and Field Theory Revista Mexicana de Fı́sica69050701 1–3 SEPTEMBER-OCTOBER 2023

The linear and the angular momentum stored
in a distribution of charges in a magnetic field
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We show that it is possible to define,e.g., thez-component of the linear momentum of the system formed by a charged particle and a magnetic
field if and only if the magnetic field is invariant under translations along thez-axis. Similarly, it is possible to define thez-component of
the angular momentum of the system formed by a charged particle and a magnetic field if and only if the magnetic field is invariant under
rotations about thez-axis.
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1. Introduction

In the elementary treatment of electromagnetism, the energy
stored in a bounded electric charge distribution is defined as
the work needed to bring the charges from infinity to their
final positions (see,e.g., Refs. [1,2]). In the computation one
makes use of the fact that the electrostatic force is conserva-
tive and, therefore, the paths followed by the charges in order
to get to their final positions are irrelevant. Hence, there is a
well defined energy for a given charge configuration, without
having to specify the way in which it was formed.

Imitating this procedure, in this paper we compute the lin-
ear and the angular momentum transferred to a point charge
that is displaced from,e.g., infinity to some final position in
a given static magnetic fieldB. We find that the component
along some axis of the linear momentum transferred to the
point charge is independent of the path followed if and only
if the magnetic field is invariant under translations along that
axis. Similarly, the component along some axis of the angu-
lar momentum transferred to the point charge is independent
of the path if and only if the magnetic field is invariant under
rotations about that axis. This means that there is a well de-
fined value of one component of the stored linear or angular
momentum of the system formed by the charged particle and
the magnetic field if and only if the magnetic field has the
appropriate symmetry.

We also show that, if the magnetic field is invariant under
translations along some axisu, then the component alongu
of the linear momentum of the system (in cgs units) is given
by

u · 1
4πc

∫
E×B dv, (1)

whereE is the electric field produced by the point charge and
the integral is over all space. In a similar manner we show
that if the magnetic field is invariant under rotations about
some axisu, then the component alongu of the angular mo-
mentum of the system is given by

u · 1
4πc

∫
r× (E×B) dv. (2)

As is well known, by combining the Maxwell equations
one finds that it is possible to define a density of linear mo-
mentum for the electromagnetic field (see,e.g., Ref. [3]),
which is precisely given byE×B/4πc [cf. Eq. (1)], but this
result does not depend on the assumption of some symmetry
for B. The difference is related to the fact that in the standard
derivation of the density mentioned above one considers the
interaction of the electric and magnetic fields with the charges
and currents producing them, whereas in the calculation pre-
sented here we consider the force on an electric charge in a
fixed magnetic field, produced by other (unspecified) sources.
The coincidence of the final results when the magnetic field
has the appropriate symmetry explains why the computations
given in Refs. [4, 5], to solve Feynman’s paradox [6], work,
since the magnetic field considered in those papers is axially
symmetric.

In Sec. 2 we find an expression for thez-component of the
linear momentum transferred to a charge in a given magnetic
field and we show that if the magnetic field does not depend
onz it is possible to define a value for thez-component of the
linear momentum of the system formed by the charge and the
magnetic field. In Sec. 3 we obtain analogous results for the
case of thez-component of the angular momentum, assum-
ing that the magnetic field is invariant under rotations about
thez-axis. Throughout this paper we use cgs units.

2. The transferred linear momentum

In this section and the following one we start from the usual
expression for the force on a charged particle, with electric
chargeq, in a magnetic fieldB:

F =
q

c
v ×B, (3)

wherec is the speed of light in vacuum andv is the velocity
of the charged particle. According to Newton’s second law,
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the right-hand side of Eq. (3) must be equal todp/dt, where
p is the linear momentum of the particle. Hence, the linear
momentumtransferredto the charge,pt, in order to displace
it quasistatically must be such that

dpt = −q

c
v ×B dt =

q

c
B× dr

and the total linear momentum transferred to the charge when
it is displaced along a pathC is given by the line integral

∆pt =
q

c

∫

C

B× dr.

If we want to consider the component of∆pt along some
direction, without any loss of generality we can take that di-
rection as thez-axis of a set of Cartesian axes. We have

∆ptz =
q

c

∫

C

(Bxdy −Bydx). (4)

The value of the line integral (4) only depends on the end-
points of the pathC if and only if Bxdy − Bydx + 0dz is
exact. This means that the crossed partial derivatives of the
coefficients must coincide:

∂Bx

∂x
= −∂By

∂y
,

∂Bx

∂z
= 0,

∂By

∂z
= 0. (5)

Since the magnetic field must obey∇ ·B = 0, the first equa-
tion (5) amounts to∂Bz/∂z = 0 and, therefore, Eqs. (5)
mean that the Cartesian components ofB do not depend on
z, or thatB is invariant under the translations along thez-
axis.

Another way of expressing the fact that the differential
form Bxdy − Bydx + 0dz is exact is saying that there ex-
ists a functionΠ, defined up to an additive constant, such
thatBxdy − Bydx = dΠ or, equivalently, that there exists a
functionΠ such that

∇Π = −Byx̂ + Bxŷ = ẑ ×B. (6)

When the magnetic field depends onz, the transferred
momentum (4) does depend on the path followed and we
cannotdefine the “function of state”Π (borrowing the term
employed in thermodynamics).

Thus, if the magnetic field is independent ofz, the
amount of thez-component of linear momentum transferred
to the charge during its motion alongC only depends on the
endpoints of the path, and we canassigna value for thez-
component of the linear momentum of the system (formed by
the magnetic field and the charge) given by(q/c)Π(x, y, z),
if (x, y, z) are the Cartesian coordinates of the position of the
charge [see Eq. (4)]. In Refs. [7] and [8], Exercise 1.22, it
is shown that for a charged particle in a given magnetic field
independent ofz, mż + qΠ/c is a constant of motion.

It should be clear that if instead of considering thez-
component of the linear momentum of the system, we want to
define the component of the linear momentum of the system
along the direction of the (constant) unit vectoru, the mag-
netic field must be invariant under translations in the direction
of u and the linear momentum will be defined in terms of a
functionΠ such that∇Π = u ×B. The assumed symmetry
of B guarantees the existence ofΠ.

2.1 Expression in terms of the fields

Denoting bya the position vector of the chargeq, accord-
ing to Gauss’s law, the electric field produced by this charge
must satisfy∇ · E = 4πqδ(r − a), hence, if the magnetic
field is invariant under translations along the direction ofu,
the component of the linear momentum of the system along
u is given by

u · p =
q

c
Π(a) =

1
4πc

∫
(∇ ·E)Π dv,

whereΠ is a function such that∇Π = u × B [cf. Eq. (6)]
and the integration is over all space. Making use of the Gauss
theorem we have

u · p = − 1
4πc

∫
E · ∇Πdv = − 1

4πc

∫
E · u×B dv

= u · 1
4πc

∫
E×B dv. (7)

In this way, the component of the linear momentum alongu
is expressed in terms of the electric and magnetic fields alone.
It may be noticed that the right-hand side of Eq. (7) contains
the integral of the density of linear momentumE × B/4πc
mentioned at the Introduction.

3. The transferred angular momentum

Making use of Eq. (3), we now calculate the angular mo-
mentum transferred to a point charge in order to displace it
quasistatically along a pathC in a given magnetic fieldB

∆Lt =
q

c

∫

C

r× (B× dr) =
q

c

∫

C

(r · dr)B− (r ·B)dr.

Without any loss of generality, we consider thez-component
of the transferred angular momentum but in order to sim-
plify the interpretation it will be convenient to make use of
the circular cylindrical coordinates(ρ, φ, z). Then dr =
dρ ρ̂+ρdφ φ̂+dz ẑ, where{ρ̂, φ̂, ẑ} is the orthonormal basis
defined by the cylindrical coordinates,r = ρ ρ̂ + z ẑ, and

∆Ltz =
q

c

∫

C

[
(ρdρ + zdz)Bz − (ρBρ + zBz)dz

]

=
q

c

∫

C

ρ (Bzdρ−Bρdz). (8)

The value of the line integral (8) depends only on the end-
points of the path if and only ifρBzdρ − ρBρdz + 0dφ is
exact, which amounts to the conditions

∂(ρBz)
∂z

= −∂(ρBρ)
∂ρ

,

∂(ρBz)
∂φ

= 0,
∂(ρBρ)

∂φ
= 0. (9)
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Using the fact that

0 = ∇ ·B =
1
ρ

∂(ρBρ)
∂ρ

+
1
ρ

∂Bφ

∂φ
+

∂Bz

∂z
,

we see that Eqs. (9) are equivalent to saying that the compo-
nentsBρ, Bφ, Bz do not depend onφ. In other words, the
magnetic field is invariant under rotations about thez-axis.

The symmetry conditions (9) are equivalent to the exis-
tence of a functionΛ, defined up to an additive constant, such
thatdΛ = ρBρdρ− ρBzdz or that

∇Λ = ρBz ρ̂− ρBρẑ = (ẑ × r)×B. (10)

Then, thez-component of the angular momentum of the sys-
tem can bedefinedas(q/c)Λ, with the functionΛ evaluated
at the position of the charge. (Note that the functionsΠ and
Λ depend only on the magnetic fieldB.) In Refs. [7], [8],
Example 1.21, and [9] it is shown that for a charged particle
in a given magnetic field invariant under rotations about the
z-axis,m(xẏ − yẋ) + qΛ/c is a constant of motion.

3.1 Expression in terms of the fields

Using the same notation as in Sec. 2.1, if the magnetic field
is invariant under rotations about thez-axis, thez-component
of the angular momentum of the system can be expressed as

ẑ · L =
q

c
Λ(a) =

1
4πc

∫
(∇ ·E) Λ dv,

with Λ defined by Eq. (10) and the integration is over all
space. Making use of the Gauss theorem we have

ẑ · L = − 1
4πc

∫
E · ∇Λdv

= − 1
4πc

∫
E · [(ẑ × r)×B] dv

= ẑ · 1
4πc

∫
r× (E×B) dv. (11)

It should be clear that a similar expression would be ap-
plicable if instead of̂z we take any other constant vector,
provided that the magnetic field is invariant under rotations
about that constant vector. The right-hand side of Eq. (11)
contains the integral of the densityr× (E×B)/4πc, which
is usually interpreted as a density of angular momentum for
the electromagnetic field.

3. Final remarks

As pointed out at the Introduction, for the system formed by
a point charge and a static magnetic field, thez- component
of the linear or angular momentum of the combined electro-
magnetic field computed making use of the density of lin-
ear momentumE ×B/4πc coincides with thez-component
of the stored linear or angular momentum, provided that the
magnetic field is invariant under translations along thez-axis
or rotations about thez-axis, respectively.

In all the calculations presented above we have consid-
ered a single test charge in a given magnetic field. Owing
to the additivity of the linear and the angular momenta, the
results obtained above can be applied to a collection of test
charges if the interaction among them is neglected.
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