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Alternative approach to explore the stability of floating bodies
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We present a simplified model of a boat to study its rotational dynamics, which is a significant criterion for the development of navigation
systems. The stability of a floating body can be examined by means of rotational potential energy, which depends solely on the boat’s
gravity center and a point called the metacentric height. Typically, this geometric point is a function of the body’s orientation in relation
to the fluid surface, and the estimation of its value can often be ambiguous. This paper presents an alternative method for calculating the
metacentric height using a vectorial approach, as well as a general definition of rotational potential energy applicable to this type of problem.
The potential energy facilitates the determination of stable and unstable equilibrium directions as a function of the boat’s relative density and
orientation.
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1. Introduction

The rotational stability of floating bodies is a crucial and
widely studied problem in the field of fluid mechanics. It is of
particular interest in engineering and physics, where the sta-
bility of boats and submarines is a subject of constant inves-
tigation. The problem is fundamentally defined by the center
of gravity~rCG and the buoyancy point~rb, where the weight
and buoyancy force are applied, respectively. Depending on
the geometry of the system and the submerged volume, a ge-
ometric point known as the metacentric height~rM can be
identified. This vector is the point of intersection between the
line of action of the buoyancy force and the symmetry axis of
the body. The metacentric height is commonly determined
through the following equation [1,2]:

|~rM | = I

Vs
, (1)

whereI is the moment of inertia parallel to the fluid sur-
face andVs is the submerged volume. However, this expres-
sion is not always presented clearly in textbooks and other
sources. Generally, a stable stability criterion is defined when
~rM > ~rCG, as this generates a restorative moment of the
weight. In other words, it results in a minimum of the ro-
tational potential energy of the center of gravity in relation
to the metacentric height [3, 4]. Moreover, a fully geomet-
ric approach allows for the calculation of all vectors and the
rotational potential energy in a more natural manner [3–5].

2. Description of the system

The model of a boat can be simplified to a triangular shape
with constant densityσ. This shape is defined by the follow-
ing system of equations [5]:

FIGURE 1. Floating body represented by a triangle shape and the
fluid surface is described by a first-order polynomial.

y = a,

y = x,

y = −x. (2)

The position of the center of gravity~rCG of the boat is
determined by the shape of its body. It is measured from the
reference points shown in Fig. 1,

~rCG =
(

0,
2
3
a

)
. (3)

In contrast, the surface of the fluid is represented using a
first-order polynomial:

y = mx + b. (4)
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The slope of the polynomial is limited by the body’s ge-
ometry and its intersection with the fluid surface. Therefore,

m ≤ 1− b

a
. (5)

In addition, the orientation of the fluid surface is deter-
mined by the following normal vector, which specifies the
stability directions,

n̂(m) =
1√

1 + m2
(−m, 1). (6)

The intersection between the fluid surface and the body
is defined by the pointsP andQ, which are expressed as fol-
lows:

P =
( −b

1 + m
,

b

1 + m

)
,

Q =
(

b

1−m
,

b

1−m

)
. (7)

These points allows us to calculate the centroid of the
submerged surface,

~rb =
1
A

Qx∫

Px

mx+b∫

|x|

(xî + yĵ)dxdy. (8)

The submerged area of the body, denoted byA, is a func-
tion of the slopem and the interceptb of the polynomial that
characterizes the fluid surface,

A =

Qx∫

Px

mx+b∫

|x|

dxdy. (9)

After performing the integral, we obtain the following ex-
pression:

~rb =
2
3
b

(
m

1−m2
,

1
1−m2

)
, |m| 6= 1. (10)

The line of action of the buoyancy force is determined by
a vectorial line that is generated by the buoyancy vector and
the orientation of the fluid surface,

~re = ~rb + tn̂, t > 0. (11)

The metacentric vector is defined as the point at which
the line of action of the buoyancy force intersects the original
line of action prior to any rotation. This point is characterized
by a zero x-component of the position vector,i.e., ~rR|x = 0:

t =
2
3
b

√
1 + m2

1−m2
. (12)

The metacentric vector is therefore:

~rM =
(

0,
4
3
b

1
1−m2

)
. (13)

The condition~rM > ~rCG defines the stability of a float-
ing body in terms of the concept of potential energy. Specif-
ically, if the metacentric vector~rM is above the center of
gravity vector~rCG, then the body is stable and has a lower
potential energy, since any disturbance will cause a restoring
moment that returns the body to its original position. On the
other hand, if~rM is below~rCG, the body is unstable and has
a higher potential energy, since any disturbance will cause a
destabilizing moment that will tend to overturn the body.

3. Rotational potential energy

The weight of the boat generates a net torque that can be cal-
culated from the metacentric height [6,7]. As a reminder, the
work associated with the torque can be expressed as:

W =

θ∫

0

τ(θ′)dθ′. (14)

Using the common definition of torque, we can express
the potential energy of a floating body in terms of its orienta-
tion and the forces acting upon it. Specifically, the potential
energy can be written as:

U = |~rR||~w| − |~rR||~w|cos(θ). (15)

Here,~rR = ~rCG − ~rM as shown in Fig. 2, represents the
relative vector between the center of gravity and the metacen-
tric height. Note that the second term in the above expression
is the dot product between the relative vector and the weight
(which is antiparallel to the surface). Therefore,

U = |~w|(|~rR| − ~rR · (−~n)). (16)

We define a rotational potential energy per unit force and
length asU(m, b/a) := U/(aw), which depends only on the
fluid surface. In general, if the potential energy func-

FIGURE 2. The geometry associated with the torque exerted by
the weight of the boat with respect to the metacentric vector is de-
termined by the relative position of the center of gravity and the
metacentric height, as well as the orientation of the body.
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FIGURE 3. Rotational potential energy of the system associated to
the metacentric height. Three stability regions are distinguished: an
unstable rotational region defined by0.1 ≤ b/a ≤ 0.4, a transition
region defined by0.4 ≤ b/a ≤ 0.5, and a stable region defined by
0.5 ≤ b/a ≤ 0.9.

FIGURE 4. Rotational potential energy of the system forb/a =
0.3. This configuration corresponds to an unstable equilibrium
point, as indicated by the absence of a local minimum in the po-
tential energy curve.

tion has a local minimum, the body will remain in stable static
equilibrium, while an absence of a local minimum implies an
unstable equilibrium. Specifically, for~rR · (−~n) > 0 the
equilibrium is stable due to the condition~rM > ~rCG, which
is the canonical requirement for stability. Equation (17) al-
lows us to study the mechanical behavior of the system for
different relative densities,i.e., 0 < b/a < 1.

U(m, b/a) =
∣∣∣∣
2
3

(
1− 2b/a

1−m2

)∣∣∣∣

− 2
3

(
1− 2b/a

1−m2

)
1√

1 + m2
. (17)

The rotational potential energy for relative densities
0.1 < b/a < 0.9 is presented in Fig. 3. The system ex-
hibits three distinct stability regions. Region I, where0.1 ≤
b/a < 0.4, is characterized by an unstable equilibrium with
a local maximum. Region II, where0.4 ≤ b/a < 0.5, is a
transition region with asymmetric stability points (m 6= 0).
Finally, region III, where0.5 ≤ b/a < 0.9, is a stable equi-
librium region with a local minimum. Figure 4 illustrates an
unstable

FIGURE 5. Rotational potential energy of the system forb/a =
0.4. This configuration corresponds to a transition equilibrium
point with an asymmetric local minimum.

FIGURE 6. The rotational potential energy of the system is cal-
culated for a ratio ofb/a = 0.6. This specific configuration is
indicative of a stable equilibrium point.
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equilibrium point in region I, specifically atb/a = 0.3. The
local maximum at this point is symmetric aroundm = 0.

Figure 5 shows a point of the transition region withb/a =
0.45, where the local minimum is roughly|m| = 0.330. Fur-
thermore, the system tends to settle in the local minimum at
this relative density value since the symmetry axis (m = 0)
is an unstable point.

Figure 6 shows a stable point for the region III, where
b/a = 0.6. The local minimum is symmetric aroundm = 0.

4. Conclusions

This communication aims to investigate the approximate be-
havior of the rotational stability of a floating body, which is
modeled using a simplified geometry. First, we parameterize
the fluid surface with a first-order polynomial and calculate
the centroid of the submerged volume. Second, we utilize
the vectorial expression of the straight line to determine the
metacentric height of this system. This vector facilitates the
calculation of the torque of the system’s weight with respect
to the metacentric height, and consequently, the potential en-
ergy. Third, the results reveal three stability regions: an un-
stable region where the relative density is0.1 ≤ b/a < 0.4,
a transition region with asymmetric stability points where
0.4 ≤ b/a < 0.5, and a stable region where0.5 ≤ b/a < 0.9.

By using a triangular cross-section model for a ship, we can
derive simple expressions to analyze the rotational poten-
tial energy function of the system. This energetic method
is highly versatile and can also be extended to more complex
cross-section geometries, such as a parabolic profile repre-
sented by the equationy = x2. In such cases, readers can
easily determine the crossing pointsP andQ, which are as
follows:

P =
(

m

2
(1−D),

m2

2
(1−D) + b

)
,

Q =
(

m

2
(1 + D),

m2

2
(1 + D) + b

)
, (18)

whereD =
√

(1 + 4b)/m2. To estimate the rotational po-
tential energy, the centroid and metacentric height must be
calculated using the points described in this communication.
For the parabolic profile, these values are more difficult to
calculate, thereby, more complex shapes may require the use
of numerical methods to establish the stability criteria.
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