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Repulsive bound-electron pairs in a Peierls lattice
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A new class of repulsive bound-electron pairs have been found in a Peierls lattice within the Hubbard model for energiesE < 0 despite
U > 0. These new repulsive bound-electron pairs have a high degree of localization as both the correlation energyU and thetS/tL hopping
ratio increases. In order to study electronic correlation in Peierls lattices, our previous real space mapping method has also been extended to
the so called generalized mapping method which is briefly presented here. In this paper, we concentrate our attention to discuss in detail the
two-particle problem within a repulsive Hubbard model for the one-dimensional Peierls lattice.
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1. Introduction

The recent experimental results by Winkleret al. [1] on the
repulsive bound-atom pairs of ultracold rubidium atoms in an
optical lattice, provides a new opportunity to study the pair-
ing mechanism in its different forms. One of the first stable
composite objects was the Cooper pair which gives the ori-
gin of the well known BCS theory of superconductivity [2].
It has been found that pairing exist also in the new high-Tc
ceramic superconductors, and that in general these Cooper
pairs could be between holes or between electrons, the com-
posite Cooper pair of two attractive electron or two attractive
holes is still fundamental in order to explain the mechanism
of the high-TC superconductors [3]. Also, in the early 90′s
the experimental demonstration of the Bose-Einstein conden-
sation with ultracold atoms [4], provide an environment to
continue the studies of the strong interaction regime in con-
densed matter both by experimental or theoretical techniques.
Previously [5–7], a simple procedure to derive analytic ex-
pressions for the energy and the wave function of the two-
bosons states in a one-dimensional periodic lattice within the
Hubbard model was proposed. The existence of stable repul-
sive bound-atoms pairs in optical lattices [1, 8], induces the
idea of bound-pair states like the repulsive bound-electron
pairs. The issue we want to address in this paper is the novel
repulsive bound-electron pair in a Peierls lattice, within the
on-site Hubbard model and the generalized real space map-
ping method. An exact solution for the energy spectrum and
the wave function of repulsive bound-electron pairs is given
for the one-dimensional Peierls lattice in the framework of
the repulsive Hubbard model.

One of the simplest model which consider the strong elec-
tronic interaction is the Hubbard model [9], this model in-
clude implicitly all kind of effects to obtain bound-electron
states through the parameters of the Hamiltonian. The re-
newed interest in this model comes due to the fact that it
contains the basic ideas to investigate the bound-pair states,

and the dynamics of electron or hole pairs who are believed
to be fundamental to explain even unconventional supercon-
ductivity. In previous work [10–12], we have studied widely
the two-particle problem in different lattices within the Hub-
bard model and the real space mapping method which al-
low us also to analyze electron pairing even in complex and
non-periodic lattices like the one-dimensional Fibonacci lat-
tice [13, 14]. To study the strong electronic correlation in a
Peierls lattice the real space mapping method ought to be ex-
tended to the so-called generalized mapping method.

One of the advantages of the mapping method is that al-
lows us to diagonalize exactly the Hubbard Hamiltonian of an
infinite lattice, by mapping the interacting many-body prob-
lem onto a one-body tight-binding problem in a higher di-
mensional space. The strong two-electron interaction is well
described using the single-band Hubbard Hamiltonian,

H =
∑

<i,j>,σ

ti,jc
†
i,σcj,σ + U

∑

i

ni,↑ni,↓, (1)

where < i, j > denotes nearest neighbor sites, therefore
ti,j = ti,i+1 = ti and for a one-dimensional Peierls lattice it
is an alternating sequence oftS (short hopping) andtL (large
hopping),c†i,σ andcj,σ are the creation and annihilation oper-
ators respectively with spinσ =↑ or ↓, ni,σ = c†i,σci,σ at site
i, andU is the on-site Coulomb repulsion. Our paper is or-
ganized as follows, a discussion of the generalized mapping
method will be presented in Sec. 2. Results and discussion
for the repulsive two-electron pair in a Peierls lattice will be
presented in Sec. 3. Some conclusions are given in Sec. 4.

2. Generalized mapping method

In the following, we introduce briefly the generalization of
the mapping method for two electrons with opposite spin in
an infinite periodic one-dimensional Peierls lattice. The two-
electron states associated to this Peierls lattice within a Hub-
bard Hamiltonian form a square network of states with an
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FIGURE 1. Diagram of neighbors states and hopping for a two
electron state|n + s, n〉.

infinite number of impurities localized along the principal di-
agonal (see Fig. 1), which can be described with a type of
tight-binding Hamiltonian. It is important to mention that
sites in this new tight-binding Hamiltonian represent many-
body states and not the atomic orbital or the Wannier func-
tions commonly used. In Fig. 1,n + s andn are the coordi-
nates in this new space of states in order to be as general as
possible.

Taking the definition of the two-electron wave function
as |i, j〉 = |i ↑〉 ⊗ |j ↓〉, we can obtain the relations associ-
ated with each hopping and site energy given in Fig. 1 as fol-
lowing: the Hubbard Hamiltonian applied to the above two
particle wave function gives

H |n + s, n〉 = tn+s |n + s + 1, n〉+ tn−1 |n + s, n− 1〉
+ tn+s−1 |n + s− 1, n〉+ tn |n + s, n + 1〉
+ Uδ0,s |n + s, n〉 , (2)

therefore, the different site energies and the hopping terms
can be obtained by

〈n + s, n|H |n + s, n〉 =Uδ0,s, (3)

〈n + s + 1, n|H |n + s, n〉 =tn+s, (4)

〈n + s− 1, n|H |n + s, n〉 =tn+s−1, (5)

〈n + s, n− 1|H |n + s, n〉 =tn−1, (6)

〈n + s, n + 1|H |n + s, n〉 =tn. (7)

To solve the square lattice of two-electron states (sites in
Fig. 1), we have to diagonalize a matrix of the order ofN2 (N
is the number of sites), that has a computational complexity
of the order ofO(N6). Nevertheless, it can take advantage of
the translational symmetry of the lattice on both, the impuri-
ties along the principal diagonal and the hopping, to project
the square network of states onto a coupled of linear chains
of effective states (see Fig. 2) in order to reduce its compu-
tational complexity to the order ofO(N4). This projection
method resembles the used by Falicov and Yndurain in their
work on the electronic structure of diamond [15]. The pro-
jection can be done by introducing a basis change given by:

|k; s〉 =
1√
N

∑
n

eikn |n + s, n〉 , (8)

where|k; s〉 represent the new effective states (see Fig. 2) and
k ∈ {0, (2π · 1/N), (2π · 2/N), . . . , (2π · (N − 1)/N)}.

The matrix elements associated with the network of ef-
fective states (Fig. 2) are given by:

〈l; s|H |k; s〉 =
1
N

(∑
m

e−ilm 〈m + s,m|
)

×H

(∑
n

eikn |n + s, n〉
)

=
1
N

∑
m

e−i(l−k)mUδ0,s = Uδl,kδ0,s, (9)

FIGURE 2. Equivalent structure representation of the network of states given in Fig. 1 after a basis change. Here, the sites represent effective
states and the lines effective hopping, both are described in the text.
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〈l; s + 1|H |k; s〉 =
1
N

(∑
m

e−ilm 〈m + s + 1,m|
)

×H

(∑
n

eikn |n + s, n〉
)

=
1
N

∑
m

e−ilm
(
tm+se

ikm + tmeik(m+1)
)

=
(
eik + ei(l−k)s

) τ(l − k)
N

, (10)

whereτ(k) =
∑

m e−ikmtm is the Fourier transform oftm.
Here, the following identities have been used:

∑
m

e−ilmtm+se
ikm =ei(l−k)s

∑
m

e−i(l−k)(m+s)tm+s

=ei(l−k)sτ(l − k), (11)
∑
m

e−ilmtmeik(m+1) =eik
∑
m

e−i(l−k)mtm

=eikτ(l − k). (12)

Thetm sequence of the Peierls lattice,tS , tL, tS , tL, . . ., has
period 2, so, the only non-zero terms areτ(0) andτ(π):

τ(0)=
∑
m

e−i0mtm=
∑
m

tm = N · tS + tL
2

, (13)

τ(π)=
∑
m

e−iπmtm=
∑
m

(−1)mtm=N · tS − tL
2

. (14)

In Fig. 2, every|k; s〉 is connected with|k; s± 1〉 and
|k + π; s± 1〉. Therefore, each effective state has the site en-
ergies and the four adjacent effective hoppings given by the
following relations:

〈l; s|H |k; s〉 =δ0,sδl,kU, (15)

〈k; s + 1|H |k; s〉 =
(
eik + 1

) tS + tL
2

, (16)

〈k + π; s + 1|H |k; s〉 =
(
eik + (−1)s

) tS − tL
2

. (17)

The four different effective hopping integrals are named by:

β0 = (eik + 1)
tS + tL

2
, (18)

βπ = (−eik + 1)
tS + tL

2
, (19)

β+ = (eik + 1)
tS − tL

2
, (20)

β− = (eik − 1)
tS − tL

2
. (21)

So, for eachk ∈ {0, (2π · 1/N), . . . , (2π · ([N/2]− 1)/N)},
we have a 2N-sites independent Hamiltonian to diagonalize

with a computational complexity of the order ofO(N3).
Henceforth, we assume that0 ≤ k < π.

In general, each eigenvector (ψk) can be written as:

ψk =
∑

s

(ak,s |k; s〉+ ak+π,s |k + π; s〉) , (22)

whereak,s, ak+π,s ∈ C ands is the diagonal number. The
wavefunction associated with the diagonals can be expressed
asψk(s) = ak,s |k; s〉 + ak+π,s |k + π; s〉 and its electronic
contribution is|ψk(s)|2 = |ak,s|2 + |ak+π,s|2. The same
wavefunction in real space will be noted byψk(i, j).

3. Results and discussion

We will analyze briefly the behavior of the two-electron
wave-functions in the Peierls lattice for the non-correlated
(U = 0) and the correlated (U 6= 0) cases. The objective is
to make clear the differences between them in the electronic
structures.

3.1. Non-correlated two-electron wave-functions

For U = 0, the two-electron wave-function is the product
of two one-electron wave-functions and its energy is the sum
of two one-electron energies. Then, the two-electron density
of states (DOS) is the convolution of two one-electron DOS.
Taking a look of the valence and conduction band for the
one-dimensional Peierls lattice, its easy to see that the one-
electron energy at the valence band is−2(|tS |+ |tL|) ≤ E ≤
−2(|tS | − |tL|) while at the conduction band is2|tS − tL| ≤
E ≤ 2|tS + tL|, each band has2|tS | bandwidth. There
are three different possibilities for the combinations of the
two-electron wave-functions; a) two electrons in the valence
band−2(|tS | + |tL|) ≤ E ≤ −2(|tS | − |tL|), b) one elec-
tron in the valence band and one in the conduction band
−2|tL| ≤ E ≤ 2|tL|, and c) two electrons in the conduc-
tion band2(|tS | − |tL|) ≤ E ≤ 2(|tS | + |tL|). Depending
on thetS andtL values, the DOS shows one full band with
a 4|tS + tL| bandwidth or three small bands each one with
4|tL| bandwidth.

3.2. Correlated two-electron wave-functions

In Fig. 3, the electronic density of states is shown forU = 9
andtS/tL = 3 (we will usetL = −1 thorough this paper). It
can be observed three big bands and three small ones. The big
bands at the energy intervals [-8,-4], [-2,2] and [4,8] corre-
spond to the non-correlated case (two electrons in the valence
band, one electron in the valence band and one in the con-
duction band, or two electrons in the conduction band). The
small two bands for energiesE > 8 are the correlated bands,
where each wave-function is a repulsive bounded-electron
pair, the main electronic contribution is along the principal
diagonals = 0. Similar repulsive bound-pairs of atoms have
been found experimentally and show that they can exist at
milliseconds [1], they also were analyzed theoretically within
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FIGURE 3. Density of states forU = 9, tL = −1, tS/tL = 3. a) Band of two-electron states due to correlation withE < 0, they are mostly
localized along the off diagonal ins = ±1. b) Band of two-electron states due to correlation withE > 0, they are mostly localized along
the principal diagonal ins = 0.

the Hubbard model for bosons [8]. The energy associated to
these states is very close to U. The correlation band between
−4 < E < −2 for electrons has not been reported before,
but similar results for bosons has been introduced in a early
paper by Libertoet al. [7]. In this band, it is found that for
eachk there is a localized wave-function. In Fig. 4, the elec-
tronic contribution is shown along the diagonals|ψk(s)|2 for
eachk. An exponential-decaying behavior is observed for all
wave-functions, together with a maximum of the electronic
density ats = ±1. A remarkable difference between this
correlated band and the other two correlated band is that here,
each wave-function hasE < 0 despite the repulsion potential
U > 0.

Figure 5 shows that the degree of localization of the
wave-function is a function of bothU andtS/tL, resulting in
an increase of the localization as bothU andtS/tL increases.
Nevertheless, these localized states exist even for small val-
ues ofU andtS/tL close to 1. So, the localized states exist
even for small values ofU andtS/tL − 1. The behavior of
the wave-functions for the small correlated band between

FIGURE 4. Electronic density distribution|ψk(s)|2 for all states in
the band. They tend to vanish exponentially outside the principal
diagonal, thus all states are localized.

−4 < E < −2 was tracked for the space parameters region
U ∈ [(1/10), 200] andtS/tL ∈ [1, 20].

To describe the degree of localization of the wave func-
tion, we have fitted the electronic contribution|ψk(s)|2 to
the function |ψk(s)|2 = Aeλs, therefore, ln |ψk(s)|2 =
ln A + λs. Here,λ is the parameter to quantify the degree
of localization of the electronic density along the diagonals.
Figure 6a) shows the valueλ as function ofU and tS/tL.
Another important property that was calculated is the band-
width of the small correlation band∆b, shown in Fig. 6b).
The bandwidth shows a very similar behavior withλ, it tends
to 2 as we move near theU andtS/tL axes and it decreases if
bothU andtS/tL increases. The energy ofψ0 tend to 0 and
the one ofψπ/2 tend to 2 as we move near theU andtS/tL
axes.

Finally, the band structure phase diagram describe 4 re-
gions as it is shown in Fig. 6c). For the three cases (green,

FIGURE 5. Electron density|ψ0(i, j)|2 near the principal diago-
nal for a)U = 0.1, tS/tL = 3.1, b) U = 8.1, tS/tL = 3.1, c)
U = 0.1, tS/tL = 1.12 and d)U = 8.1, tS/tL = 1.12. An in-
crease in both U andtS/tL results in an increase in localization.
Localized states exist even for small U andtS/tL near to 1.

Rev. Mex. Fis.69051601



REPULSIVE BOUND-ELECTRON PAIRS IN A PEIERLS LATTICE 5

FIGURE 6. a) The decay parameterλ as function ofU and
tS/tL. b) The correlation bandwidth∆b as function ofU and
tS/tL. c) Different band structures as function ofU and tS/tL.
The correlation band can be: inside the two non-correlation bands
(black), inside the first non-correlation band (green), touching the
second non-correlation band (red) and between the first two non-
correlation bands (yellow).

red and black), the small correlation band is almost hidden
inside the non-correlation bands, where it is difficult for a
material to show any different electronic properties from the
usuals. In the fourth case (in yellow), the correlation band
is between the two non-correlation bands and is the most in-
teresting case. Here, the excited two-electron states appears
and have lower energy than that of one-electron state in the
valence band and the other in the conduction band, resulting
in a lower band gap and in a higher conductivity compared to
that expected for the one-electron treatment.

4. Conclusion

We have derived an exact solution of the novel repulsive
bound-electron states in a one-dimensional Peierls lattice
within the Hubbard model. The localization of these bound-
electron states exist even for small values of the repulsive
U > 0 Hubbard parameter and thetS/tL ratio very close to
1. The energy of the bound-electron pair is negative and is
located between the energy of two electrons in the valence
band and the energy of one electron in the valence band and
other one in the conduction band. A generalization of the real
space mapping method has also been introduced. Our results
might be also relevant on the pairing mechanism of the high-
TC superconductors.
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