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Higher order mode conversion induced by discontinuities in waveguides
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In this paper, we provide a theoretical prediction about the likelihood of producing high-order modes using, as far as we know, the simplest
mode converter. The mode converter is a simple discontinuous waveguide for which reflection and transmission have recently been reported.
As a result of the scattering of the fundamental guided mode (TE0), we have found that the high-order mode excitation is highly dependent
on the position of the discontinuity. On the one hand, we discovered that in the presence of a discontinuity in the propagation direction,
only even modes (TE0 and TE2) are excited, skipping the odd mode (TE1). When a lateral shift is considered, however, both even and
odd higher-order modes (TE1 and TE2) are generated. Furthermore, after some lateral shifting, we found that only the pure TE2 mode is
propagated.
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1. Introduction

Planar waveguides with thickness smaller than the wave-
length of the transmitted light have been recently proposed
as promising components for nano-photonic devices. In these
sub-wavelength thick planar waveguides, only a few discrete
modes of light can be propagated [1]. High-speed and high-
capacity optical connections are expected to be possible with
optical sub-wavelength wave guiding [2].

Recently, the energy propagation in a planar waveguide
was studied, with the transmitted and reflected energies esti-
mated as a function of a discontinuity gap [3]; in that work,
the authors compared some numerical methods in three dif-
ferent configurations. With the rapid development of pho-
tonic integrated circuits, it is convenient to revisit the dis-
continuity problem from the standpoint of mode conversion,
which shall allow for more precise control of the flow of light.
In recent years, there has been a lot of interest in the con-
version of discrete modes in photonic waveguides due to its
multiple applications [2,4–6]. A mode converter relies on the
waveguide propagation of the allowed modes. It produces a
spatial spectrum of modes which relates the eigenmodes of
the system. It is therefore desirable to design a dependable
tool for switching from one spatial mode to another.

Several structures have been reported that enable conver-
sion between the transverse electric fundamental mode (TE0)
and the first higher-order mode (TE1) [7–11]. Mode con-
version between two waveguides is obtained when these are
connected together with a specific geometry that allows for
mode change. For instance, it has been already investigated
how to optimize the topology of a photonic crystal in order to
achieve mode conversion due to interference processes [7,8].
Another method of connecting two waveguides together con-
sists in using a cavity as a mode converter [10]. The mode
conversion across a bent waveguide has also been taken into
consideration [11]; in that work, the mode conversion in a

planar waveguide as a function of the bending angle was
proposed. Sub-strip waveguides have also been investigated
and manufactured as mode converters with variations in their
topologies, using different silicon-based dielectrics, to con-
vert the fundamental mode TE0 into the higher-order modes
TE1 and TE2 [12].

While a planar waveguide is typically used as a simple
connection between two components of an optical circuit, our
research has uncovered an unexpected phenomenon. Specifi-
cally, we have observed that the introduction of a discontinu-
ity in the planar waveguide leads to the excitation of higher-
order modes. This finding highlights the potential for planar
waveguides to serve as more than just a basic connection in
optical circuits and suggests exciting possibilities for the de-
velopment of novel devices and applications.

In an effort to answer the question that some authors have
raised, of how to obtain the smallest possible mode con-
verter [13], the present work is devoted to describe the sim-
plest mode converter ever reported in a waveguide. Taking
one of the three structures shown in [3] as the starting point,
our mode converter is a dielectric planar waveguide with a
step discontinuity that allows the mode TE0 to be converted
into the higher order modes TE1 and TE2. We believe that
this configuration could be easily modified to create a wide
variety of compact photonic integrated circuits.

2. Theory

We start by considering a planar dielectric waveguide that
consists of an infinite slab of widthd. It has a refractive in-
dexn2 = 3.6 and it is surrounded by air (n1 = 1), as shown
in Fig. 1. For the transverse electric polarization (TE), the
electric field parallel to thez-axis can be expressed as

E (r, t) = Ez (x, y, t) k̂. (1)
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FIGURE 1. Planar waveguide of widthd and refractive index
n2 = 3.6, surrounded by air (n1 = 1).

For a dielectric waveguide, the electromagnetic waves
propagate inside the slab and vanish outside it.

The even and odd modes in a waveguide are given by two
well-known transcendental equations [14]. The even-parity
modes, related to they-axis, are given by the equation

tan(πQy,2) =
Qy,1

Qy,2
, (2)

while the odd-parity modes are given by

cot(πQy,2) = −Qy,1

Qy,2
, (3)

where the reduced wave vectors are

Qy,1 =
√

Q2
x − n2

1Ω2,

Qy,2 =
√

n2
2Ω2 −Q2

x. (4)

The reduced frequency is written as

Ω =
ωd

2πc
=

d

λ
, (5)

and the reduced wave vector, on thex-axis, is

Qx =
kxd

2π
. (6)

The dispersion relations for the even and odd modes are
shown in Fig. 2. The allowed modes exist between the light
linesL1 = n1Ω andL2 = n2Ω (gray dashed lines), corre-
sponding to the air and the dielectric, respectively. At the re-
duced frequencyΩ = 0.32 (green line), only 3 guided modes
are allowed: TE0, TE1, and TE2, which exist at the reduced
wave vector valuesQx = 1.1, 0.87 and 0.43, respectively.

FIGURE 2. Dispersion relation for a planar waveguide. The gray
dashed lines are the light lines for air (L1) and the dielectric mate-
rial (L2). The guided modes are depicted with continue lines: TE0

(blue), TE1 (red), and TE2 (purple). The green continuous line
indicates the reduced frequencyΩ = 0.32.

3. Numerical method

The propagation of the electromagnetic field is simulated us-
ing the finite-difference time-domain (FDTD) method [15].
This computational technique is used to model the temporal
evolution of Maxwell’s equations, based on the reformula-
tion of the differential equations in central finite differences.
In the case of time-dependent Maxwell’s equations, these
are discretized by an approximation to spatio-temporal par-
tial derivatives. The resulting system is written as a recursive
computational algorithm, which can be solved in the time do-
main. In this work, we have performed the simulations of the
FDTD method by implementing the Meep package, a freely
available software [16].

Considering the polarization of the electric field along
the z-axis, described in Eq. (1), we can rewrite Amp̀ere-
Maxwell’s equation as

∂

∂t
Dz(x, y, t) =

∂

∂x
Hy(x, y, t)− ∂

∂y
Hx(x, y, t), (7)

whereas for Faraday’s equation, we have

∂

∂x
Ez (x, y, t) =

∂

∂t
By (x, y, t) , (8)

∂

∂y
Ez (x, y, t) = − ∂

∂t
Bx (x, y, t) . (9)

Equations (7) to (9) can be reformulated in terms of cen-
tral finite differences. For Eq. (7), considering a discretiza-
tion at around(x, y, t) = (i∆x, j∆y, n∆t), we have

Dz(i, j, n + 1
2 )−Dz(i, j, n− 1

2 )
∆t

=
Hy(i + 1

2 , j, n)−Hy(i− 1
2 , j, n)

∆x

−Hx(i, j + 1
2 , n)−Hx(i, j − 1

2 , n)
∆y

.

(10)

Now, considering the change for the point(x, y, t) =
[(i + 1

2 )∆x, j∆y, (n + 1
2 )∆t] in Eq. (8), we have

By(i + 1
2 , j, n + 1)−By(i + 1

2 , j, n)
∆t

=
Ez(i + 1, j, n + 1

2 )− Ez(i, j, n + 1
2 )

∆x
.

(11)

Finally, by rewriting Eq. (9) in terms of finite differences
at the point(x, y, t) = [i∆x, (j + 1

2 )∆y, (n + 1
2 )∆t], we

obtain

Bx(i, j + 1
2 , n + 1)−Bx(i, j + 1

2 , n)
∆t

= −Ez(i, j + 1, n + 1
2 )− Ez(i, j, n + 1

2 )
∆y

.

(12)
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To suppress spurious reflections of waves radiated from
the artificial boundaries, perfect matched layers (PMLs) with
a thickness ofd, were implemented [16].

To validate the excitation of the guided modes, the
Fourier transform (FT) of the electric field was implemented
through the expression

Ez(Qx) ≈
p2∫

p1

Ez(x) · exp
(

2πiQxx

d

)
dx, (13)

wherep1 andp2 are the discrete limits of integration such
that the discontinuities in the waveguides near the origin and
the PMLs are avoided.

4. Mode Conversion

To produce the simplest mode converter reported so far, to
the best of our knowledge, we have considered a planar
waveguide with two kinds of anisotropies: first, a disconti-
nuity along the propagation axis (x-axis), and second, a lat-
eral shift (y-axis). To simulate the propagation of light in
the waveguide, a continuous and monochromatic light source
was defined with a reduced frequencyΩ = 0.32. Accord-
ing to Eq. (5), the wavelength of the source isλ = d/Ω =
3.125d. These two straightforward configurations, presented
in Secs. 4.1 and 4.2 respectively, have the purpose of estab-
lishing two kinds of mode converters.

FIGURE 3. Planar waveguide of widthd, with a horizontal discon-
tinuity L.

FIGURE 4. Propagation of the electric field, in the horizontal-shift
converter (TE0 and TE2 modes), for the cases (a)L = 0, (b)L = d,
(c) L = 2d, and (d)L = 3d.

4.1. Horizontal shifting

We shall first analyze the mode conversion caused by a sim-
ple discontinuity gap of lengthL in the propagation direction

of the waveguide, as illustrated in Fig. 3. This setup is sim-
ilar to the one described in Fig. 8a), presented in Ref. [3]
in section B. It is worth mentioning that, in contrast to the
methodology employed by the authors, we successfully repli-
cated the results of those sections A and B (Figs. 5 and 7 in
Ref. [3]) using the FDTD method. Section C was not exam-
ined.

The discontinuity length was taken fromL = 0 up to
L = 3d, as depicted in Fig. 4, where the spatial evolution of
the electric field is shown for some cases. In Fig. 4a) (no dis-
continuity) the propagation of the fundamental mode is ob-
served, while in Fig. 4b)-4d), the linear combination of the
TE0 and TE2 modes is attested by those small lobes in the
spatial profile in the guided mode. In all cases, symmetrical
profiles with respect to the propagation axis can be observed
because of the sole presence of even modes.

As light propagates through the original waveguide with-
out discontinuities (L = 0), the fundamental mode TE0 is
predominant as expected (Fig. 5; blue line). By implement-
ing the FT through Eq. (13), we can clearly see that as the
discontinuity gapL increases, the Fourier component of the
modes varies, as illustrated in Fig. 5, for the valuesL = 0, d,
2d, and3d. We have found that a simple horizontal disconti-
nuity in the waveguide can induce high-order mode conver-

FIGURE 5. Fourier transform of the electric field for the horizontal
shift: L = 0 (blue),L = d (red),L = 2d (black), andL = 3d
(green).

FIGURE 6. Evolution of the Fourier transform of the electric field
as a function of the horizontal shiftL. The intensity of the even
modes TE0 and TE2 are represented by the blue and red lines, re-
spectively.
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FIGURE 7. Planar waveguide of widthd, with a lateral shiftS.

FIGURE 8. Propagation of the electric field, in the vertical-shift
converter (from TE0 to TE1 and TE2 modes), for the cases (a)
S = 0, (b) S = 0.5d, and (c)S = d.

sion from the TE0 to TE2, skipping the TE1 odd mode (no
peak atQx = 0.87). Therefore, with this setup the TE1 mode
is not excited. To better appreciate the evolution of the mode
conversion with even parity, we present Fig. 6, fromL = 0
up toL = 3d. In particular, in the range fromL = 1.5d to
2d, it was observed that the Fourier component splits equally
in the two excited modes.

4.2. Lateral shifting

Considering a second configuration, whose geometry is pre-
sented in Fig. 7, we obtain a distinct mode converter. In this
case, a lateral shiftS is defined in the range fromS = 0 (the
original waveguide) toS = d. Figure 8 shows the lateral dis-
placement for the cases whenS = 0, S = 0.5d, andS = d,
where the spatial evolution of the electric field is illustrated.

In Fig. 8a), the spatial profile of the propagated funda-
mental mode is presented again; in Fig. 8b), an asymmetrical
profile is observed due to the presence of the TE1 odd mode,
in a linear combination with the TE0 and TE2 modes. Finally,
Fig. 8c) shows a symmetrical spatial profile due to the pres-
ence of the TE2 mode only since there is no contribution of
the other modes

As presented in Fig. 9, by increasing the shiftingS, a
conversion from the TE0 mode to the higher-order modes
TE1 and TE2 is induced. Here it can be seen that, for val-
ues greater than0.6d (Fig. 9; black line), the TE0 and TE1
modes have almost no contribution. In fact, Fig. 10 shows
the evolution of the FT in the range fromS = 0 to d. When
the lateral shiftS is about0.7d, the fundamental mode be-
comes negligible; likewise, whenS = 0.8d, the TE1 mode is
practically extinguished. In the figure it can also be seen that
the maximum for the TE1 mode is around0.35d, and around
0.55d for the TE2 mode. We have found that afterS = 0.8d,
only the TE2 mode propagates.

FIGURE 9. Fourier transform of the electric field for the lateral
shift: S = 0 (blue), S = 0.3d (red), S = 0.6d (yellow), and
S = d (green).

FIGURE 10. Evolution of the Fourier transform of the electric field
as a function of the lateral shiftS. The intensity of the modes TE0,
TE1 and TE2 are represented by the blue, red, and black lines, re-
spectively.

5. Conclusion

The most basic high-order waveguide mode converter in-
duced by discontinuities is proposed here. On the one hand,
by allowing a simple discontinuity in the propagation axis
of the waveguide we created a mode converter. We found
that the TE0 and TE2 modes are excited in this setup and the
TE1 odd mode is skipped and consequently not excited. On
the other hand, the fundamental mode TE0 can be converted
into the higher-order modes TE1 and TE2 by means of a lat-
eral shift in the waveguide. Here, we found that the TE0 and
TE1 modes entirely vanish after some lateral displacement,
leaving only the TE2 mode. We believe that this high-order
waveguide mode converter might be easily implemented for
the design and manufacturing of compact integrated optical
circuits.
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