
High Energy Physics Revista Mexicana de Fı́sica69060801 1–14 NOVEMBER-DECEMBER 2023
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Quantum Field Theory (QFT) is used to describe the physics of particles in terms of their fundamental constituents. The Light-Front Field
Theory (LFFT), introduced by Paul Dirac in 1949 [1], is an alternative approach to solve some of the problems that arise in quantum field
theory. The LFFT is similar to the Equal Time Quantum Field Theory (EQT), however, some particularities are not, such as the loss of
covariance in the light-front. Pion electromagnetic form factor is studied in this work at lower and higher momentum transfer regions to
explore the constituent quark models and the differences among these and other models. The electromagnetic current is calculated with both
the “plus” and “minus” components in the light-front approach. The results are compared with other models, as well as with experimental
data.
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1. Introduction

Quantum chromodynamics (QCD), the theory of strong inter-
actions, consists in the study of one of the four fundamental
interactions in the standard model. One of the most important
questions in QCD, not yet resolved, is in regard of the non-
perturbative regime. To address this particular issue is not
straightforward, although lattice QCD has been progressing
and thus promising advances are expected.

Even with some relativistic constituent quark models, it is
possible to study hadron physics in non-perturbative regions
in an efficient manner with the quark and gluon degrees of
freedom [2]. Before the advent of QCD, the pion, the lightest
mass in hadrons regarded as the quark-antiquark bound state,
has provided the long-range attractive part of the nucleon-
nucleon interaction [3]. Amongst other approaches, the light-
front aims to consistently describe the pion (hadron) bound
state involving both the higher and lower momentum transfer
regions. Hence, the light-front quantization has been used to
compute the hadronic bound state wave functions [2,4]. The
advantage of the light-front approach compared to the instant
form is its simplicity [5].

In the light-front approach, the bound state wave func-
tions are defined in the hypersurface,x+ = x0 +x3 = 0, and
are covariant under kinematical front-form boosts, because of
the Fock-state decomposition stability [6]. Due to the simple-
ness in handling the wave functions and calculating observ-
ables, the light-front constituent quark model (LFCQM) has
received a lot of attention in the past [7, 8]. The LFCQMs
achieved impressive success in describing the electromag-

netic properties of hadrons, in particular those of the pseu-
doscalar and spin-1/2 particles [9-30], as well as spin-1 vec-
tor particles [31-38].

The extraction of the electromagnetic form factor with
the light-front approach depends on the electromagnetic cur-
rent’s component adopted, due to problems related with the
rotational symmetry breaking and the zero modes, namely,
a non-valence contribution to the electromagnetic current’s
matrix elements [31,32,39,40].

It is discussed in Refs. [31,32,41-44] that, for spin-1
particles, the plus component of the electromagnetic cur-
rent, (“J+”), is not free from the pair term contributions (or
non-valence contributions) within the Breit frame (q+ = 0),
and, thus, that the rotational symmetry is broken.

In general, the matrix elements of the electromagnetic
current in the light-front formalism have other contributions
besides the valence contribution, namely the pair terms [23,
32, 39, 43], in which the covariance is restored. If the pair
term contribution is taken correctly, it does not matter which
component of the electromagnetic current is used to ex-
tract the electromagnetic form factors of the hadrons. In
the present work, two types of the vertex functions for the
π − qq̄ vertex are assumed to calculate the pion electromag-
netic form-factor, and results for the both cases are compared
with experimental data [45–51]. In the lower momentum
transfer region, non-perturbative regime of QCD is more im-
portant than the perturbative regime, the latter working better
in the higher momentum transfer region.

Studies of light-vector and pseudoscalar mesons in the
light-front approach are very important, since they can pro-
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vide a hint of the non-perturbative regime of QCD, and
those involving the light-pseudoscalar mesons can shed light
on the (spontaneous) chiral symmetry breaking. Proper-
ties of such mesons are also studied with other approaches
[14,19,37,38,52-67], as well as with the lattice formulation
in the light-front [68].

For the lightest pseudoscalar meson, pion, the models
based on the Schwinger-Dyson approach [52, 54] describe
the electromagnetic form factor quite well. However, some
differences amongst the models including the light-front ap-
proach can be noticed. Here, we take the light-front models
for the pion, presented in previous works [13,23], and extend
it to study the higher momentum transfer region and com-
pare with other approaches such as the vector meson domi-
nance [69,70].

This paper is organized as follows. In Sec. 2, the model
of the wave function for the pion, the quark-antiquark bound
state in the light-front, is presented, and the electromagnetic
form factor is calculated for both non-symmetric and sym-
metricπ − qq̄ vertices. In particular, for the non-symmetric
vertex, the plus and minus components of the electromag-
netic current are used, and the corresponding two results are
shown, including the weak decay constant of the pion. In
Sec. 3, the vector dominance model is introduced and com-
pared with the light-front approach used. In Sec. 4, numerical
results and discussions are presented and, finally, the conclu-
sions are given in Sec. 5.

2. Light-front wave function and electromag-
netic current

One of the main goals in the light-front approach is to solve
the bound state equation,

HLF |Ψ >= M2|Ψ >, (1)

whereHLF is the light-front Hamiltonian andM2 is the in-
variant mass associated with the physical particle, the eigen-
state of the the light-front Hamiltonian [2]. The light-
front wave function relates to the Bethe-Salpeter wave func-
tion (see [23] for more details). With the light-front wave
function it is possible to calculate the matrix elements of the
bound states. The meson state may be expressed by a super-
position of all Fock states:

|Ψmeson >= Ψqq̄|qq̄ > +Ψqq̄g|qq̄g > + · · · . (2)

The electromagnetic current whereJµ, is expressed in terms
of the quark fields and the charge,i.e., Jµ =

∑
f ef q̄fγµqf ,

with ef andqf being, respectively, the charge and quark field
of the flavorf quark. In this way, the matrix elements of the
electromagnetic current are given by

Jµ = −ı2e
m2

f2
π

Nc

∫
d4k

(2π)4

× Tr
[
S(k)γ5S(k − p′)γµS(k − p)γ5

]

× Γ(k, p′)Γ(k, p) , (3)

whereS(p) = 1//p−m + ıε is the quark propagator,Nc = 3
is the number of colors andm is the constituent quark mass.
The factor 2 appears from the isospin algebra [13,23].

The pion quark-antiquark vertex is constrained by the
pseudoscalar attributes for the pion [29, 65, 66, 71]. In the
presente work, we use the similar approach developed some
years ago by Frederico and Miller [72], where a effective La-
grangian for the pion quark vertex was utilized, considering
only the most important component of the vertex function for
the Bethe-Salpeter amplitude,i.e, proportional toγ5. This
effective Lagrangian it is associated to the meson vertex, in
order to build the spin and flavour structure of the pion me-
son.

The functionΓ(k, p) in Eq. (3) is the regulator vertex
function to regularize the Feynman amplitude,i.e., the tri-
angle diagram for the electromagnetic current. Here, we use
two possibleπ − qq̄ vertex functions. The first one is the
non-symmetric vertex, used in the previous work [13,73],

Γ(NSY )(k, p)=
[

N

((p− k)2 −m2
R + ıε)

]
, (4)

while the second one is a symmetric vertex, used in Refs. [23,
28]:

Γ(SY )(k, p)=
[

N

(k2−m2
R+ıε)

+
N

((p−k)2−m2
R+ıε)

]
. (5)

In equation the above,mR is the regulator mass used to keep
the amplitudes finite, and represents the soft effects at the
short range. An important property in the electromagnetic
processes is the current conservation, or the gauge invari-
ance. The calculation is performed within the Breit frame;
the initial and final momenta of the bound system are, respec-
tively, pµ = (p0/2,−q/2 cos α, 0,−q/2 sin α) and p′µ =
(p0/2, q/2 cos α, 0, q/2 sinα). The transferred momentum
is qµ = (0, q cos α, 0, q sin α) and the spectator quark mo-
mentum iskµ.

The current conservation must be satisfied with the in-
clusion of the two vertex functions,Γ(k, p), as used in the
present work. This conservation is indeed easily proved
within Breit frame (see Ref. [39] for the proof).

The plus component of the electromagnetic current,J+,
is used to extract the pion electromagnetic form factor, where
the Dirac “plus” matrix is given byγ+ = γ0 + γ3. The
plus component (J+

π = J0 + J3) of the electromagnetic
current for the pion, calculated in the light-front formalism
through the triangle Feynman diagram in the impulse approx-
imation, which represents the photon absorption process by
the hadronic bound state of theqq̄ pair, is given by:
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J+
π = e(p+ + p′+)Fπ(q2) = ıe

m2

f2
π

Nc

∫
dk−dk+d2k⊥

2(2π)4
Tr[O+]Γ(k, p′)Γ(k, p)

k+(k− − f1−ıε
k+ )

×
[

1
(p+ − k+)(p− − k− − f2−ıε

p+−k+ )

][
1

(p′+ − k+)(p′− − k− − f3−ıε
p′+−k+ )

]
, (6)

wherefi (i = 1, 2, 3) functions above are defined byf1 = k2
⊥ + m2, f2 = (p− k)2⊥ + m2 andf3 = (p′ − k)2⊥ + m2, and the

light-front coordinates bya± = a0 ± a3 and~a⊥ = (ax, ay) [2,4].
In the electromagnetic current expression, Eq. (6), the Jacobian for the light-front coordinates transformation is1/2, and the

Dirac trace, for the operatorO+, is written (in light-front coordinates) within the Breit frame with Drell-Yan condition (q+ = 0)
as wherefi (i = 1, 2, 3) functions above, are defined by,f1 = k2

⊥ + m2, f2 = (p− k)2⊥ + m2 andf3 = (p′− k)2⊥ + m2, with
the light-front coordinates defined,a± = a0 ± a3 and~a⊥ = (ax, ay) [13,73].

In the expression of the electromagnetic current, Eq. (6), the Jacobian for the transformation to the light-front coordinates
is 1/2, and the Dirac trace in the Eq. (6) for the operatorO+ is written in the light-front coordinates as, in the Breit frame with
Drell-Yan condition (q+ = 0), as,

Tr
[O+

]
=

[
−4k−

(
P ′+ − k+

) (
P+ − k+

)
+ 4

(
k2
⊥ + m2

) (
k+ − P+ − P ′+

)− 2~k⊥ ·
(

~P ′⊥ − ~P⊥
) (

P ′+ − P+
)

+ k+q2
⊥

]
.

In this case (Breit frame and Drell-Yan condition, withα = 0), we have the following result:

Tr[O+] = [−4k−(k+ − p+)2 + 4(k2
⊥ + m2)(k+ − 2p+) + k+q2] .

The quadri-momentum integration of Eq. (6) has two contribution intervals: (i)0 < k+ < p+ and (ii) p+ < k+ < p′+,
wherep′+ = p+ + δ+. The first interval, (i), is the contribution to the valence wave function for the electromagnetic form
factor and, the second, (ii), corresponds to the pair terms contribution to the matrix elements of the electromagnetic current. In
the case of non-symmetric vertex with the plus component of the electromagnetic current, the second interval does not give any
contribution to the current matrix elements, because the non-valence terms’ contribution is zero [13,73]. This is not the case for
the minus component of the electromagnetic current for the pion, where beyond the valence contribution we have a non-valence
contribution [13] for the matrix elements. For the first interval integration, the pole contribution isk̄− = (f1 − ıε)/k+. After
integrating for the light-front energy,k−, the electromagnetic form factors with non-symmetric vertex and the plus component
of the electromagnetic current are

F+(i)(NSY )
π (q2) = ıe

m2N2

2p+f2
π

Nc

∫
d2k⊥dk+

(2π)3

[
Tr[O+]

k+(p+ − k+)2(p+ − k+)2

× θ(k+)θ(P+ − k+)
(p− − k̄− − f2−ıε

p+−k+ )(p− − k̄− − f3−ıε
p+−k+ )

1
(p− − k̄− − f4−ıε

p+−k+ )(P ′− − k̄− − f5−ıε

p′+−k+ )

]
, (7)

The functionsf1, f2 andf3 were already defined; the new functions above aref4 = (p−k)2⊥+m2
R andf5 = (p′−k)2⊥+

m2
R. The light-front wave function for the pion with the non-symmetric vertex is

Ψ(NSY )(x, k⊥) =
[

N

(1− x)2(m2
π −M2

0)(m2
π −M2

R)

]
, (8)

where the fraction of the carried momentum by the quark isx = k+/p+ andMR function is written as

M2
R = M2(m2,m2

R) =
k2
⊥ + m2

x
+

(p− k)2⊥ + m2
R

(1− x)
− p2

⊥ . (9)

In the pion wave function expression,M2
0 = M2(m2,m2) is the free mass operator and the normalization constantN is

determined by the conditionFπ(0) = 1.
Finally, the pion electromagnetic form factor expressed with the light-front wave function for the non-symmetric vertex

function may be written as

F+(i)(NSY )
π (q2) =

m2

p+f2
π

Nc

∫
d2k⊥dx

2(2π)3x

[
−4(

f1

xp+
)(xp+ − p+)2 + 4f1(xp+ − 2p+) + xp+q2

]

×Ψ∗(NSY )
f (x, k⊥)Ψ(NSY )

i (x, k⊥)θ(x)θ(1− x). (10)
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In the light-front approach, besides the valence contribution for the electromagnetic current, there is also a contribution
from the non-valence components [13, 39, 74]. The non-valence components contribution is calculated in the second interval
of the integration (ii), through the ”dislocation pole method”, whose development is in Ref. [39]. The non-valence contribution
to the electromagnetic form factor, in this case, is given by

F+(ii)(NSY )
π (q2) = lim

δ+→0
2ıe

m2N2

2p+f2
π

Nc

∫
d2k⊥dk+

2(2π)4
θ(p+ − k+)θ(p′+ − k+)

×
[

Tr [O+]
k+(p+ − k+)2(p+ − k+)2

1
(p− − k̄− − f2−ıε

p+−k+ )(p− − k̄− − f3−ıε
p+−k+ )

× 1
(p− − k̄− − f4−ıε

p+−k+ )(p′− − k̄− − f5−ıε

p′+−k+ )

]
∝ δ+ = 0 . (11)

As can be seen in equation Eq. (11), the electromagnetic form factor in the second integration interval is directly propor-
tional to δ+, which tends to zero. Thus, in the case of non-symmetric vertex for the plus component of the electromagnetic
current, calculated for Breit frame and the Drell-Yan condition(q+ = 0), the non-valence (or the pair terms) contributions for
the pion electromagnetic form factor is zero [13].

For the minus component of the electromagnetic current,J−π (= J0−J3), it is possible to extract the pion electromagnetic
form factor with the non-symmetric vertex (Eq. (4)). In this case, we have two contributions: the valence, for the wave
function, and the non-valence, to the electromagnetic matrix elements of the electromagnetic current [13, 23, 39]. The pion
electromagnetic form factor for the minus component of the electromagnetic current,J−π , is related to the Dirac matrix by
γ− = γ0 − γ3, as known from the light-front approach [2, 4]. With the non-symmetric vertex, the minus component of the
electromagnetic current is given by

J−(NSY )
π = e(p + p′)−F−(NSY )

π (q2) = ıe2 m2

f2
π

Nc

∫
d4k

(2π)4
Tr

[
/k + m

k2 −m2 + ıε

× γ5 /k − /p′ + m

(p′ − k)2 −m2 + ıε
γ−

/k − /p + m

(p− k)2 −m2 + ıε
γ5Γ(k, p′)Γ(k, p)

]
. (12)

The Dirac trace in Eq. (12), calculated with the light-front approach, results in the following expression:

Tr[O−] =
[−4k−2k+ − 4p+(2k2

⊥ + k+p+ + 2m2) + k−(4k2
⊥ + 8k+p+ + q+ + 4m2)

]
. (13)

The expression above has terms proportional tok−2 andk−. We show below that these terms do not disappear in the second
interval integration and contribute to the matrix elements of the minus component of the electromagnetic current.

In order to calculate the pair terms contribution for the minus component of the electromagnetic current in the second
interval integration, (p+ < k+ < p′+), thek− dependence in the trace and the matrix element of the pair terms are written as

J−(ii) (NSY ) = lim
δ+→0

2ıe
m2

f2
π

Nc

∫
d2k⊥dk+

2(2π)4
θ(p+ − k+)θ(p′+ − k+)

×
[

Tr[Ō−]
k+(p+ − k+)(p′+ − k+)

1
(k̄− − f1−ıε

k+ )(p− − k̄− − f2−ıε
p+−k+ )

× 1
(p− − k̄− − f4−ıε

p+−k+ )(p′− − k̄− − f5−ıε

p′+−k+ )

]
, (14)

wherep′+ = p+ + δ+ and k̄− = p− − (f3 − ıε)/(p′+ − k+). The pair terms contribution for the minus component of the
electromagnetic current is obtained with Eq. (14), and the Breit frame is recovered in the limitδ+ → 0,

J−(ii) (NSY )
π = 4π

(
m2

π + q2/4
p+

) ∫
d2k⊥

2(2π)3

5∑

i=2

ln(fi)∏5
j=2,i 6=j(−fi + fj)

. (15)

This last equation, Eq. (15), for the minus component of the current with the second interval integration, is not zero and
contribute to the electromagnetic current. This contribution is the non-valence terms contribution to the matrix elements of the
electromagnetic current.
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The pion electromagnetic form factor with the non-valence contribution, built with the minus component of the matrix
elements of the electromagnetic current calculated in Eq. (15), has the final structure

F−(ii) (NSY )
π (q2) =

N2

2p−
m2

f2
π

Nc

(
4π

m2
π + q2/4

p+

) ∫
d2k⊥

2(2π)3

5∑

i=2

ln(fi)∏5
j=2,i 6=j(−fi + fj)

. (16)

The full electromagnetic form factor of the pion, for the minus component of the electromagnetic current, is then the sum
of the partial form factorsF−(i)

π andF
−(ii)
π ,

F−(NSY )
π (q2) =

[
F−(i)(NSY )

π (q2) + F−(ii)(NSY )
π (q2)

]
. (17)

If the pair terms are not taken into account, the rotational symmetry is broken and the covariance is lost for theJ−π
component of the electromagnetic current, as can be seen in Fig. 1. After we add the pair terms or zero modes contribution to
the calculation of the electromagnetic form factor with the minus component of the electromagnetic current, the identity

F−(NSY )
π (q2) = F+(NSY )

π (q2), (18)

is obtained and the full covariance is restored.
In the following step, it is employed the symmetric vertexπ − qq̄ with the plus component, “+”, of the electromagnetic

current (Eq. (5)), as applied in Ref. [23]. This vertex is symmetric by the exchange of the quadri-momentum of the quark and
the anti-quark. In the light-front coordinates it is written as

Γ(k, p) = N
[
k+

(
k− − k2

⊥ + m2
R − ıε

k+

)]−1

+N
[
(p+ − k+)

(
p− − k− − (p− k)2⊥ + m2

R − ıε

p+ − k+

)]−1

. (19)

With the symmetric vertex, the pion valence wave function results in the expression

Ψ(SY )(x,~k⊥) =
[ N
(1− x)(m2

π −M2(m2, m2
R))

+
N

x(m2
π −M2(m2

R,m2))

]
p+

m2
π −M2

0

. (20)

The electromagnetic form factor for the pion valence wave function (above equation) is calculated within the Breit frame,
i.e., (q+ = 0),

F (SY )
π (q2) =

m2Nc

p+f2
π

∫
d2k⊥

2(2π)3

∫ 1

0

dx

[
k−onp+2 +

1
4
xp+q2

]
× Ψ∗(SY )

f (x, k⊥)Ψ(SY )
i (x, k⊥)

x(1− x)2
,

where the on-shell condition for the spectator quark isk−on = (k2
⊥ + m2)/k+ and the normalization constantN is determined

from the conditionF (SY )
π (0) = 1. The pion electromagnetic form factor calculated with the symmetric wave function is

presented in Fig. 5 for higher momentum and for low momentum transfer. In both regions, the differences between the
symmetric and non-symmetric vertex are not very large.

The pion decay constant, measured in the weak leptonic decay, with partial axial current conservation given by
Pµ < 0|q̄γµγ5τiq/2|πj >= ım2

πδij [13,23] and vertex functionΓ(k, p), is expressed by

FIGURE 1. Feynman diagrams for the valence contribution a) and the non-valence contribuition b) for the electromagnetic current.
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FIGURE 2. The electromagetic current for the non-symmetric ver-
tex. The range for the momentum transfer given here is up to
10 (GeV/c)2

ıfπP 2 = Nc
m

fπ

∫
d4k

(2π)4

× Tr
[
/pγ5S(k)γ5S(k − p)

]
Γ(k, p). (21)

In the case of the non-symmetric and symmetric vertices, (see
Eqs. (4) and (5)), the expressions for the decay constant are,
respectively,

f
(NSY )
(π) =

m2Nc

fπ

∫
d2k⊥
4π3

dx

x
Ψ(NSY )

π (k+,~k⊥; m,~0) ,

and,

f
(SY )
(π) =

m2Nc

fπ

∫
d2k⊥dx

4π3x(1− x)
Ψ(SY )

π (x,~k⊥;m,~0) . (22)

The obtained values of the decay constant with the ex-
pressions above, for both light-front models calculations, do
not have significant discrepancies, and agree with the experi-
mental value [75].

In the next section, the vector meson dominance
model (VMD) is presented; subsequently, we compare the
VMD with the models presented here so far.

3. Vector meson dominance

In the 1960’s, J. Sakurai [76,77] proposed the theory ofVec-
tor Meson Dominance(VMD): a theory of strong interactions
with the local gauge invariance, mediated by vector mesons
and based on the non-Abelian field theory of Yang-Mills. It
is possible to have two Lagrangian formulations of the vec-
tor meson dominance. The first was introduced by Kroll, Lee
and Zumino [69] and is customarily called VMD-1. The pion
electromagnetic form factor calculated with this formulation
results in

FV MD1
π (q2) =

[
1− q2

q2 −m2
ρ

gρππ

gρ

]
. (23)

The equation above for the electromagnetic form factor
satisfies the conditionFπ(0) = 1, independently of any as-
sumption about the coupling constants,gρππ andgρ.

In the second formulation of the vector meson domi-
nance, the Lagrangian has a photon mass term, and the pho-
ton propagator has a non-zero mass; this version is usually
called VMD-2. With this second formulation of the vector
meson dominance, the pion electromagnetic form factor is
written as

FV MD2
π (q2) =

[
− m2

ρ

q2 −m2
ρ

gρππ

gρ

]
. (24)

In the equation above, the conditionFπ(0) = 1 must be
satisfied only if the universality limit is taken into account or
translate into the following equality:gρππ = gρ. In the
universality limit, as advocated by J. Sakurai, the two formu-
lations of the vector meson dominance are equivalent. For the
present work, in Eq. (23) and Eq. (24), the rho meson mass
input is the experimental value,mρ = 0.767 GeV [75], and,
from the universality,gρππ = gρ, the results at zero momen-
tum for both equations satisfyFπ(0) = 1.

In the present case here, only the lightest vector resonance
rho meson is taken into account in the monopole model of
the VMD expressed in Eq. (23) or Eq. (24). The vector me-
son dominance works quite well in the time-like region be-
low the ππ threshold. At low energies, for the space-like
region, the vector meson dominance model provides a rea-
sonable description for the pion electromagnetic form factor.
For more details and results about the vector meson domi-
nance, see [26,70,78].

4. Results

The pion electromagnetic form factor, presented consistently
with previous works, is extended at higher momentum trans-
fer region, forQ2 = −q2 up to 20 (GeV/c)2 (see the Fig. 6).
The models of theπ − qq̄ vertices,i.e, non-symmetric and
symmetric vertices [13,23], are compared with the vector me-
son dominance (VMD), and are show in Figs. 5 and 6, for low
and higher momentum transfer.

Important consequences are the direct results of the idea
that hadrons are a composite system. Such consequences
are associated with deep inelastic scattering (DIS), at high
transferred moments. The applications of perturbative QCD
(pQCD), at transferred high moments, is certainly an ex-
tremely interesting physics problem. The pQCD was initially
developed in the works of Brodsky and Lepage, among oth-
ers [65,79-82], predicts a limit forQ2 À ΛQCD ∼ 200 MeV,
given by the expression below,

Q2Fπ(Q2)|Q2→∞ −→ 16αs(Q2)f2
π , (25)

with αs(Q2) is expressed by,

αs(Q2) =
4π

β0 ln(Q2/ΛQCD)
, here, β0 = 11− 2

3
nf ,
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where,nf is the flavors number. The two models used in the
present work, at moments transferred above 50.0 GeV2, are
very close to the results obtained with the pQCD.

The pion electromagnetic radius is calculated with the
derivative of the electromagnetic form factor for the pion,
〈r2〉 = −6dF (q2)/dq2

|q2'0, for both vertex models presented
here.

In the case of the non-symmetric vertex, the pion radius
is used to fix the parameters of the model. The parame-
ters are the quark massmq = 0.220 GeV and the regula-
tor massmR = 1.0 GeV. The pion mass used as input is
the experimental value,mπ = 0.140 GeV. The experimental
radius of the pion isrexp = 0.672 ± 0.02 fm [45, 75]. Us-
ing the pion decay constant calculation in the non-symmetric
vertex model and with the parameters above, the pion decay
constant obtained isfπ = 92.13 MeV, which is close to the
experimental value,fπ ' 92.28(7) [75].

On the other hand, for the symmetric vertex, the param-
eters are the quark massmq = 0.220 GeV, the regulator
massmR = 0.600 GeV and the experimental mass of the
pionmπ = 0.140 GeV. Our choice for the regulator mass fits
the experimental pion decay constant quite well when com-
pared to the experimental data [75]. Also, good results are
obtained for the electromagnetic pion radius for both vertex
models. Both light-front models, with symmetric and non-
symmetric vertices, are in good agreement with the experi-
mental data at low energy; however, some differences are

TABLE I. Results for the low-energy electromagneticπ-meson ob-
servables with the light-front models presented here. Immediately
below are values from other models in the literature.

Model rπ (fm) fπ (MeV) rπ.fπ

Non-Sym. Vert.(LF) 0.672 93.13 0.316

Sym.Vert. (LF) 0.736 92.40 0.345

Kissilingeret al. [25] 0.651 91.91 0.304

Silvaet al. [73] 0.672 101.0 0.343

Maris & Tandy [83] 0.671 92.62 0.315

Faessleret al. [84] 0.65 92.62 0.304

Ebertet al. [85,86] 0.66 109.60 0.367

Bashiret al. [87] 101.0

Chen & Chang [88] 93.0

Hutauruket al. [89] 0.629 93.0 0.308

Ivanovet al. [90] 92.14

Jia & Vary [91] 0.68(5) 142.8 0.491

Maris & Roberts [92] 0.550 92.0 0.256

Changet al. [65] 0.66 92.2 0.307

Eichmann [93] 92.4(2)

Miramonteset al. [94] 0.685 (η = 1.5) 97.57 0.339

Miramonteset al. [94] 0.683 (η = 1.6) 97.57 0.338

Dominguezet al. [95] 0.631

Exp. [75] 0.672(8) 92.28(7) 0.313

noticeable in theQ2 ≥ 1.0 GeV/c2 region (see Fig. 5). The
experimental data collected from [47] worked well up to
10 GeV/c2 for both the symmetric and non-symmetric vertex
functions. For the minus component of the electromagnetic
current,J−, the pair terms or non-valence components of the
electromagnetic current contributions are essential to obtain
the full covariant pion electromagnetic form factor while re-
specting the covariance.

In Table II we show the non-valence contribution to the
electromagnetic current calculated with the light-front ap-
proach for some values of the momentum transfer, for both
instant form and light-front approaches. It is worth noting
that as there are no contributions due to valence terms or zero
modes, results for the covariant calculations with both com-
ponents of the electromagnetic current,i.e, plus and minus
components,J+(Cov)., J−(Cov.), are exactly the same.

One can also see the need to add zero modes to the
electromagnetic current matrix elements for the minus com-
ponent of the electromagnetic current case. The con-
stituents quark models formulated with the light-front ap-
proach presented here are in good agreement with experimen-
tal data [45-48,50,51].

The results presented in Table II can be visualized in
Fig. 2, where we show, for both components of the electro-
magnetic current, the calculations with both formalism: the
covariant and the light-front approaches.

The plus component,J+, of the electromagnetic current
for the symmetric vertex case, considered in this work, is pre-
sented in the left panel of Fig. 3, for the case where the an-
gle α is equal to zero (and within the Breit frame with the
Drell-Yan condition). It can be seen that, the non-valence
contributions do not contribute to the matrix elements of the
electromagnetic current in this case.

The ratios between the electromagnetic current in the
light-front and the electromagnetic current, calculated in the
instant form, are given by the following equations:

TABLE II. Numerical results for the plus and minus components of
the electromagnetic currents (J+, J−), with some values for the
momentum transfer, for both cases of the models considered here:
non-symmetric vertex model from [13], calculated with the covari-
ant and with the light-front approaches. Labels are: (I-J+(Cov.),
II-J−(Cov.), III-J+(NSY V ), IV-J−(NSY V ), V-J−(NV AL:(NSY )),
and VI-J−(V AL+NV AL). The momentumQ2 is given in [GeV2].

Q2 I II III IV V VI

2.0 0.932 0.932 0.932 -0.814 1.746 0.932

4.0 0.613 0.613 0.613 -0.553 1.167 0.613

6.0 0.448 0.448 0.448 -0.409 0.858 0.448

8.0 0.346 0.346 0.346 -0.317 0.666 0.346

10.0 0.281 0.281 0.282 -0.260 0.541 0.281
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FIGURE 3. The electromagetic current for the symmetric vertex, with referencial angle 0.0 a) and 45 degrees b). The range for the momentum
transfer given here is up to 10 (GeV/c)2.

FIGURE 4. The electromagetic current for the symmetric vertex, with referencial angle 60 a) and 90 degrees b). The range for the momentum
transfer given here is up to 10 (GeV/c)2.

RaI =
J

+(NSY V )
LF

J
+(NSY V )
Cov.

,

RaII =
J
−(NSY V (val.))
LF

J
−(NSY V )
Cov

,

RaIII =
J
−(NSY V )(val.)
LF (val.) + J

−(NSY V )(nval.)
LF

J
−(NSY V )
Cov

,

RaIV =
J

+(SY V )(val.+nval.)
LF

J+
Cov

|(α=0),

RaV =
J

+(SY V )(val.)
LF

J+
Cov

|α=90,

RaV I =
J

+(SY V )(val.+nval.)
LF

J+
Cov

|(α=90), (26)

where the non-symmetric vertex, and symmetric vertex, are
utilized according to Eqs. (4) and Eq. (5), respectively.

In Eq. (26), the ratioRaI is the plus component of the
electromagnetic current calculated in the light-front approach
divided by the electromagnetic current calculated in the in-
stant form; both calculated with the non-symmetric vertex
model [23]. Since the pair terms do not contribute for the
plus component of the electromagnetic current, the ratioRaI

is constant (see Fig. 7).
The second ratio,RaII , is the minus component of the

electromagnetic current,J−, calculated with the light-front
formalism and divided by the electromagnetic current calcu-
lated in the instant form. InRaIII ratio, the pair terms con-
tribution to the electromagnetic current is included, so the
covariance is restored.

The ratiosRaIV andRaV are the “minus” components of
the electromagnetic current without and with the pair terms
contribution, respectively, divided by the “plus” component
of the electromagnetic current calculated in the instant form
formalism.

As can be seen in Fig. 2, the rotational symmetry in the
light-front formalism is broken; this happens because the pair
terms or non-valence contribution for the electromagnetic
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FIGURE 5. a) Pion electromagnetic form factor calculated with light-front constituent quark model, for the plus and minus components of
electromagnetic current, compared with experimental data and vector meson dominance. Data are from [47,48,50,51]. Solid line is the full
covariant form factor withJ+

π (symmetric vertex for theπ−qq̄). The dashed line is line the form factor withJ−π plus pair terms contribution,
and the dotted line is the pion form factor without the pair terms contribution with the minus component of the electromagnetic current, where
both curves are with the nonsymmetric vertex. After added the non-valence contribuition, the pion electromagnetic form factor calculated
with the plus or minus compoenent of the electromagnetic current give the same results for the nonsymmetric vertex. b) Pion electromagnetic
form factor for smallQ2. Labels are the same as the left panel.

FIGURE 6. Pion electromagnetic form factor for higherQ2. Labels
are the same as those in Fig. 5.

current is not taken into account properly. The restoration of
the symmetry breaking is obtained by adding the pair terms
contribution to the minus component of the electromagnetic
current calculated in the light-front.

Experimental data forQ2 & 1.5 GeV/c 2 for the pion
electromagnetic form factor (see Fig. 5) are not precise
enough in order to satisfactorily select, amongst the phe-
nomenological models, which is the best description for the
pion elastic electromagnetic form factor or, in other words,
the correct pion wave function.

Results displayed in Fig. 6 confirm the validity of the vec-
tor meson dominance model at very low momentum transfer
(Q2 ≤ 0.5 GeV/c2).

For Q2 > 0.5 GeV/c2 (see Fig. 5), however, the dis-
crepancies between the vector meson dominance model, the
light-front models and experimental data are more prominent.

In the case of∆3, (see definition above), the covariance is re-
spected because the difference is zero in the integration sum
interval, [(i)+(ii)], for the J− component of the electromag-
netic current. The electromagnetic form factor for the pion
calculated with the matrix elements of the electromagnetic
current provides the same results as the electromagnetic form
factor of the pion calculated with usual covariant quantum
field theory [5].

In order to compare the breaking magnitude of the ro-
tational symmetry for the pion electromagnetic form factor
with light-front models, the vector meson dominance model,
and the one with covariant calculations, we define the fol-
lowing equations in an attempt to amplify the differences
amongst these theoretical models and experimental data:

∆1 =
[
q2FCOV (NSY V ))

π (q2)− q2F+(NSY V )
π (q2)

]
,

∆2 =
[
q2F (COV (NSY V ))

π (q2)− q2F−(val.)(NSY V )
π (q2)

]
,

∆3 =
[
q2F (COV (NSY V ))

π (q2)

− q2F−(val.+nonval.)(NSY V )
π (q2)

]
,

∆4 =
[
q2F (COV (SY V ))

π (q2)− q2F (val.)(SY V )
π (q2)

]
,

(α = 0.0) ,

∆5 =
[
q2F (COV (SY V ))

π (q2)− q2FSY V )
π (q2)

]
,

(α = 60) ,

∆6 =
[
q2F (COV (SY V ))

π (q2)− q2FSY V )
π (q2)

]
,

(α = 90) . (27)
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FIGURE 7. a) Ratios for the pion electromagnetic current (see Eq. (26) in the text). b) Labels are the same as those in Eq. (27). The range
for the momentum transfer given here is up to 10 (GeV/c)2.

The results of the calculations with the Eq. (27), are
shown in the Fig. (7) (right panel), up to 10 GeV2.

For the higher momentum transfer, the asymptotic be-
havior for the wave function of the non-symmetric ver-
tex model produceq2Fπ(15 GeV2/c2) ≈ 0.18 (GeV/c)2.
That result is compared with the leading-order-perturbative
QCD, Q2Fπ(Q2) ≈ 0.15 (GeV/c)2, for αs(Q2 =
10 (GeV/c)2) ≈ 0.3 and with Dyson-Schwinger ap-
proach,Q2Fπ(Q2) ≈ 0.12− 0.19 (GeV/c)2, for momentum
transfer betweenQ2 ≈ 10− 15 (GeV/c)2 [92].

5. Conclusions

In this work, the electromagnetic form factor of the pion was
investigated in the range0 < Q2 < 20 GeV/c2 with the
light-front constituent quark model. The light-front formal-
ism is known nowadays as a natural way to describe the sys-
tems with relativistic bound state, such as the pion. With this
approach it is possible to calculate the electromagnetic form
factors in a more suitable way.

However, issues related with the breaking of the rota-
tional symmetry in the light-front formalism become relevant
and the pair terms or no-valence terms contribution for the
covariance restoration in higher energies need some attention
[13,31].

After adding the non-valence components in the matrix
elements of the electromagnetic current, the covariance is
completely restored, and it does not matter which component
of the electromagnetic current,J+ or J−, is used to extract
the pion form factor with the light-front approach, as shown
in Fig. 5.

The numerical results presented in Fig. 4 show the impor-
tance of the non-valence components for the electromagnetic
current and the dependence with the choice of the component
used at low momentum transfer. To achieve the full covari-
ance, the inclusion of the non-valence components is essen-
tial for the minus component of the electromagnetic current.

In Eq. (26), the ratiosRaI , RaIII andRaV , produce con-
stant values, but the ratiosRaII andRaIV do not, because
the non-valence components of the electromagnetic current
is not included in the light-front approach calculation (see
Fig. 7).

The light-front models for the vertexπ − qq̄ and other
hadronic models for the pion electromagnetic form-factor
show good agreement between them; however, some differ-
ences arise when energies are in the higher region,Q2 &
2 GeV/c2.

From Eq. (27), the differences between the models ana-
lyzed in this work are clear, either for lower or higher mo-
mentum transfer, because the set of equations intensifies the
non-similarities amongst the models.

Since the pion electromagnetic form-factor is sensitive to
the model adopted, it is important to compare different mod-
els, including new experimental data, and to extract new in-
formation about the sub-hadronic structure of the pion bound
state.

The light-front approach is a good framework to study the
pion electromagnetic form factor. Nonetheless, the inclusion
of the non-valence components of the electromagnetic cur-
rent is essential for both low and higher momentum transfer.

We conclude that the light-front formalism and the vertex
models forπ − qq̄, with symmetric and non-symmetric ver-
tices describe the new experimental data for the pion electro-
magnetic form factor with very good agreement. As a next
step, calculations for the vector mesons, likeρ-meson and
vector kaon, are in progress in order to allow us to also com-
pare these with the light-front constituent models.
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