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Stable identification of sources located on the
cerebral cortex from EEG over the scalp
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In this work, we present a stable algorithm for the inverse problem of identifying cortical sources from electroencephalographic measurements
on the scalp. This inverse problemis ill-posed due to the numerical instability it preisenssnall changes in the measurements can produce

large variations in the location of the sources. A boundary value problem is used to find correlations between the sources and measurement:
In the case in which the head is modeled using two concentric spheres, we use spherical harmonics to find the solution to the inverse sourc
cortical problem. To handle the numerical instability of this problem, we use the Tikhonov regularization method and a cut-off of the
harmonic expansion series. From numerical tests, we found these parameters with which we get good approximations. Finally, we illustrate
the algorithm proposed with synthetic examples.
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1. Introduction bioelectrical sources that generate such measurements. In
this context, the sources are large clusters of neurons that

Electroencephalography is a well-known, non-invasive techWOrK in @ coupled manner to generate potentials that can
nique to investigate the brain, based on recording electrode?® récorded on the scalp employing an electroencephalo-

located on the scalp of its electrical potential (voltage). Thed™@Ph [1,2]. The sources can be located in the cerebral cortex

EEG is generated by the activity of big conglomerates of neu®" the cerebral volume. The EIP is an ill-posed problem in

rons that work simultaneously, called bioelectrical sourcesadamard’s sense [3], which is due to:

which can be located in the cerebral cortex or the brain’s sub- 1. Different sources can produce the same measurement.
cortical layers. The electrical activity of neurons is due to
the ionic currents. One of the main applications of electroen-
cephalography is to study evoked potentials, for determin-
ing zones of bioelectrical activity associated with a specific
stimulus, either for studying cognitive processes or for di-Regularization methods are used to handle this instability, [3]
agnosing and detecting epileptic foci (in both cases, locatethat allow finding stable approximate solutions from the mea-
on the cerebral cortex or subcortical layers). Another apsurement with error. For the study of the EIP, we will first
plication of the EEG is related to determining sleep anomaanalyze the so-called direct problem, which consists of deter-
lies. One crucial point is that epileptic foci can be relatedmining the measurement when the source is known. In the
to edemas, tumors, and calcifications in the brain. In thiglirect problem, unlike the inverse problem, if two sources are
work, we consider the inverse electroencephalographic prolelose, the respective measurements will also be close.

lem (EIP), which consists of determining, from electroen-  Aswe commented above, the bioelectrical sources can be
cephalographic measurements on the scalp, to identify thiecated in the cerebral cortex or the cerebral volume (subcor-

2. Presents a numerical instabilifye., small changes in
the measurement can produce large variations in the
location of the source.
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tical). Since the problem is linear regarding the sources, we
can separate the study of the inverse problem in cortical o
subcortical sources. More precisely, if we have two sources,
one cortical and one subcortical, the EEG produced by the
two sources is the sum of the EEG produced for each source
The mentioned linearity corresponds with the superposition
principle. For this work, we will consider the case of sources
on the cerebral cortex and disregard sub-cortical sources’ ac:
tivity. Moreover, different works study inverse problems in
the case of volumetric sources [4—7]. It was demonstrated
in Ref. [8] that the EIP has a unique solution. Thus, the ill- Ficure 1. Schematic representation of the head in two conductive
posedness of the EIP is associated with numerical instabilityayers. The cerebral cortex is representedbywhich can be con-
This work presents a stable algorithm to recover corti-sidered as an interface between the brain and the rest of the head.
cal sources from EEG measurements when two concentric
spheres model the head. In this case, we can use the expan- ) )
sion of the source and the measurement in spherical harmoMnere€2 = 2, U S; UQ, C R™, withn = 2 or 3, is a re-
ics. This simplified model has been widely used for studyingdion sufficiently smooth. The positive constantsand o,
the inverse source problem since it gives enough informatiog"® the conductivities of the regiofis and(2,, respectively
about the brain’s electrical activity [9-13]. There are numer-(S€€ Fig. 4). Functiop represents the source defined on the
ically comprehensive direct modeling schemes, including relntérfaceS:, while n; andn, are the unit outward normal
alistic geometries and electrical conductivities, even electriYECtors on the boundary 6f, and(2,, respectively. We de-
cally anisotropic tissue. These models have different advari20teé byu the solution of the probleni]-(5) in €2 and define
tages and disadvantages regarding speed, accuracy, and infér-= “lo,» @ = 1,2. A represents to the Laplace opera-
pretability of results [12]. To handle the numerical instability, 0. Which is also denoted by?. The boundary condition

we use two regularization parameters, namely, (3) corresponds to the continuity of the potential, and con-
dition (4) corresponds to the jump of the normal flux which
1. The Tikhonov regularization parameter. is equal to the functiory, while condition [B) indicates that
the conductivity in the exterior regioR® is zero (in some
2. Atruncation of the expansion series. applications it corresponds to the conductivity of the &i).

represents the braif), to the rest of the layers that make
up the head (intracranial fluid, skull, scal@; represents
examples the surface of the cerebral corte%; to the surface of the
o ) . scalp (see Fig. 2). The functignrepresents the activity of
The work is divided as follows: Section 2 shows the sources located on the cerebral cortex. We will call the con-

:Joynda:cryhvallztljg.gobl_e m ;’h"ﬁ aIIOV\r']S thel o_pera:cior:la:c form'”('j'tour problem [1)-(5) the Electroencephalographic Boundary
ation of the ; Section 3 shows the solution of the forwardy ..\ \« problem and denote it by (EBP).

problem and the Tikhonov regularized solution of the inverse

problem, which is used to the cut-off of the expansion series;

Section 4 shows numerical examples of the proposed algo-

rithm. Finally, In Sec. 5, the conclusions are shown. EXACT SOURCE

Both parameters were chosen by numerical tests.
We show the feasibility of the algorithm with numerical

2. Cortical electroencephalographic boundary

0.5
problem 0.4
0.3
The analysis of the inverse source cortical problem is carried g:f
out by means of the following boundary problem [11]: s . l1}
Aul =0 in Ql, (1) :8§ 4
. 0.4
AUQ =0 In QQ, (2) -0.5 4
6
UL = uy 0n Sl, (3)
0 0
el = 5,22 g on 8, )
8111 81’12
0
22 _ 0 on S, (5)
ony FIGURE 2. Exact sourcgy(f, ¢) = Ricos(p) sen?(y) cos(26).
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2.1. Solubility analysis of EBVP trace operatofi'r : V — W, defines the compact operator
o -~ _ AU —W,givenbyA =TroT,i.e.A(g) = u|g,, which
A necessary and sufficient condition for the classical solutions jnjective. Using this operator we will study the2problem of

of the EBVP is given by [8]: identifying sources defined oSy .
The inverse operatot —! is not continuous and it leads to
/gds =0. (6)  numerical instability, which is the cause of the ill-posedness

of the problem. To handle the numerical instability, we will
use the Tikhonov regularization method. Sinke(A) is

Definition 1. Giveng on Sy, the Electroencephalographic yaonse inA, we can apply the Tikhonov regularization [3].
Forward Problem (EFP) consists of finding the measurement  1he EIP can be expressed in terms of the operatar

S1

V' = ulg,, whereu is the solution of the EBVP. the the following form:

Definition 2. Give_n a functionV’ defined onSa, th(nT Elec- Given a function’ € W find a sourcey € ¢ such that
troenc_ephalographlc Inyerse Problem (EIP) consists of de—A(g) -V

termining a sourcey deflned ons; guch that the solutiom Note that the equatiod(g) = V does not have solution
of the EFP corresponding tg, satisfies thatu|g, = V. if V¢ I'm(A). We can use Tikhonov regularization since

Im(A)i i 14].
2.2. The weak solution m(4) is dense inV [8,14]

2.2.1. Weak solution of the EBVP 3. EIP Solution
We consider the following spaces: 3.1. Solution of the EFP
The boundary value probleni)¢(5) allows to get correla-
U=q9€ L(5): /9d51 =0 =Ly(5)/R, tions between EEG and sources. Through this model, we can

S get a theoretical (exact or ideal) EEG containing the main
characteristics to distinguish a real EEG. The boundary value
problem [1)-(5) allows to get correlations between EEG and

_ 1 . _ _ 1
V=queH(Q): /UdQ =00 =HQ/R, sources. Through this model, we can get a theoretical (ex-

@ act or ideal) EEG containing the main characteristics to dis-

tinguish a real EEG. To achieve this, we solve the so-called

W= (v € Ly(S2) : /vd& =0p = Ly(So)/R. forward or direct problem, which consists of determining the
exact EEG when the source is knovize,, when we know the

S
’ domain and correspondence rule of the function with which

Definition 3. Giveng € U, a functionu € H'(Q), is called  the source is represented. To solve the direct problem, as a

a weak solution of the proble(d)-(5)) if it satisfies first step, we find the solution of the EBVP. Then we restrict
this solution to the region’s boundary (more precisely, we find
o1 /Vul.Vde + 09 / Vus. VodQ) the trace of the solution to the region’s boundary).

To find the solution to the problem, it is proposed that the

1971 (92 . . . .
functiong € U is given in the form

:/gvds, VUEHl(Q)- (7
S1

9(9790) = Z Z gannm(aaQD)v (9)
n=0m=—n
The condition|6) is also necessary and sufficient for the where the Fourier coefficients,,,, of the sourcey are given
existence of the weak solution of the EBVP [11]. There is aby

unique weak solutiom € U that satisfies

Hu||H1(Q) < C||g||L2(Sl)7 (8) Inm = /g(ﬂ,gp)Ynm(G,gp)dSl (10)

where the constarit’ does not depend af[11]. &

We want to emphasize that the compatibility conditi6p ( The solution of the EBVF1)-(5) is sought in the form:
is necessary and sufficient for the existence and uniqueness of o n
the both classical and weak solutions [8]. uy = Z Z ALy (11)

n=0m=-—n

2.3. Inverse problem. Operational formulation and

n

We can define the following operat@t : &/ — ), defined o
by T'(g) = u, which is continuous due t@). The composi- Ug = Z Z (A2 ™+ B2 r Y, 12)
tion of the operatof’, which is continuous, and the compact n=0m=—n
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where the coefficientsl,,,,, and B,,,,, of the potentials are 3.2. Solution of the EIP
unknown and must be determined from the boundary condi-

tions of the problem. From the conditian = us, on Sy, it
is found that

AL Ry =A% R' 4+ B2 Ry (13)

nm

From the conditiono(Qu;/0n;) = 02(Ous/0nsy) + g
on Sy, itis obtained:

O'lA?l?'rnnR” t= = 02 [Aiman
+ Brn(n = DR 4 g (14)
From the boundary conditios, (Qus/0ns) = 0, itis found:

09[A2, nRY + B2, (n—1)R;*> "] =0. (15)

nm

By subtractingA2 = from the Eqg./L5) we obtain:

A2, =B.,(n+1)Ry> " /nRy~!
= (n+1/n)B;, Ry " (16)

Multiplying by R; the Eq.[L6), we get:

0'114 = 09 [A Rn
+ B (-0 = DR+ gum Ry, (17)
from where
n+1 R2n+1+nR2n+l
a, = U AL as)
1 n

Multiplying the Eq. @L4) by no; yields:
noy AL R} =noi[A2, RY + B2, R;'"). (19)
From (18) and (19), we have the following equation

7’L(O’1 — Jz)A}LmR? + [TLO’l + (TL + 1)0’2]

x B2 R = gumRi. (20)
Substituting42,,, given by (L6), we obtain
Rn+2R2’n+1
By = ——"— gum 21

whereH,, = (n—!—l)(ol—Ug)R%”‘H—&—[nal—&—(n—kl)ag]R;‘"‘z.
SubstitutingB2, . on Eq. (L6) is obtained

nm

2
2 Rn+

(22)

Therefore, the solution of the forward problem fpe U, is
given by

n n—+2
S IDIRE L P

n=0m=—n

where B, = (n + 1)(oy — o9)R", F, =
(n + 1)o] RET2.
mentV (EEG) is obtained through the relatidn(g, ) =
A(g)(0, ).

[TLO’l —+

From the expressior2p) paral’ = us|g,, we have that the
Fourier coefficients ot are given by

[(2n + I)R?+QRS]Q
TLEn “I‘Fn nm;

from where the coefficients of the sourgare given by

[nE, + F,]
(2n + 1)RY TRy

Vi (25)

Inm =

Recall that the harmonics,.,, (¢, ¢) form an orthogonal
basis for the harmonic functions orthogonal to constants, a
space arising from the compatibility condition of the func-
tion g.

3.3. Solution of the IEP using the Tikhonov regulariza-
tion method and a cut-off

We consider the equatiaA(g) = V. To handle the numer-
ical instability of the equation, the Tikhonov regularization
method is used, which consists of adding a penalization term
to the least square problesitg) = (1/2)]|A(g) — V||L2 S

i.e., the method minimizes the Tikhonov functional

1 «

Talg) = 51AG0) = VI3 s, + SNl (26)
wherea(d) > 0 and can be chosen using the L-curve method
[15] or the Morozov discrepancy principle [3].

Now, we consider the equatiod(g) = Vs, where
IV = V57, (s, and the functionall(g) = (1/2)[|A(g) —
VsllZ,ism) T+ (@/2)lgll7,s,) Letga) = RaVs < & be an
approximation ofy whereR, = (A*A + aI)~*A*Vj is the
operator associated with the Tikhonov regularization strategy,
which has the following properties described in the following
theorems [3].
Theorem 1. R, : W — U is boundedly invertible, and
da(s) = RaVs is the unique solution of the normal equation
(A*A+ al)gas) = A*Vs. Furthermore || R, || < 1/+/a.
Theorem 2. Any choicex(d) such that%iir(l) a(é) = 0 and

lim 62 / a(8) = 0 ensures that

sup {[|RaVs — A7Vl : Vs €W, [V = Vs|w <6} —0
whend — 0. In this caseR,, is called ‘admisible’ and
i = i . 27
lim go) =g in U (27)

The minimum of the functional2g), with V; insteadV/,

Recall that the exact (ideal) measure- is solution of the normal equations [3]:

(A*A+al) g*©®) = A"V, (28)

Rev. Mex. Fis69 050702
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where A* represents the adjoint operator, which is defined e To getVy, we aggregate a random error to the exact
through the adjoint boundary value problem measurement’ using the rand function of MATLAB
to emulate the error in the measurement.

Aw; =0 in Ql, (29) X . . .
_ e The regularized sourcg, s) is obtained usingdc) tak-

Awy; =0 in o, (30) ing N =10 anda = 10~°

wy =wy on S, (31) e We calculate the relative error given by

01% - 02% on S, (32) RE — | f - fa(s)HL2(sl)_

m 12 Hf||L2(S1)
o 202 S 33
250, =1 on S5, (33)  Example 1. We consider the sourcg(z,y,z) =

(x? — y?)z, which in spherical coordinateg Ry,0,¢) =
by the correspondence rul€ (1) = 1wy with ¢» € W. If R3 cos(y) sen®()cos(26). This function satisfies the com-
- patibility condition 6). Figure 2 shows the graphic of this
0) = Z Z rm Yoo ), (34) source, and Fig. 3 shows the same graphic obtained using
N = 20 terms of the expansion in spherical harmonics. The
solution of the forward problemd(g) is shown in Fig. 4,

it is found that which corresponds to the exact (ideal) measurement taking
o n nt2, N = 20in (23). The error measurement, in Fig. 5, was ob-
Z Z (2n+1) Ry tained by adding a random error to each coefficient (using
= = nGn,
o APPROXIMATE SOURCE
where 0.5 -
0.4
Gp=[(n+1) (61—02)] R4 [noy+ (n+1) o] RZVL. g
0.1 4
After solving the normal equations, we found that the > 0
. - . . -0.1
Fourier coefficients of the regularized sourtgs) are given 0.2 ]
by 0.3 4
-0.4 §
-0.5 4
6

1 n+2
o, = Ment D3OGy ()
—01 K, + an? (2n + 3) [G,)]

where V2 are the Fourier coefficients dfs, and K,, =
(2n + 1)° RI"T3R3"2. Thus, by 86) we get a stable algo- Ficure 3. Approximated source taking 20 terms in E8).
rithm to recover the source from the measurenignivhich
is associated to the EEG. IDEAL MEASUREMENT

After numerical tests, we will use 10 terms of the expan-
sion series since we get a good approximation of the regular-

ized sources. Thus, we are usidgand « as regularization 0.04 .
parameters.

0.02
4. Numerical examples > 0
In this section, we present numerical examples to illustrate -9
the algorithm given in Eq.36). In these examples, we pro- 0.04 |
ceed as follows: 6

e The EBVP [0)-(5) is solved for the exact sourge

o
0° o

e The forward problem (the trace of the solution of the
EBVP) is solved to get the exact or ideal measurementicure 4. Ideal measurement(g) = V obtained solving the
V. We takeN = 20 terms in the expansion series. forward problem taking 20 terms in E®3).

Rev. Mex. Fis69 050702
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MEASUREMENT WITH ERROR EXACT SOURCE

FIGURE 5. Measurement with error obtained adding a random er- f,guRrEe 8. Exact sourcgy(z,y, z) = (22 — y°)z.
ror to the exact measuremetifg) = V.

IDEAL MEASUREMENT

RECOVERED SOURCE

V
5666 ocooo

o LoORNORE D@~
L L F A L L L L L L L S

FIGURE 9. Ideal measurement(g) = V obtained solving the
FIGURE 6. Recovered source without regularizatien £ 0) and forward problem taking 20 terms in E®3).
N = 80 terms.

MEASUREMENT WITH ERROR

RECOVERED SOURCE

0.1
0.06

> 0.02 |
-0.02
-0.06 -
-0.1 .

V
OO000O ooooo

..
o P whiospwho

FIGURE 10. Measurement with error obtained adding a random

FIGURE 7. Regularized source obtained taking= 10~® and  error to the exact measuremetitg) = V.
N = 10terms in Eq.86).
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RECOVERED SOURCE

g e 8

FIGURE 11. Recovered source without regularizatien< 0) and
N = 80 terms.

RECOVERED SOURCE

FIGURE 12. Regularized source obtained by takihg= 10 and
a=10"°

the rand function of MATLAB), takingg = 0.1. Figure 6

ularized source witlv = 1076 and N = 10. The relative
error is0.08.

Example 2. We consider the souregzx, y) = zz +yz + zy.

This function also satisfies the compatibility conditid@).
Figure 8 shows the graphic of the exact source. Figure 9
shows the solutiomi(g) = V of the forward problem. The
error measurement is obtained as in the previous example,
and it is shown in Fig. 10. Figure 11 shows the recovered
source without regularizationy(= 0) and N = 80 terms.
The relative error i2.03. Figure 12 shows the regularized
source obtained by takiny = 10 anda: = 1076, The rela-
tive error is0.09.

5. Conclusion

We study the inverse electroencephalographic problem for
cortical sources (IEP), which consists of finding the cerebral
cortex sources from EEG scalp measurements. This prob-
lem is ill-posedness since it presents numerical instability.
We present an algorithm to solve the IEP, which uses the
Tikhonov regularization and a cut-off (truncation) to handle
the numerical instability. We found the regularization param-
eters from the numerical test to get the stable algorithm. The
former regularization parameter is the Tikhonov regulariza-
tion parameter. The latter is the teriv in which we trun-
cate the harmonic expansion of the source. From the numer-
ical tests, we found these parameters, which give good ap-
proximations of the sources. In the case of complex geome-
tries for the head, also we can use the Tikhonov functional
(26) to recover the source. In this case, it is possible to use
an iterative method to find the minimum of the mentioned
Tikhonov functional. One of the most used is the conjugate
gradient method. However, other methods can be used, like
the Quasi-Newton methods. Furthermore, we must solve the
direct problems in each iteration using a numerical method,
like finite differences or the Finite element method. The pa-
rameter associated with the truncation gives an idea to choose
the subspace obtained in the discretization of the numerical

shows the recovered source without regularization and takmethod used for solving the direct problems. Finally, we il-
ing N = 90 expansion terms. The relative error between thdustrate the proposed algorithm with synthetics examples that

exact and recovered source®i$0. Figure 7 shows the reg-

show its feasibility.
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