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In this work, we present a stable algorithm for the inverse problem of identifying cortical sources from electroencephalographic measurements
on the scalp. This inverse problem is ill-posed due to the numerical instability it presents,i.e., small changes in the measurements can produce
large variations in the location of the sources. A boundary value problem is used to find correlations between the sources and measurements.
In the case in which the head is modeled using two concentric spheres, we use spherical harmonics to find the solution to the inverse source
cortical problem. To handle the numerical instability of this problem, we use the Tikhonov regularization method and a cut-off of the
harmonic expansion series. From numerical tests, we found these parameters with which we get good approximations. Finally, we illustrate
the algorithm proposed with synthetic examples.
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1. Introduction

Electroencephalography is a well-known, non-invasive tech-
nique to investigate the brain, based on recording electrodes
located on the scalp of its electrical potential (voltage). The
EEG is generated by the activity of big conglomerates of neu-
rons that work simultaneously, called bioelectrical sources,
which can be located in the cerebral cortex or the brain’s sub-
cortical layers. The electrical activity of neurons is due to
the ionic currents. One of the main applications of electroen-
cephalography is to study evoked potentials, for determin-
ing zones of bioelectrical activity associated with a specific
stimulus, either for studying cognitive processes or for di-
agnosing and detecting epileptic foci (in both cases, located
on the cerebral cortex or subcortical layers). Another ap-
plication of the EEG is related to determining sleep anoma-
lies. One crucial point is that epileptic foci can be related
to edemas, tumors, and calcifications in the brain. In this
work, we consider the inverse electroencephalographic prob-
lem (EIP), which consists of determining, from electroen-
cephalographic measurements on the scalp, to identify the

bioelectrical sources that generate such measurements. In
this context, the sources are large clusters of neurons that
work in a coupled manner to generate potentials that can
be recorded on the scalp employing an electroencephalo-
graph [1,2]. The sources can be located in the cerebral cortex
or the cerebral volume. The EIP is an ill-posed problem in
Hadamard’s sense [3], which is due to:

1. Different sources can produce the same measurement.

2. Presents a numerical instability,i.e., small changes in
the measurement can produce large variations in the
location of the source.

Regularization methods are used to handle this instability, [3]
that allow finding stable approximate solutions from the mea-
surement with error. For the study of the EIP, we will first
analyze the so-called direct problem, which consists of deter-
mining the measurement when the source is known. In the
direct problem, unlike the inverse problem, if two sources are
close, the respective measurements will also be close.

As we commented above, the bioelectrical sources can be
located in the cerebral cortex or the cerebral volume (subcor-
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tical). Since the problem is linear regarding the sources, we
can separate the study of the inverse problem in cortical o
subcortical sources. More precisely, if we have two sources,
one cortical and one subcortical, the EEG produced by the
two sources is the sum of the EEG produced for each source.
The mentioned linearity corresponds with the superposition
principle. For this work, we will consider the case of sources
on the cerebral cortex and disregard sub-cortical sources’ ac-
tivity. Moreover, different works study inverse problems in
the case of volumetric sources [4–7]. It was demonstrated
in Ref. [8] that the EIP has a unique solution. Thus, the ill-
posedness of the EIP is associated with numerical instability.

This work presents a stable algorithm to recover corti-
cal sources from EEG measurements when two concentric
spheres model the head. In this case, we can use the expan-
sion of the source and the measurement in spherical harmon-
ics. This simplified model has been widely used for studying
the inverse source problem since it gives enough information
about the brain’s electrical activity [9–13]. There are numer-
ically comprehensive direct modeling schemes, including re-
alistic geometries and electrical conductivities, even electri-
cally anisotropic tissue. These models have different advan-
tages and disadvantages regarding speed, accuracy, and inter-
pretability of results [12]. To handle the numerical instability,
we use two regularization parameters, namely,

1. The Tikhonov regularization parameter.

2. A truncation of the expansion series.

Both parameters were chosen by numerical tests.
We show the feasibility of the algorithm with numerical

examples.
The work is divided as follows: Section 2 shows the

boundary value problem that allows the operational formu-
lation of the EIP; Section 3 shows the solution of the forward
problem and the Tikhonov regularized solution of the inverse
problem, which is used to the cut-off of the expansion series;
Section 4 shows numerical examples of the proposed algo-
rithm. Finally, In Sec. 5, the conclusions are shown.

2. Cortical electroencephalographic boundary
problem

The analysis of the inverse source cortical problem is carried
out by means of the following boundary problem [11]:

∆u1 = 0 in Ω1, (1)

∆u2 = 0 in Ω2, (2)

u1 = u2 on S1, (3)

σ1
∂u1

∂n1
= σ2

∂u2

∂n2
+ g on S1, (4)

∂u2

∂n2
= 0 on S2, (5)

FIGURE 1. Schematic representation of the head in two conductive
layers. The cerebral cortex is represented byS1, which can be con-
sidered as an interface between the brain and the rest of the head.

whereΩ = Ω1 ∪ S1 ∪ Ω2 ⊂ Rn, with n = 2 or 3, is a re-
gion sufficiently smooth. The positive constantsσ1 andσ2

are the conductivities of the regionsΩ1 andΩ2, respectively
(see Fig. 4). Functiong represents the source defined on the
interfaceS1, while n1 andn2 are the unit outward normal
vectors on the boundary ofΩ1 andΩ2, respectively. We de-
note byu the solution of the problem (1)-(5) in Ω and define
ui = u|Ωi

, i = 1, 2. ∆ represents to the Laplace opera-
tor, which is also denoted by∇2. The boundary condition
(3) corresponds to the continuity of the potential, and con-
dition (4) corresponds to the jump of the normal flux which
is equal to the functiong, while condition (5) indicates that
the conductivity in the exterior region̄ΩC is zero (in some
applications it corresponds to the conductivity of the air).Ω1

represents the brain,Ω2 to the rest of the layers that make
up the head (intracranial fluid, skull, scalp),S1 represents
the surface of the cerebral cortex,S2 to the surface of the
scalp (see Fig. 2). The functiong represents the activity of
sources located on the cerebral cortex. We will call the con-
tour problem (1)-(5) the Electroencephalographic Boundary
Value Problem and denote it by (EBP).

FIGURE 2. Exact sourceg(θ, ϕ) = R3
1cos(ϕ) sen2(ϕ) cos(2θ).
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2.1. Solubility analysis of EBVP

A necessary and sufficient condition for the classical solution
of the EBVP is given by [8]:

∫

S1

gds = 0. (6)

Definition 1. Giveng on S1, the Electroencephalographic
Forward Problem (EFP) consists of finding the measurement
V = u|S2

, whereu is the solution of the EBVP.
Definition 2. Given a functionV defined onS2, the Elec-
troencephalographic Inverse Problem (EIP) consists of de-
termining a sourceg defined onS1 such that the solutionu
of the EFP corresponding tog, satisfies thatu|S2

= V .

2.2. The weak solution

2.2.1. Weak solution of the EBVP

We consider the following spaces:

U =



g ∈ L2(S1) :

∫

S1

g dS1 = 0



 = L2(S1)/R,

V =



u ∈ H1(Ω) :

∫

Ω

u dΩ = 0



 = H1(Ω)/R,

W =



v ∈ L2(S2) :

∫

S2

v dS2 = 0



 = L2(S2)/R.

Definition 3. Giveng ∈ U , a functionu ∈ H1(Ω), is called
a weak solution of the problem(1)-(5)) if it satisfies

σ1

∫

Ω1

∇u1.∇vdΩ + σ2

∫

Ω2

∇u2.∇vdΩ

=
∫

S1

gv ds, ∀ v ∈ H1(Ω). (7)

The condition (6) is also necessary and sufficient for the
existence of the weak solution of the EBVP [11]. There is a
unique weak solutionu ∈ U that satisfies

‖u‖H1(Ω) ≤ C‖g‖L2(S1), (8)

where the constantC does not depend ofg [11].
We want to emphasize that the compatibility condition (6)

is necessary and sufficient for the existence and uniqueness of
the both classical and weak solutions [8].

2.3. Inverse problem. Operational formulation

We can define the following operatorT : U → V, defined
by T (g) = u, which is continuous due to (8). The composi-
tion of the operatorT , which is continuous, and the compact

trace operatorTr : V → W, defines the compact operator
A : U → W, given byA = Tr ◦ T , i.e. A(g) = u|S2

, which
is injective. Using this operator we will study the problem of
identifying sources defined onS1.

The inverse operatorA−1 is not continuous and it leads to
numerical instability, which is the cause of the ill-posedness
of the problem. To handle the numerical instability, we will
use the Tikhonov regularization method. SinceIm(A) is
dense inW, we can apply the Tikhonov regularization [3].

The EIP can be expressed in terms of the operatorA in
the the following form:

Given a functionV ∈ W find a sourceg ∈ U such that
A(g) = V.

Note that the equationA(g) = V does not have solution
if V /∈ Im(A). We can use Tikhonov regularization since
Im(A) is dense inW [8,14].

3. EIP Solution

3.1. Solution of the EFP

The boundary value problem (1)-(5) allows to get correla-
tions between EEG and sources. Through this model, we can
get a theoretical (exact or ideal) EEG containing the main
characteristics to distinguish a real EEG. The boundary value
problem (1)-(5) allows to get correlations between EEG and
sources. Through this model, we can get a theoretical (ex-
act or ideal) EEG containing the main characteristics to dis-
tinguish a real EEG. To achieve this, we solve the so-called
forward or direct problem, which consists of determining the
exact EEG when the source is known,i.e., when we know the
domain and correspondence rule of the function with which
the source is represented. To solve the direct problem, as a
first step, we find the solution of the EBVP. Then we restrict
this solution to the region’s boundary (more precisely, we find
the trace of the solution to the region’s boundary).

To find the solution to the problem, it is proposed that the
functiong ∈ U is given in the form

g(θ, ϕ) =
∞∑

n=0

n∑
m=−n

gnmYnm(θ, ϕ), (9)

where the Fourier coefficientsgnm of the sourceg are given
by

gnm =
∫

S1

g(θ, ϕ)Ynm(θ, ϕ)dS1. (10)

The solution of the EBVP (1)-(5) is sought in the form:

u1 =
∞∑

n=0

n∑
m=−n

A1
nmrnYnm, (11)

and

u2 =
∞∑

n=0

n∑
m=−n

(A2
nmrn + B2

nmr−1−n)Ynm, (12)
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where the coefficientsAnm and Bnm of the potentials are
unknown and must be determined from the boundary condi-
tions of the problem. From the conditionu1 = u2, onS1, it
is found that

A1
nmRn

1 = A2
nmRn

1 + B2
nmR−1−n

1 . (13)

From the conditionσ1(∂u1/∂n1) = σ2(∂u2/∂n2) + g
onS1, it is obtained:

σ1A
1
nmnRn−1

1 = σ2[A2
nmnRn

1

+ B2
nm(n− 1)R−2−n

1 ] + gnm. (14)

From the boundary conditionσ2(∂u2/∂n2) = 0, it is found:

σ2[A2
nmnRn

2 + B2
nm(n− 1)R−2−n

2 ] = 0. (15)

By subtractingA2
nm from the Eq. (15) we obtain:

A2
nm = B2

nm(n + 1)R−2−n
2 /nRn−1

2

= (n + 1/n)B2
nmR−2n−1

2 . (16)

Multiplying by R1 the Eq. (16), we get:

σ1A
1
nmnRn

1 = σ2[A2
nmnRn

1

+ B2
nm(−n− 1)R−1−n

1 ] + gnmR1, (17)

from where

A1
nm =

[(n + 1)R2n+1
1 + nR2n+1

2 ]
nRn−1

1 Hn

gnm. (18)

Multiplying the Eq. (14) by nσ1 yields:

nσ1A
1
nmRn

1 = nσ1[A2
nmRn

1 + B2
nmR−1−n

1 ]. (19)

From (18) and (19), we have the following equation

n(σ1 − σ2)A1
nmRn

1 + [nσ1 + (n + 1)σ2]

×B2
nmR−1−n

1 = gnmR1. (20)

SubstitutingA2
nm given by (16), we obtain

B2
nm =

Rn+2
1 R2n+1

2

Hn
gnm, (21)

whereHn = (n+1)(σ1−σ2)R2n+1
2 +[nσ1+(n+1)σ2]Rn+2

2 .
SubstitutingB2

nm on Eq. (16) is obtained

A2
nm =

Rn+2
1

nHn
gnm. (22)

Therefore, the solution of the forward problem forg ∈ U , is
given by

A(g) =
∞∑

n=0

n∑
m=−n

{
(2n + 1)Rn+2

1 Rn
2

nEn + Fn

}
gnmYnm, (23)

where En = (n + 1)(σ1 − σ2)R2n+1
1 , Fn = [nσ1 +

(n + 1)σ2]Rn+2
2 . Recall that the exact (ideal) measure-

mentV (EEG) is obtained through the relationV (θ, ϕ) =
A(g)(θ, ϕ).

3.2. Solution of the EIP

From the expression (22) paraV = u2|S2
, we have that the

Fourier coefficients ofV are given by

Vnm =
[(2n + 1)Rn+2

1 Rn
2 ]

nEn + Fn
gnm, (24)

from where the coefficients of the sourceg are given by

gnm =
[nEn + Fn]

(2n + 1)Rn+2
1 Rn

2

Vnm. (25)

Recall that the harmonicsYnm(θ, ϕ) form an orthogonal
basis for the harmonic functions orthogonal to constants, a
space arising from the compatibility condition of the func-
tion g.

3.3. Solution of the IEP using the Tikhonov regulariza-
tion method and a cut-off

We consider the equationA(g) = V . To handle the numer-
ical instability of the equation, the Tikhonov regularization
method is used, which consists of adding a penalization term
to the least square problemJ(g) = (1/2)‖A(g)− V ‖2L2(S2)

,
i.e., the method minimizes the Tikhonov functional

Jα(g) =
1
2
‖A(g)− V ‖2L2(S2)

+
α

2
‖g‖2L2(S1)

, (26)

whereα(δ) > 0 and can be chosen using the L-curve method
[15] or the Morozov discrepancy principle [3].

Now, we consider the equationA(g) = Vδ, where
‖V − Vδ‖2L2(S2)

, and the functionalJα(g) = (1/2)‖A(g) −
Vδ‖2L2(S2)

+ (α/2)‖g‖2L2(S1)
. Let gα(δ) = RαVδ < δ be an

approximation ofg whereRα = (A∗A + αI)−1A∗Vδ is the
operator associated with the Tikhonov regularization strategy,
which has the following properties described in the following
theorems [3].
Theorem 1. Rα : W → U is boundedly invertible, and
gα(δ) = RαVδ is the unique solution of the normal equation
(A∗A + αI)gα(δ) = A∗Vδ. Furthermore,‖Rα‖ ≤ 1/

√
α.

Theorem 2. Any choiceα(δ) such thatlim
δ→0

α(δ) = 0 and

lim
δ→0

δ2 /α(δ) = 0 ensures that

sup
{‖RαVδ −A−1V ‖U : Vδ ∈ W, ‖V − Vδ‖W ≤ δ

} → 0

whenδ → 0. In this case,Rα is called ‘admisible’ and

lim
δ→0

gα(δ) = g in U . (27)

The minimum of the functional (26), with Vδ insteadV ,
is solution of the normal equations [3]:

(A∗A + αI) gα(δ) = A∗Vδ, (28)
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whereA∗ represents the adjoint operator, which is defined
through the adjoint boundary value problem

∆w1 = 0 in Ω1, (29)

∆w2 = 0 in Ω2, (30)

w1 = w2 on S1, (31)

σ1
∂w1

∂n1
= σ2

∂w2

∂n2
on S1, (32)

σ2
∂w2

∂n2
= ψ on S2, (33)

by the correspondence ruleA∗(ψ) = σ1w1 with ψ ∈ W. If

ψ(θ, ϕ) =
∞∑

n=0

n∑
m=−n

ψnmYnm(θ, ϕ), (34)

it is found that

A∗(ψ)=−
∞∑

n=1

n∑
m=−n

(2n+1)Rn+2
2 rn

nGn

× ψnmYnm (θ, ϕ) , (35)

where

Gn= [(n+1) (σ1−σ2)] R2n+1
1 + [nσ1+(n+1) σ2] R2n+1

2 .

After solving the normal equations, we found that the
Fourier coefficients of the regularized sourcefα(δ) are given
by

fα
nm =

n(2n + 1) (2n + 3) GnRn+2
2

−σ1Kn + αn2 (2n + 3) [Gn]2
V δ

nm, (36)

whereV δ
nm are the Fourier coefficients ofVδ, and Kn =

(2n + 1)2 R2n+3
1 R2n+2

2 . Thus, by (36) we get a stable algo-
rithm to recover the source from the measurementVδ, which
is associated to the EEG.

After numerical tests, we will use 10 terms of the expan-
sion series since we get a good approximation of the regular-
ized sources. Thus, we are usingN andα as regularization
parameters.

4. Numerical examples

In this section, we present numerical examples to illustrate
the algorithm given in Eq. (36). In these examples, we pro-
ceed as follows:

• The EBVP (1)-(5) is solved for the exact sourcef .

• The forward problem (the trace of the solution of the
EBVP) is solved to get the exact or ideal measurement
V . We takeN = 20 terms in the expansion series.

• To getVδ, we aggregate a random error to the exact
measurementV using the rand function of MATLAB
to emulate the error in the measurement.

• The regularized sourcefα(δ) is obtained using (36) tak-
ing N = 10 andα = 10−6.

• We calculate the relative error given by

RE =
‖f − fα(δ)‖L2(S1)

‖f‖L2(S1)
.

Example 1. We consider the sourceg(x, y, z) =
(x2 − y2)z, which in spherical coordinatesg(R1, θ, ϕ) =
R3

1 cos(ϕ) sen2(ϕ)cos(2θ). This function satisfies the com-
patibility condition (6). Figure 2 shows the graphic of this
source, and Fig. 3 shows the same graphic obtained using
N = 20 terms of the expansion in spherical harmonics. The
solution of the forward problemA(g) is shown in Fig. 4,
which corresponds to the exact (ideal) measurement taking
N = 20 in (23). The error measurement, in Fig. 5, was ob-
tained by adding a random error to each coefficient (using

FIGURE 3. Approximated source taking 20 terms in Eq. (9).

FIGURE 4. Ideal measurementA(g) = V obtained solving the
forward problem taking 20 terms in Eq. (23).
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FIGURE 5. Measurement with error obtained adding a random er-
ror to the exact measurementA(g) = V .

FIGURE 6. Recovered source without regularization (α = 0) and
N = 80 terms.

FIGURE 7. Regularized source obtained takingα = 10−6 and
N = 10 terms in Eq. (36).

FIGURE 8. Exact sourceg(x, y, z) = (x2 − y2)z.

FIGURE 9. Ideal measurementA(g) = V obtained solving the
forward problem taking 20 terms in Eq. (23).

FIGURE 10. Measurement with error obtained adding a random
error to the exact measurementA(g) = V .

Rev. Mex. Fis.69050702
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FIGURE 11. Recovered source without regularization (α = 0) and
N = 80 terms.

FIGURE 12. Regularized source obtained by takingN = 10 and
α = 10−6.

the rand function of MATLAB), takingδ = 0.1. Figure 6
shows the recovered source without regularization and tak-
ing N = 90 expansion terms. The relative error between the
exact and recovered sources is9.10. Figure 7 shows the reg-

ularized source withα = 10−6 andN = 10. The relative
error is0.08.
Example 2.We consider the sourceg(x, y) = xz +yz +xy.
This function also satisfies the compatibility condition (6).
Figure 8 shows the graphic of the exact source. Figure 9
shows the solutionA(g) = V of the forward problem. The
error measurement is obtained as in the previous example,
and it is shown in Fig. 10. Figure 11 shows the recovered
source without regularization (α = 0) andN = 80 terms.
The relative error is2.03. Figure 12 shows the regularized
source obtained by takingN = 10 andα = 10−6. The rela-
tive error is0.09.

5. Conclusion

We study the inverse electroencephalographic problem for
cortical sources (IEP), which consists of finding the cerebral
cortex sources from EEG scalp measurements. This prob-
lem is ill-posedness since it presents numerical instability.
We present an algorithm to solve the IEP, which uses the
Tikhonov regularization and a cut-off (truncation) to handle
the numerical instability. We found the regularization param-
eters from the numerical test to get the stable algorithm. The
former regularization parameter is the Tikhonov regulariza-
tion parameter. The latter is the termN in which we trun-
cate the harmonic expansion of the source. From the numer-
ical tests, we found these parameters, which give good ap-
proximations of the sources. In the case of complex geome-
tries for the head, also we can use the Tikhonov functional
(26) to recover the source. In this case, it is possible to use
an iterative method to find the minimum of the mentioned
Tikhonov functional. One of the most used is the conjugate
gradient method. However, other methods can be used, like
the Quasi-Newton methods. Furthermore, we must solve the
direct problems in each iteration using a numerical method,
like finite differences or the Finite element method. The pa-
rameter associated with the truncation gives an idea to choose
the subspace obtained in the discretization of the numerical
method used for solving the direct problems. Finally, we il-
lustrate the proposed algorithm with synthetics examples that
show its feasibility.
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